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Interference Alignment for Secrecy
Onur Ozan Koyluoglu, Hesham El Gamal, Lifeng Lai, and H. Vincent Poor

Abstract

This paper studies the frequency/time selectiveK-user Gaussian interference channel with secrecy constraints.
Two distinct models, namely the interference channel with confidential messages and the one with an external
eavesdropper, are analyzed. The key difference between thetwo models is the lack of channel state information
(CSI) about the external eavesdropper. Using interferencealignment along with secrecy pre-coding, it is shown that
each user can achieve non-zero secure Degrees of Freedom (DoF) for both cases. More precisely, the proposed
coding scheme achievesK−2

2K−2
secure DoFwith probability oneper user in the confidential messages model. For

the external eavesdropper scenario, on the other hand, it isshown that each user can achieveK−2

2K
secure DoFin

the ergodic setting. Remarkably, these results establish thepositive impactof interference on the secrecy capacity
region of wireless networks.

I. INTRODUCTION

The wiretap channel was introduced by Wyner [1], in which theeavesdropper is assumed to have
access to a degraded version of the intended receiver’s signal. This pioneering work was later generalized
to cover the non-degraded scenario [2] and the Gaussian channel [3]. However, these results show that
the secrecy capacity saturates in the high signal-to-noiseratio (SNR) regime implying avanishing value
for the secure degrees of freedom (DoF).

Recently, there has been a growing interest in the analysis and design of secure wireless communication
networks based on information theoretic principles. For example, the secrecy capacity of relay networks
was studied in [4], [5], while the fundamental limits of the wiretap channel with feedback were analyzed
by [6]. On the other hand, the multiple access and broadcast channels with secrecy constraints were
investigated in [7], [8], [9]. Finally, the role of multipleantennas in enhancing the secrecy capacity was
established in [10], [11] and the positive impact of fading on secrecy capacity was revealed in [12], [13].

Here, the frequency/time selectiveK-user Gaussian interference channel with secrecy constraints is
considered. Without the secrecy constraints, it has been recently shown that a1

2
degrees of freedom

(DoF) per orthogonal dimension is achievable for each source-destination pair in this network [14]. The
achievability of this result was based on theinterference alignmenttechnique (see also [15]), by which the
interfering signals are aligned to occupy a subspace orthogonal to the one spanned by the intended signal
at each receiver. However, the impact of secrecy constraints on the degrees of freedom in this model has
not been fully characterized. In fact, to the best of our knowledge, the only relevant prior works are the
study of the two-user discrete memoryless interference channels with confidential messages [16], [17],
[18] and the one with an external eavesdropper [19]. The frequency selective interference channel adopted
in the present paper is, however, fundamentally different from thesememorylessmodels.

We consider two distinct network models, namely 1) the interference channel with confidential messages
and 2) the one with an external eavesdropper. In the first scenario, one needs to ensure theconfidentiality
of each message from all non-intended receivers in the network. Since all users are assumed to belong
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to the same network, one can assume the availability of channel state information (CSI) while designing
the secrecy coding scheme. Towards this goal, we employ an interference alignment scheme along with
secrecy pre-coding at each transmitter. Intuitively, the interference alignment scheme has two effects on
each receiveri: 1) it aligns the signals from transmittersk 6= i to a small dimensionality subspace, and
2) it assigns the signal from transmitteri to the orthogonal subspace. Hence, while the signal from its
own transmitter isreceived cleanly, the signals from other transmittersare mixed together. Our secrecy
pre-coding takes advantage of the phenomenon to ensure thatthe resulting multiple access channel (from
theK−1 interfering users) does not reveal any useful information about each non-intended message. This
way, we show that1

4
secure DoF per orthogonal dimension is achievable for each user in the three-user

Gaussian interference channel with confidential messages.We then generalize our results to theK-user
Gaussian interference channel showing that each user can achieve K−2

2K−2
secure DoF. In the second scenario,

we study the external eavesdropper model where the fundamental challenge is the lack of channel state
information (CSI) about the links connected to it. Despite this fact, it is shown that1/2−1/K DoF per user
is achievable in the ergodic setting. This result provides further evidence on the diminishing gain resulting
from knowing the instantaneous CSI of the eavesdroppera-priori. Interestingly, by comparing our results
with those obtained for the point-to-point case [12], [13],one can see thepositive impact of interference
on the secrecy capacity region of wireless network. The underlying idea is that the coordination between
several source-destination pairs allows forhiding the secret messages in the background interference.

The remainder of the paper is organized as follows. In Section II, the system model and notation are
introduced. Section III is devoted to the interference channel with confidential messages. The analysis for
the external eavesdropper scenario is detailed in Section IV. Finally, we offer some concluding remarks in
Section V. The technical results needed to develop our proofs are collected in the appendices to enhance
the flow of the paper.

