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Abstract

This paper investigates the fundamental performancedinfithe two-user interference channel in the presence
of an external eavesdropper. In this setting, we constrndnaer bound, to the secrecy capacity region, based on
the idea of cooperative binning and channel prefixing in Wwhice two userscooperativelydesign their binning
codebooks angbintly optimize their channel prefixing distributions. Our aclailelity scheme also utilizes message-
splitting in order to allow for partial decoding of the infierence at the non-intended receiver. Outer bounds are
then derived and used to establish the optimality of the gge@d scheme in certain cases. In the Gaussian case,
the previously proposed cooperative jamming and noisednting techniques are shown to be special cases of our
proposed approach. Overall, our results provide struciosayhts on how the interference can é&eploitedto increase
the secrecy capacity of wireless networks.

I. INTRODUCTION

Without the secrecy constraint, the interference chanasllieen investigated extensively in the literature. The
best known achievable region was obtained in [2] and wasnticsimplified in [3]. However, except for some
special cases (e.g., [4], [5], [6], [7], [8]), charactenigithe capacity region of the two user Gaussian interference
channel remains an open problem. On the other hand, redemps have shed light on the fundamental limits of
the the interference channels with confidential messadefL[¥, [11], [12]. Nonetheless, the external eavesdrappe
scenario, considered here, has not been addressed adgguéte literature. In fact, to the best of our knowledge,
the only relevant work is the recent study on the achievaitere degrees of freedom (DoF) of theuser Gaussian
interference channels under a frequency selective fadiogei11], [12].

This work develops a general approach for cooperative binand channel prefixing for the (discrete) two-user
memoryless interference channels operated in the presdracpassive eavesdropper. The proposed scheme allows

for cooperation in two distinct wayg) The two users jointly optimize their random binning teahré [13] and2)
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They jointly introduce randomness in the transmitted digjrta confuse the eavesdropper, via a cooperative channel
prefixing approach [14]. The proposed scheme also utilizessage-splitting and partial decoding to enlarge the
achievable secrecy rate region [2]. We then derive outen@i®uo the secrecy capacity region and use them to
establish the optimality of the proposed scheme for somssetaof channels. In addition, we argue that some
coding techniques for the secure discrete multiple acdeasnel and relay-eavesdropper channel can be obtained
as special cases of our cooperative binning and channekipiggfapproach.

Recently, noise forwarding (or jamming) has been shown twaroe on the achievable secrecy rate region of
several Gaussian multi-user channels (e.g., [15] , [18}k Basic idea is to allow each transmitter to allocate only
a fraction of the available power for its binning codebookl aise the rest for the generation of independent noise
samples. The superposition of the two signals is then tratesmWith the appropriate power allocation policy, one
can ensure that the jamming signal results in maximal anitlyigtithe eavesdropper while incuring only a minimal
loss in the achievable rate at the legitimate receiver(a).\@rk reveals the fact that this noise injection technique
can be obtained as a manifestation of the cooperative chanefixing approach. Based on this observation, we
obtain a larger achievable region for the secrecy rate indhessian multiple access channel.

The rest of the paper is organized as follows. Section Il i@tk to the discrete memoryless scenario where the
main results of the paper are derived and few special casearalyzed. The analysis for the Gaussian channels,
along with numerical results in selected scenarios, arengim Section Ill. Finally, we offer some concluding

remarks in Section IV. The proofs are collected in the apjmasdto enhance the flow of the paper.

Il. THE DISCRETEMEMORYLESSCHANNEL
A. System Model and Notations

Throughout this paper, vectors are denotest’as: {z(1),--- , (i)}, where we omit the subscripif i = n, i.e.,
x = {z(1),--- ,z(n)}. Random variables are denoted with capital letf€rsvhich are defined over sets denoted by
the calligraphic letterst’, and random vectors are denoted as bold-capital leKérsigain, we drop the subscript
i for X = {X(1),---,X(n)}. We define,[z]* £ max{0,2}, @ £ 1 — o, and~y(z) £ % log,(1 + z). The delta
function () is defined asi(z) = 1, if z = 0; 6(z) = 0, if  # 0. Also, we use the following shorthand for
probability distributionsp(z) £ p(X = z), p(z|y) £ p(X = z|Y = y). The same notation will be used for joint
distributions. For any binning codebook, we constr2itt bins and2"" codewords per bin, where we refer ib
as the secrecy rate amitl’ as the randomization rate. Finally, for a given SetRs £ Z R, for secrecy rates and