II. SYSTEM MODEL

A. The Confidential Messages Scenario

We consider a frequency selective wireless network comprised of K transmitter-receiver pairs where
the ith receiver output at timet ∈ {1, · · · , n} and frequency slotf ∈ {1, · · · , F} is given by1

Yi(f, t) =

K
∑

k=1

hik(f)Xk(f, t) + Zi(f, t). (1)

Here, Xk(f, t) is the transmitted symbol of userk at frequency slotf during time t, and Zi(f, t) ∼
CN (0, 1) is the additive white Gaussian noise at receiveri. We assume that the channel coefficients are
randomly generated according to a continuous distributionand are fixed during the communication period.
We also assume that the channel coefficients are known at every node in the network. The network model
is provided in Fig.1.

Using the extended channel notation of [14], theith received vector during time slott can be written
as

Ȳi(t) =

K
∑

k=1

Hi,kX̄k(t) + Z̄i(t). (2)

Here,Hi,k is theF × F diagonal matrix of channel coefficients from transmitterk to receiveri whereas
Ȳi(t) = [Yi(1, t), · · · , Yi(F, t)]T , Z̄i(t) = [Zi(1, t), · · · , Zi(F, t)]T , andX̄k(t) = [Xk(1, t), · · · , Xk(F, t)]T

areF × 1 column vectors.

1In this paper, matrices are represented with bold capital letters (X) and vectors are denoted as bold capital letters with bars ortildes (for
example,X̄ and X̃). We defineK , {1, · · · , K} and denoteXS , {Xk|k ∈ S} for S ⊂ K. A zero-mean circularly symmetric complex
Gaussian random variable with varianceσ2 is denoted byCN (0, σ2).
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We assume that each sourcek ∈ K has a messageWk which must be transmitted in secrecy from
the remainingK − 1 receivers. Therefore, our(n, F, M1, · · · , MK) secret codebook has the following
components:

1) The secret message setWk = {1, · · · , Mk}.
2) Encoding functionsfk(.) which map the secret messages to the transmitted symbols, i.e.,fk : wk →

(X̄k(1), · · · , X̄k(n)) for each wk ∈ Wk. At encoderk, each codeword is designed according to the
transmitter’s average long-term power constraintρ, i.e.,

1

nF

F
∑

f=1

n
∑

t=1

(Xk(t, f))2 ≤ ρ.

3) Decoding functionsφk(.) at receiversk ∈ K which map the received symbols to estimates of the
messages:φk(Yk) = Ŵk whereYk = {Ȳk(1), · · · , Ȳk(n)}.

The reliability of the transmission of userk is measured by the probability of error

Pe,k =
1

K
∏

i=1

Mi

∑

(w1,··· ,wK) ∈W1×···×WK

Pr{φk(Yk) 6= wk|(w1, · · · , wK) is sent} ,

whereas the secrecy level is measured by the normalized equivocation defined as follows [1], [3]: For
receiveri, the equivocation for each subset of messagesWS , S ⊂ K − i, is

∆S,i ,
H (WS|Yi)

H (WS)
.

We say that the rate-equivocation tuple(R1, · · · , RK , d) is achievable for the Gaussian interference
channel with confidential messages, if, for any givenǫ > 0, there exists an(n, F, M1, · · · , MK) secret
codebook such that,

1

nF
log2 Mk = Rk, ∀k ∈ K,

max{Pe,1, · · · , Pe,K} ≤ ǫ, (3)

and

∆S,i ≥ d − ǫ, ∀i ∈ K, ∀S ⊂ K − i,

where a symmetric secrecy notion for each user in the networkis used. We also say that the symmetric
degrees of freedom (per orthogonal frequency-time slot) ofη is achievable with perfect secrecy, if the
rate-equivocation tuple(R1 = R, · · · , RK = R, d = 1) is achievable and

η = lim
ρ→∞

R

log(ρ)
.

B. The External Eavesdropper Scenario

In this model, we assume the existence of an external eavesdropper who observes the signals of theK
sources (see Fig.2). We consider an ergodic setting where the channel gains arefixed during a block of
n1 symbol times and then randomly change to another value for the next block. Hence, transmission time
of n time slots is divided intoB fading blocks withn = n1B. We denote the received signals at receiver
i ∈ {1, · · · , K, e} using the extended channel notation as follows

Ȳi(j + (b − 1)n1) =
K
∑

k=1

Hi,k(b)X̄k(j + (b − 1)n1) + Z̄i(j + (b − 1)n1), (4)
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where b ∈ {1, · · · , B} denotes the fading blockb, j ∈ {1, · · · , n1} denotes thej th time instant of
the corresponding fading block,Hi,k(b) is the F × F diagonal matrix of channel coefficients between
transmitterk and receiveri during fading blockb, andX̄k(j +(b−1)n1) is the transmitted vector of user
k at j th symbol of thebth fading block. We further defineH , {Hi,k(b) : i, k ∈ K, b ∈ {1, · · · , B}} and
He , {He,k(b) : k ∈ K, b ∈ {1, · · · , B}}. We assume thatH is known at all the nodes in the network,
whereasHe is known only at the eavesdropper (only the statistical knowledge about the eavesdropper CSI
is available to the network users). The channel coefficientsare i.i.d. samples of a zero-mean unit variance
complex Gaussian distribution.

The components of the secrecy codebook remain as before withthe exception that each transmitter
must secure its own messageonly from the external eavesdropper. Accordingly, we modify thesecrecy
requirement by considering the normalized equivocation seen by the eavesdropper. We denote the obser-
vation at the eavesdropper asYe = {Ȳe(1), · · · , Ȳe(n)}, in which Ȳe(t) is defined similarly as̄Yi(t) for
t = 1, · · · , n. Therefore, the normalized equivocation for a subset of messagesS ⊂ K is given by

∆S ,
H (WS|Ye,H,He)

H (WS)
.

We say that the rate-equivocation tuple(R1, · · · , RK , d) is achievable for the Gaussian interference
channel with an external eavesdropper, if, for any givenǫ > 0, there exits an(n, F, M1, · · · , MK) secret
codebook such that

1

nF
log2 Mk = Rk, ∀k ∈ K,

max{Pe,1, · · · , Pe,K} ≤ ǫ, (5)

and

∆S ≥ d − ǫ, ∀S ⊂ K.

It then follows that the symmetric DoF with perfect secrecy is defined along the same lines as in the
previous section.

III. T HE K-USER GAUSSIAN INTERFERENCECHANNEL WITH CONFIDENTIAL MESSAGES

To illustrate the main idea, we start with the intuitive argument for the three-user Gaussian interference
channel. LetF = 2m+1 for somem ∈ N. This is the(2m+1) symbol extension of the three-user channel
considered in [14]. We now employ interference alignment precoding using the matrices̄Vk of [14], so
that the transmitted signals are of the form̄Xk(t) = V̄kX̃k(t), where X̃k(t) represents the vector of
mk streams transmitted from userk (see Fig.3). According to the interference alignment principle, the
beamforming matrices̄Vk are constructed to satisfy the following two properties:

1) The non-intended signals seen by each receiver are alignedwithin some low dimensionality subspace.
More precisely, the column space of the matricesHi,kV̄k for k ∈ K − i lie in a subspace of dimension
F − mi at receiveri.

2) The intended streams span the orthogonal subspace, i.e., the columns ofHi,iV̄i are independent and
are orthogonal to that ofHi,kV̄k for each userk ∈ K − i.

This way, theF dimensional received signal space at each receiver is used to createmi interference
free dimensions, spanned by the desired streams. Now, let usconsider receiver1 as the eavesdropper for
the messages of users2 and3. This particular eavesdropper now sees them streamsX̃2(t) andm streams
X̃3(t) mixed together in a multiple access channel withonly m dimensions. This key observation allows
for the secrecy precoding̃X2(t) andX̃3(t) to completely securem/2 streams in each transmitted vector.
It is easy to see that a similar argument follows for securingeach vector against the second potential
eavesdropper. In the limit of a largeF = 2m + 1, the m/2 secure streams results in1/4 secure DoF.
This intuitive discussion is formalize for the general caseof a K-user Gaussian interference channel in
the following.
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Theorem 1:For theK-user Gaussian interference channel with confidential messages, a secure DoF
of η = K−2

2K−2
per frequency-time slot is almost surely achievable for each user.

Proof: We shall show that almost all codebooks in an appropriately constructed ensemble satisfy
the achievability conditions for symmetric secure DoF ofη = K−2

2K−2
with probability that approaches to

1, for all channel coefficients, asn, m, ρ → ∞.
Fix anm ∈ N. Letm1 = (m+1)M , mk = mM ∀k 6= 1, M = (K−1)(K−2)−1, andF = (m+1)M+mM

frequency slots. We now generate, for each userk, 2
nmk

“

F

mk
(Rk+Rx

k
)
”

codewords each of lengthnmk with
entries that are independent and identically distributed (i.i.d.) ∼ CN

(

0, ρ−ǫ

ck

)

. We chooseck to satisfy

the power constraint for each user:ck =
tr(V̄kV̄H

k
)

F
. These codewords are then randomly partitioned into

Mk = 2nFRk message bins, each consisting ofMx
k = 2nFRx

k codewords. Hence, an entry of thekth user
codebook will be represented bŷXk(wk, w

x
k) where the bin indexwk ∈ Wk is the secrecy message and

the indexwx
k ∈ {1, · · · , Mx

k } is the randomization message. It is easy to see that the secure transmission
rate per orthogonal time and frequency slot isRk.

To send a messagewk, thekth transmitter looks into the binwk ∈ Wk and randomly selects a codeword
in this bin, denoted by the indexwx

k , according to uniform distribution. It thus obtainŝXk(wk, w
x
k) of

lengthnmk. We further partition the elements of this vector asX̂k(wk, w
x
k) = [X̃k(1), · · · , X̃k(n)], where

each element is anmk × 1 vector. Then, for each symbol timet ∈ {1, · · · , n}, the transmitter employs
the interference alignment scheme, and mapsX̃k(t) to X̄k(t) via X̄k(t) = V̄kX̃k(t), where we choose
the interference alignment matrices̄Vk as in [14].

We choose the secrecy and randomization rates as follows2.