2 £ 5" R? for the randomization rates. <

Ouriéfscrete memoryless two-user interference channél arit (external) eavesdropper (IC-E) is denoted by

(Xl X XQap(y17y21y6|xlax2)1yl X yZ X ye)a

for some finite setsY;, X2, V1, )5, ). (see Fig. 1). Here the symbo(s,, z2) € X; x A, are the channel inputs

and the symbol$y1, 2, y.) € V1 x V2 x ), are the channel outputs observed at the decbddecoder2, and at
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the eavesdropper, respectively. The channel is memorglesdgime-invariant:
P(y1 (@), y2(0), e (0) X1, x5,y vy Lyl )
= p(y1(4), y2(4), ye () |21 (2), z2(7)).

We assume that each transmittee {1,2} has a secret messat}é, which is to be transmitted to the respective
receiver inn. channel uses and to be secured from the eavesdropper. Bethigy, ann, M1, Mo, P. 1, Pe 2) secret
codebook has the following components:

1) The secret message 38t = {1,..., My }; k =1,2.

2) A stochastic encoding functioffi.(.) at transmitterk which maps the secret messages to the transmitted
symbols: fj : wi — Xy, for eachw, € Wy; k=1,2.

3) Decoding functiong(.) at receiverk which maps the received symbols to an estimate of the message
ok(Yg) = wy; k=1,2.

The reliability of transmission is measured by the follogviprobabilities of error

1 .
Por = 30 > Pr{¢n(Ys) # wg|(wy,ws) is sent,
(w1, w2) EW1 X Wo

for K = 1,2. The secrecy is measured by the equivocation rate

1
EH(Wl,W2|Ye).

We say that the rate tupléR,, R) is achievable for the IC-E if, for any givea > 0, there exists an

(n, My, Ms, P. 1, P. 5) secret codebook such that,

1

—log(M1) = R,

n

1

—log(M2) = R,

n

maX{Pe,la Pe,Q} S €,
and
1
Ri+ Ry — EH (Wl,W2|Ye) < € (1)

for sufficiently largen. The secrecy capacity region is the closure of the set ofclliezable rate pairéR;, R2)
and is denoted a&'“E. Finally, we note that the secrecy requirement imposed erfuih message set implies the

secrecy of individual messages. In other WOfﬁ.‘Z(Wl, Wa;Ye) < € implies %I(Wk;Ye) <efork=1,2.

B. Inner Bound

In this section, we introduce the cooperative binning anandel prefixing scheme, and derive an inner bound
to C'°E, The proposed strategy allows for cooperation in desigrhefttinning codebooks, as well as in channel

prefixing [14]. This way, each user will add ondysufficientamount of randomness as the other user will help to
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increase the randomness seen by the eavesdropper. Theaddhigecrecy rate region using this approach is stated
in the following result.

Theorem 1:

R'CE £ the closure of U R(p) p c C'CE, @)
pEP

whereP denotes the set of all joint distributions of the randomalalesq, C1, S1, O1, Ca, S2, Oz, X1, X, that

factors ast

p(g;c1, 81,01, C2,82,02,21,22) = pla)p(crla)p(sila)p(oi]a)p(cz|a)p(s2la)p(oz]q)
p(@1le, s1,01)p(w2le2, s2,02), @)
andR(p) is the closure of al( Ry, Rs) satisfying
Ry = Rc, + Rs,,
Ry = Rc, + Rs,,
(Re,, RE,, Rs,, RS, , Re,, R, RG,) € Rai(p),
(Re,, RE,, Rsy, Rs,, Rey, RG,, RG,) € Ra(p),
(R, Rs,, RO, RE,, RS, Ro,) € Rel(p),
and
Re, > 0,RE, > 0,Rs, > 0,R% >0,RE >0,
Re, > 0,RE, > 0,Rg, > 0,R% > 0,RE >0, (4)
for a given joint distributiorp. R (p) is the set of all tuple$Rc,, RE. , Rs,, RS, , Rc,, RE,, Rp,) satisfying
Rs + Rg < I1(8;1118%,Q), V8 C{Ch, 51, C2, 02} ®)