Rk =
1

F
min
i∈K

{

I(X̃i; Ȳi)
}

−
1

(K − 1)F
max
i∈K

{

I(X̃K−i; Ȳi)
}

and

Rx
k =

1

F
min

i∈K,S⊆K−i

{

1

|S|
I(X̃S ; Ȳi|X̃K−S−i)

}

(6)

The above rates are inside the decodability region for each user, i.e.,Rk + Rx
k ≤ 1

F
I(X̃k; Ȳk),

∀k ∈ K, implying that each user can reliably decode its own streamsas n → ∞. Hence, using the
union bound argument, we can show that for a givenǫ there existsn0(ǫ) such that for anyn > n0(ǫ)
max{Pe,1, · · · , Pe,K} ≤ ǫ for almost all codebooks in the ensemble. Our second step is to show that∆S,i

can be made arbitrarily close to1 for any i ∈ K andS ⊂ K− i for almost all codebooks in the ensemble.
Towards this end, it is sufficient to focus on the equivocation at an arbitrary receiveri ∈ K. Furthermore,
it is sufficient to establish perfect secrecy for the full message set since Lemma 4 shows that perfect
secrecy of the full message set implies secrecy for all subsets (Here, the full message set at the receiver
i refers toWK−i.). Denoting the observation of the eavesdropper asYi, we write

H(WK−i|Yi) = H(WK−i,Yi) − H(Yi)

= H(WK−i, W
x
K−i,Yi) − H(W x

K−i|WK−i,Yi) − H(Yi)

= H(WK−i) + H(W x
K−i|WK−i) + H(Yi|WK−i, W

x
K−i) (7)

− H(W x
K−i|WK−i,Yk) − H(Yi)

= H(WK−i) + H(W x
K−i) − I(WK−i, W

x
K−i;Yi) − H(W x

K−i|WK−i,Yi),

where the last equality follows from the fact thatH(W x
K−i|WK−i) = H(W x

K−i) as the randomization (i.e.,
codeword) indices are independent of the message (i.e., bin) indices. We now bound each term of (7).
First

I(WK−i, W
x
K−i;Yi) ≤ I(X̃K−i(1), · · · , X̃K−i(n);Yi) (8)

2Since the channel coefficients are fixed and known everywhere, we omit the conditioning on them here.
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due to the Markov chain relationship

{WK−i, W
x
K−i} → {X̃K−i(1), · · · , X̃K−i(n)} → Yi. (9)

Combining this with the fact that

I(X̃K−i(1), · · · , X̃K−i(n);Yi) ≤ n max
p(X̃K−i)

I(X̃K−i; Ȳi),

we obtain
I(WK−i, W

x
K−i;Yi) ≤ n max

p(X̃K−i)
I(X̃K−i; Ȳi). (10)

Second

H(W x
K−i) = log

(

∏

k 6=i

Mx
k

)

= nF
∑

k∈K−i

Rx
k . (11)

To upper bound the last term, we use the following argument. Assume thatwK−i ∈ WK−i is transmitted.
Given these bin indices, the remaining randomness inW x

K−i at the eavesdropper can be resolved for almost
all codebooks as the above choice ofRx

k satisfies the multiple access channel achievability conditions
∑

k∈S

Rx
k ≤ 1

F
I(X̃S ; Ȳi|X̃K−S−i), ∀S ⊂ K − i [20, Chapter 14]. Then, by Fano’s inequality, we have

H(W x
K−i|WK−i = wK−i,Yi) ≤ nδ(n, wK−i), whereδ(n, wK−i) → 0 as n → ∞. Then, definingδ(n) ,

max
wK−i∈WK−i

δ(n, wK−i), we have

H(W x
K−i|WK−i,Yi) =

∑

wK−i∈WK−i

H(W x
K−i|WK−i = wK−i,Yi) p(WK−i = wK−i)

≤ nδ(n), (12)

whereδ(n) → 0 as n → ∞. Using equations (10), (11), and (12) in (7) and dividing both sides of by
H(WK−i), we obtain

∆K−i,i ≥ 1 − δ̂, (13)

δ̂ ,

δ(n) + max
p(X̃K−i)

I(X̃K−i; Ȳi) − F
∑

k∈K−i

Rx
k

F
∑

k∈K−i

Rk

,

=

δ(n) + max
p(X̃K−i)

I(X̃K−i; Ȳi) − (K − 1) min
i∈K,S⊆K−i

{

1
|S|

I(X̃S ; Ȳi|X̃K−S−i)
}

(K − 1) min
i∈K

{

I(X̃i; Ȳi)
}

− max
i∈K

{

I(X̃K−i; Ȳi)
} , (14)

where we used the fact thatH(WK−i) = nF
∑

k∈K−i

Rk and the rate assignment given by (6).

It is already observed thatδ(n) → 0 as n → ∞ for almost all codebooks in the ensemble. The
orthogonality of the intended message and interference at each respective receiver along with the full rank
property of the gain matrices (see Lemma 5) imply the followings.

lim
ρ→∞

max
p(X̃K−i)

I(X̃K−i; Ȳi)

log(ρ)
= F − mi, ∀i ∈ K, (15)

lim
ρ→∞

I(X̃S ; Ȳi|X̃K−S−i)

log(ρ)
= r, (16)
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wherer = mM or r = (m + 1)M depending oni,

lim
ρ→∞

I(X̃i; Ȳi)

log(ρ)
= mi, ∀i ∈ K, (17)

and

lim
ρ→∞

I(X̃K−i; Ȳi)

log(ρ)
= F − mi, ∀i ∈ K. (18)

Using the observations (15), (16), (17), and (18) in (14) we see that

lim
n,m,ρ→∞

δ̂ = 0 (19)

for almost all codebooks in the ensemble. Hence, for any given ǫ > 0, we can make∆K−i,i ≥ 1 − ǫ by
letting n, m, ρ grow. Finally, due to (6), (17), and (18), we obtain

η = lim
m,ρ→∞

Rk

log(ρ)
=

K − 2

2K − 2
. (20)

which proves our result.

IV. THE K-USER GAUSSIAN INTERFERENCECHANNEL WITH AN EXTERNAL EAVESDROPPER

First, it is easy to see that our previous results extend naturally when the eavesdropper CSI is available
a-priori at the different transmitters and receivers. Intuitively,one can imagine the existence of a virtual
transmitter associated with the external eavesdropper transforming ourK-user network into another one
with K + 1-users. This way, one can achieve a secure DoF ofη = (K+1)−2

2(K+1)−2
= K−1

2K
per frequency-time

slot for each user using the scheme of the previous section. For example, for a two-user network with an
external eavesdropper, it is possible to achieve1

4
secure DoFs if the eavesdropper CSI is available at the

transmitters. More formally, we have the following result.
Corollary 2: For theK-user Gaussian interference channel with an external eavesdropper, a secure DoF

of η = K−1
2K

per frequency-time slot is almost surely achievable for each user (assuming the availability
of the eavesdropper CSI).

More interestingly, it is still possible to achieve positive secure DoF per user in theabsence of the
eavesdropper CSI by exploiting the channelergodicity. In the ergodic model, the channel gains are
assumed to be fixed during a block ofn1 symbol times and then randomly change to another value in the
next block for a total ofB blocks, wheren1 → ∞ andB → ∞.

Again, for illustration purposes, we use theK = 3 case. Here, the users of the network have3m+1
2m+1

total
DoF while the multiple access channel (MAC) seen by the eavesdropper can have only one DoF from
its observations. Hence, via an appropriate choice of secrecy codebooks, the m

2m+1
additional DoF can be

evenlydistributed among the network userson the average, allowing for a 1
6

secure DoF per user without
any requirement on the eavesdropper CSI. In the general case, we have the following result.

Theorem 3:For theK-user Gaussian interference channel with an external eavesdropper, a secure DoF
of η = 1

2
− 1

K
per frequency-time slot is achievable for each user in the ergodic setting (in the absence of

the eavesdropper CSI).
Proof: Let m ∈ N andF = (m+1)M +mM , whereM = (K−1)(K−2)−1. We setm1 = (m+1)M

and mk = mM for k 6= 1. We generate all the permutations of lengthK and denote this set byΠ,
where |Π| = K!. Then, for each fading blockb ∈ {1, · · · , B}, we randomly pick, according to uniform
distribution, a permutation fromΠ and denote it byπb. In order to ensure statistical symmetry, the
interference alignment matrices in each fading block will be obtained according to a different user ordering
induced byπb. More specifically, letk(b) = πb(k) and H

(b)
i(b),k(b) = Hi,k(b). Using the newly ordered

channel matricesH(b)
i(b),k(b), the interference alignment matrix for the userk(b), i.e., V̄k(b), is generated.
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For each secrecy codebook in the ensemble, we generate2nF (Rk+Rx

k
) sequences each of lengthn1

B
∑

b=1

mk(b),

where entries are chosen i.i.d.∼ CN
(

0, P−ǫ
c

)

for someǫ > 0 and c that satisfies the long term average
power constraint (the existence ofǫ and c follows from the argument of Theorem 1). We independently
assign each codeword to one ofMk = 2nFRk bins each havingMx

k = 2nFRx

k codewords. Givenwk,
transmitterk chooses the corresponding bin and independently (according to uniform distribution) chooses
a codeword in that bin denoted bŷXk(wk, w

x
k), wherewx

k is the randomization index. This codeword is
then divided intoB blocks, each with a lengthn1mk(b) symbols. Each block is then arranged in the
following mk(b) × n1 matrix [X̃k(1 + (b− 1)n1), · · · , X̃k(n1 + (b − 1)n1)], whereX̃k(j + (b− 1)n1), for
1 ≤ j ≤ n1, is anmk(b)×1 vector. At time slott = j +(b−1)n1, thekth transmitter maps̃Xk(t) to X̄k(t)
via X̄k(t) = V̄k(b)X̃k(t). Finally, we would like to emphasize the fact that in the sequel expectations
will be taken with respect to the random distribution of the channel matrices and the uniform distribution
underlying the permutation operators used in different fading blocks.