Ra(p) is the rate region defined by reversing the inditeand 2 everywhere in the expression f&; (p). R(p)

is the set of all tuplesR¢. , RS , R, , RE,, RS, , RE,) satisfying
R < I(8:Ye|S%Q), V8 € {C1,51,01,C5, 52,02},

R = I(S5;Y.]1Q), S ={C1,51,01,C4,S2,0:}. (6)
Proof: Please refer to Appendix I. [ ]
The following remarks are now in order.
1) The auxiliary random variabl@ serves as a time-sharing parameter.
2) The auxiliary variabl&’; is used to construct theommorsecure signal of transmittérthat has to be decoded
at both receivers, where the random binning technique dfifLl8sed for this construction. Similarly/s is

used for thecommonsecured signal of usex.
lHere Q, C1, 81,01, C2, S2, and O are defined on arbitrary finite se@®, C1, S1, O1, C2, S2, and 02, respectively.
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3)

4)

5)

6)

The auxiliary variables; is used to construct thgelf secure signal that has to be decoded at recdivart

not at receiver, where the random binning technique of [13] is used for tlsstruction. Similarly,S; is
used for theself secure signal of usex.

The auxiliary variableD, is used to construct thether signal of transmitterl that has to be decoded at
receiver2 but not at receivet (conventional random coding [17] is used to construct tigaal). Similarly,

O is used for theother signal of user2. Note that we userf, , R, , and setRo, = Ro, = 0.

Compared to the Han-Kobayashi scheme [2], the common elfidadom variables are constructed with
random binning codebooks. This way, they are used not omljrdmsmitting information, but also for adding
randomness. Moreover, we have two additional random Masaib this achievability scheme. These extra
random variables, namely; and O, are used to facilitate cooperation among the network usg@dding
extra randomness to the channel which has to be decoded hgthimtended receiver. We note that, compared
to random variable§’, and .Sy, the randomization added vi@,, is considered as interference at the receiver
k.

The gain that can be leveraged from cooperative binnimgbeaattributed to the freedom in the allocation of
randomization rates at the two users (e.g., see (6)). Thiwslthe users to cooperatively add randomness to
impair the eavesdropper with a minimal impact on the aclikeveate at the legitimate receivers. Cooperative
channel prefixing, on the other hand, can be achieved by thegptimization of the probabilistic channel

prefixesp(zi|c1, s1,01) andp(zz|cz, s2,02).

C. Outer Bounds

Theorem 2:For any(R;, Ry) € C'F,

Ry < max I(Vi;Y1[Ve,U) — I(Vi; Ye|U) (7)
pPEPO

Ry < max I(Vo;Y2|Vi,U) — I(Va; Ye|U), (8)
pEPo

wherePy is the set of joint distributions that factors as

p(u, v1,v2, 71, 12) = p(u)p(vi|u)p(vz|w)p(z1|v1)p(22|v2).
Proof: Please refer to Appendix II. ]

Theorem 3:For channels satisfying

I(Va; Ya|Vh) < I(Va; Y3 |Vh) 9

for any distribution that factors gs{vy, v2, 1, 22) = p(v1)p(v2)p(z1|v1)p(x2|v2), an upper bound on the sum-rate

of th

e IC-E is given by

R+ Ry < max I(V1,Vo;V1|U) — I(V1,Va; Ye|U), (10)

pEPo
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wherePy is the set of joint distributions that factors as

p(u, v1,v2, 71, 12) = p(u)p(vi|u)p(vz|w)p(z1|v1)p(22|v2).
Proof: Please refer to Appendix III. ]

The previous sum-rate upper bound also holds for the setariredis satisfying
I(V2;Ya) < I(Va; Y1) (11)

for any distribution that factors gs(v,ve, z1,22) = p(v1)p(v2)p(z1|v1)p(z2|v2). Finally, it is evident that one

can obtain another upper bound by reversing the indicasd 2 in above expressions.