Our first key observation is that the equivalent channel matrices Hi,k(b)V̄k(b) connectingX̃k(t) and
Ȳi(t) are identically distributed∀i, k ∈ K and b ∈ {1, · · · , B}. This property will allow us to drop the
subscripti and writeE[I(X̃i; Ȳi|H)] = E[I(X̃; Ȳ|H)], ∀i ∈ K in the following. To satisfy the achievability
conditions and the secrecy requirements of the network, we chooseRk andRx

k as follows

Rk =
1

KF

(

KE[I(X̃; Ȳ|H)] − max
p(X̄K)

E[I(X̄K; Ȳe|H,He)]

)

and

Rx
k =

1

KF
E[I(X̃K; Ȳe|H,He)], (21)

where the maximization in the first equation is among all possible input distributions. With this choice
of rates, we have the following

Rk + Rx
k =

1

F
E[I(X̃; Ȳ|H)] −

1

KF
max
p(X̄K)

E[I(X̄K; Ȳe|H,He)] +
1

KF
E[I(X̃K; Ȳe|H,He)]

≤
1

F
E[I(X̃; Ȳ|H)], (22)

where the inequality is due to the maximization amongall possible input distributions in the second term
of the equation. Hence, we haveRk + Rx

k ≤ 1
F

E[I(X̃; Ȳ|H)], from which we conclude that each user
in the interference network can decode its own secrecy and randomization indices asn1 → ∞ and as
B → ∞ (using almost all codebooks in the ensemble). The next step is to study the equivocation at the
eavesdropper, i.e.,

1

n
H(WK|Ye,H,He) =

1

n

(

H(WK,Ye,H,He) − H(Ye,H,He)
)

=
1

n

(

H(WK, W x
K,Ye,H,He) − H(W x

K|WK,Ye,H,He)

− H(Ye,H,He)
)

=
1

n

(

H(WK) + H(W x
K|WK) + H(Ye,H,He|WK, W x

K)

− H(W x
K|WK,Ye,H,He) − H(Ye,H,He)

)

=
1

n

(

H(WK) + H(W x
K) − I(WK, W x

K;Ye,H,He)

− H(W x
K|WK,Ye,H,He)

)

, (23)

where the last equality follows from the fact thatH(W x
K|WK) = H(W x

K) as the codeword indices are
independent of the bin indices. Here,

H(W x
K) = log

(

K
∏

k=1

Mx
k

)

=

K
∑

k=1

nFRx
k = nE[I(X̃K; Ȳe|H,He)] (24)
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and

lim
n→∞

1

n
I(WK, W x

K;Ye,H,He) ≤ lim
n→∞

1

n
I(X̃K(1), · · · , X̃K(n);Ye,H,He)

= lim
n→∞

1

n

(

I(X̃K(1), · · · , X̃K(n);H,He)

+I(X̃K(1), · · · , X̃K(n);Ye|H,He)
)

= lim
n→∞

1

n
I(X̃K(1), · · · , X̃K(n);Ye|H,He)

= E[I(X̃K; Ȳe|H,He)], (25)

where the first inequality is due to the Markov chain relationship

{WK, W x
K} → {X̃K(1), · · · , X̃K(n)} → {Ye,H,He},

and the last one is due to ergodicity. For the last term of (23), we observe that the channel seen by
the eavesdropper reduces to a fading MAC channel for the randomization messages due to the code
construction. For this fading MAC, each user is able to set its randomization message rate as a fraction
1
K

of the total DoF seen by the eavesdropper as chosen in (21), and assure the decodability of the
randomization messages at the eavesdropper given the secrecy message indices (the technical details are
reported in Lemma 6, Lemma 7, and Lemma 8). Then, by Fano’s inequality, we have

lim
n1,B→∞

H(W x
K|WK,Ye,H,He)

n1B
= 0,

for almost all codebooks in the ensemble. Therefore, by dividing both sides of (23) by1
n
H(WK), we can

ensure

∆K =
H(WK|Ye,H,He)

H(WK)
≥ 1 − ǫ, (26)

for any ǫ > 0 as n1, B → ∞, which is sufficient for our purposes (please refer to Lemma 4). Finally,
considering (21), we have

lim
ρ→∞

E[I(X̃; Ȳ|H)]

log(ρ)
=

(

1

K
m1 +

K − 1

K
m2

)

,

and hence

lim
ρ→∞

Rk

log(ρ)
=

1

KF

(

K

(

1

K
m1 +

K − 1

K
m2

)

− F

)

=
(K − 2)mM

KF
(27)

implying thatη = mM

F
− 2mM

KF
DoF is achievable for each user for anym. Consequently, we conclude that

lim
m→∞

η = 1
2
− 1

K
symmetric DoF is achievable with perfect secrecy in the ergodic setting.

It is important to observe that the achievability of a positive DoF for the no eavesdropper CSI scenario
hinges largely on the ergodicity assumption, whereas when the eavesdropper CSI is assumed to be available
our results hold almost surely for all channel realizations. This is the price entailed by the lack of
eavesdropper CSI. Finally, the positive impact of interference on the secrecy capacity region is best
illustrated by comparing our results to the point-to-pointscenario. In [13], a point-to-point channel with
an external eavesdropper was shown to have zero DoF. On the other hand, our results show that as
more source-destination pairs are added to the network, each pair is able to achieve non-zero DoF for
K ≥ 2. This seemingly surprising result is due to interference alignment technique whichnot only allows
for a clean separation between the intended message and interference at each receiver, but also packs the
interfering signals into a low dimensionality subspace, and hence, impairs the ability of each eavesdropper
to distinguish any of the secure messages efficiently.
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V. CONCLUSIONS

In this work, we have considered theK-user Gaussian interference channel with secrecy constraints.
By using the interference alignment scheme along with secrecy pre-coding at each transmitter, we have
shown that each user in the network can achieve a non-zero secure DoF. Our results differentiate between
the confidential messages scenario and the case where an external eavesdropper, with unknown CSI, is
present in the network. The most interesting aspect of our results is, perhaps, the discovery of the role of
interference in increasing the secrecy capacity of multi-user wireless networks.

APPENDIX I
LEMMA 4

Lemma 4:Consider receiveri ∈ K. For a givenǫ > 0 and d ∈ [0, 1], ∃ǫ∗(i, ǫ, d) > 0 such that, if
∆K−i,i ≥ 1 − ǫ∗(i, ǫ, d) then∆S,i ≥ d − ǫ, ∀S ⊆ K − i.

Proof: For a giveni ∈ K, ǫ > 0, and level of secrecyd ∈ [0, 1], let ǫ∗(i, ǫ, d) = min
S⊆K−i

(1 + ǫ −

d) H(WS )
H(WK−i)

. Then, denoting the received observation of the eavesdropper asYi and assuming∆K−i,i ≥
1 − ǫ∗(i, ǫ, d), for anyS ⊆ K − i we have

H(WS |Yi) + H(WK−i|WS ,Yi) = H(WK−i|Yi)

≥ H(WK−i) − ǫ∗(i, ǫ, d)H(WK−i) (28)

≥ H(WS) + H(WK−i|WS) − (1 + ǫ − d)H(WS),

where the first inequality follows from the assumption of∆K−i,i ≥ 1−ǫ∗(i, ǫ, d) and the second inequality
follows from the choice ofǫ∗(i, ǫ, d) above. Continuing from above,

∆S,i =
H(WS |Yi)

H(WS)
≥ (d − ǫ) +

H(WK−i|WS) − H(WK−i|WS ,Yi)

H(WS)
≥ (d − ǫ),

as conditioning does not increase entropy.

APPENDIX II
LEMMA 5

Lemma 5:The gain matrix, resulting from the interference alignmentscheme, between transmitterk
and the receiveri, i.e.,Hi,kV̄k, has rankmk with probability one. As the dimension ofHi,kV̄k is F ×mk,
these matrices have full rank with probability one.

Proof: We have rank(Hk,kV̄k) = mk by the construction given in [14]. Now, the second observation
follows by the design of interference alignment vectors, which have linearly independent columns (If they
had linearly dependent columns, thenHk,kV̄k would not havemk linearly independent columns, contrary
to the construction of the interference alignment matrices.). Here, rank(Hi,kV̄k) ≤ min{mk, F} = mk for
i 6= k. We need only to show that the matrixHi,kV̄k hasmk linearly independent columns. Considering
any i 6= k, representing diagonal elements ofHi,k as {hi,k(1), hi,k(2), · · · , hi,k(F )} and denoting the
rows of the interference alignment matrix byvf , i.e., V̄k = [vT

1 ;vT
2 ; · · · ;vT

F ]T , we haveHi,kV̄k =
[hi,k(1)vT

1 ; hi,k(2)vT
2 ; · · · ; hi,k(F )vT

F ]T . At this point, as the channel gains are chosen according to a
continuous distribution, thehik(f)’s are non-zero with probability one forf ∈ {1, 2, · · · , F}. Hence, these
row operations will not change the rank of a matrix, i.e., rank(Hi,kV̄k) = rank(V̄k) = mk. Therefore, the
gain matrices seen by the receivers have full rank with probability one.



11

APPENDIX III
LEMMA 6

Lemma 6:For anyM,L ⊂ K satisfyingM∩L = ∅,

I(X̃M; Ȳe|H,He) ≤ I(X̃M; Ȳe|X̃L,H,He).
Proof:

I(X̃M; Ȳe|H,He) = H(X̃M|H,He) − H(X̃M|Ȳe,H,He)

≤ H(X̃M|X̃L,H,He) − H(X̃M|Ȳe, X̃L,H,He) (29)

= I(X̃M; Ȳe|X̃L,H,He),

where the inequality is due to the fact that conditioning does not increase entropy, and the last equality
follows byH(X̃M|X̃L,H,He) = H(X̃M|H,He) asM∩L = ∅ and messages of the users are independent.

APPENDIX IV
LEMMA 7

Lemma 7:
1

|Sc|
E[I(X̃Sc ; Ȳe|H,He)] ≤

1

|S|
E[I(X̃S ; Ȳe|X̃Sc,H,He)] (30)

Proof: Let us denote|S| = S; and defineS = {s1, · · · , sS} andSc = {sS+1, · · · , sK}. Then we
have

1

|Sc|
E[I(X̃Sc ; Ȳe|H,He)]

=
1

K − S

(

E[I(X̃sS+1
; Ȳe|H,He)] + E[I(X̃sS+2

; Ȳe|X̃sS+1
,H,He)] + · · ·

+ E[I(X̃sK
; Ȳe|X̃sS+1

, · · · , X̃sK−1
,H,He)]

)

≤
1

K − S

(

E[I(X̃s1
; Ȳe|X̃Sc,H,He)] + E[I(X̃s1

; Ȳe|X̃Sc,H,He)] + · · ·

+ E[I(X̃s1
; Ȳe|X̃Sc ,H,He)]

)

=
1

K − S

(

(K − S)E[I(X̃s1
; Ȳe|X̃Sc,H,He)]

)

=
1

S

(

SE[I(X̃s1
; Ȳe|X̃Sc,H,He)]

)

=
1

S

(

E[I(X̃s1
; Ȳe|X̃Sc,H,He)] + E[I(X̃s2

; Ȳe|X̃Sc,H,He)] + · · ·

+ E[I(X̃sS
; Ȳe|X̃Sc,H,He)]

)

≤
1

S

(

E[I(X̃s1
; Ȳe|X̃Sc,H,He)] + E[I(X̃s2

; Ȳe|X̃Sc, X̃s1
,H,He)] + · · ·

+ E[I(X̃sS
; Ȳe|X̃Sc, X̃s1

, · · · , X̃sS−1
,H,He)]

)

=
1

|S|
E[I(X̃S ; Ȳe|X̃Sc,H,He)], (31)
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where we repeatedly use Lemma 6 for inequalities and use the fact thatE[I(X̃k; Ȳe|X̃L,H,He)] =
E[I(X̃i; Ȳe|X̃L,H,He)] for any k 6= i and for anyL ⊂ K− {k, i}. We note that the last property stated
above is due to the symmetry between network users provided by the random choice of user ordering at
each fading block.

APPENDIX V
LEMMA 8

Lemma 8:Each user can set the randomization rates to be1
K

th of the total DoF per orthogonal time-
frequency slot seen by the eavesdropper, i.e., with a rate choice of

Rx
k =

1

KF
E[I(X̃K; Ȳe|H,He)], (32)

each randomization message (codeword index), given the secrecy message (bin index) of each user, is
decodable at the eavesdropper.

Proof: Let S ⊂ K. From Lemma 7, we have

1

|Sc|
E[I(X̃Sc ; Ȳe|H,He)] ≤

1

|S|
E[I(X̃S ; Ȳe|X̃Sc,H,He)].

We continue as below.
1

|Sc|
E[I(X̃Sc ; Ȳe|H,He)] ≤

1

|S|
E[I(X̃S ; Ȳe|X̃Sc,H,He)] (33)

⇔ |S|E[I(X̃Sc ; Ȳe|H,He)] ≤ (K − |S|)E[I(X̃S ; Ȳe|X̃Sc,H,He)] (34)

⇔
|S|

K
E[I(X̃Sc ; Ȳe|H,He)] ≤

K − |S|

K
E[I(X̃S ; Ȳe|X̃Sc,H,He)] (35)

⇔
|S|

K
E[I(X̃K; Ȳe|H,He)] ≤ E[I(X̃S ; Ȳe|X̃Sc,H,He)], (36)

from which we readily conclude thatRx
k = 1

KF
E[I(X̃K; Ȳe|H,He)] satisfies

∑

k∈S

Rx
k =

|S|

KF
E[I(X̃K; Ȳe|H,He)] ≤

1

F
E[I(X̃S ; Ȳe|X̃Sc,H,He)], ∀S ⊂ K, (37)

and hence randomization messages are decodable at the eavesdropper with this rate assignment.
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Fig. 1. K-user interference channel with confidential messages.
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Fig. 2. K-user interference channel with an external eavesdropper.
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Ŵk

X̃k(t) X̄k(t)
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Fig. 3. Proposed encoder and decoder architecture for userk in the K-user interference channel with confidential messages.
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Fig. 4. Proposed codebook structure for userk. The secret message of userk results in the bin indexwk and the randomization index for
the corresponding user iswx

k . Considering these two indices, each entry of the codebook is denoted aŝXk(wk, wx

k).


	Introduction
	System Model
	The Confidential Messages Scenario
	The External Eavesdropper Scenario

	The K-User Gaussian Interference Channel with Confidential Messages
	The K-User Gaussian Interference Channel with an External Eavesdropper
	Conclusions
	Appendix I: Lemma ??
	Appendix II: Lemma ??
	Appendix III: Lemma ??
	Appendix IV: Lemma ??
	Appendix V: Lemma ??
	References