D. Special Cases

This section focuses on few special cases, where sharpggesuthe secrecy capacity region can be derived. In all
these scenarios, achievability is established using tbpgsed cooperative binning and channel prefixing scheme.
To simplify the presentation, we first define the following e& probability distributions. For random variabl&s
and 75,

P(T1, Tz) £ {p(q, t1, t2, 1, x2) | p(q, t1, 2, 21, 22) = p(q)p(t1lq)p(t2|q)p(z1[t1)p(x2lta) }.
Corollary 4: If the IC-E satisfies
I1(V2; Yo V1, Q) < I(Va;Ye|Q)
I(Va; Ye V1, Q) < 1(Va; 11|Q) (12)

for all input distributions that factors as(q)p(v1|q)p(v2|q)p(z1|v1)p(2z2|v2), then its secrecy capacity region is
given by
C'°E = the closure of U Rs1(p) ¢
pGP(Sl,OQ)

whereRs1(p) is the set of rate-tuple§R;, R3) satisfying

R < [I(S1;Y1]02,Q) — I(S1; Y|Q)]*
R2 = Oa (13)
for anyp € P(S1,02).
Proof: Please refer to Appendix IV. [ |

Corollary 5: If the IC-E satisfies
I(Vo; Ye|Q) < I(Va; Y31|Q) < 1(V2;Y2|Q)
I(Vl»Ye|V27Q) S I(Vl,}/il‘/g,Q)
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for all input distributions that factors agq)p(v1|q)p(v2|q)p(x1|v1)p(x2|v2), then its secrecy sum capacity is given

as follows.
Ri+ Ry = 1(51,C2; Y, —1(S1,C2; Y. |Q).
o RSoee 2= ) 15, G TaIQ) =115, G XelQ)
Proof: Please refer to Appendix V. ]

Corollary 6: If the IC-E satisfies
I(Va; Ye|Q) < I(Vas Y1|V1, Q) < I(Vas Ye VA4, Q) (15)

for all input distributions that factors agq)p(v1|q)p(v2|q)p(x1|v1)p(x=2|v2), then its secrecy sum capacity is given
as follows.

Ri+ Ry = IS,O,Y —IS,O,}/e .
o BSoee 1 2 = ) 151 05 T11Q) ~ (51, 00 2elQ)

We also note that, in this cas@, will not increase the sum-rate, and hence, we carfj@gt= 1
Proof: Please refer to Appendix VI. [ ]
Another case for which the cooperative binning and channsfiing approach can attain the sum-capacity is
the following.

Corollary 7: If the IC-E satisfies
I(V;11|Q) < T(Va; Ye Vi, Q) < I(Va; Y1V, Q) (16)

for all input distributions that factors agq)p(v1|q)p(v2|q)p(x1|v1)p(x=2|v2), then its secrecy sum capacity is given

as follows.
Ri+ Ry = 1(51,04;Y; — 1(51,04;Y:|Q).
(Rl,llg%)eic'% 1 2 peg(lgf,(og) ( 1, U2 1|Q) ( 1, U2 |Q)
Proof: Please refer to Appendix VII. [ ]

Now, we use our results on the IC-E to shed more light on theesgcapacity of the discrete memoryless multiple
access channel. In particular, it is easy to see that thapteu#tccess channel with an eavesdropper (MAC-E) defined
by p(y1,ye|z1, 22) is equivalent to the IC-E defined yy1, y2, ye |21, 22) = p(y1, Ye|T1, 22)6(y2—1y1). This allows
for specializing the results obtained earlier to the MAC-E.

Corollary 8:

RMACE £ the closure o U Ro;.
peP(C1,C2)
where the channel is given by(y1, ye|z1,22)0(y2 — y1).
Furthermore, the following result characterizes the sgceaim rate of the weak MAC-E.

Corollary 9 (MAC-E with a weak eavesdroppetf:the eavesdropper is weak for the MAC-E, i.e.,
I(V1;Ye|Va) < I(Vi; Y1[Va)

I(Va; Yo Vi) < I(Va; Y1 V1), (17)
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for all input distributions that factor g&(vy )p(v2)p(z1|v1 )p(22]v2), then the secure sum-rate capacity is character-

ized as the following.

(RI,RH;fancMAC-E R+ Ry = peﬁ?gf@){l(cl’ Co;Y11Q) — I(Ch,Ca; Ye|Q)}
Proof: Please refer to Appendix VIII. ]
Another special case of our model is the relay-eavesdragaamel with a deaf helper. In this scenario, transmitter
1 has a secret message for receiveand transmitteR is only interested in helping transmittérin increasing
its secure transmission rates. Here, the random variablat transmitter2 is utilized to add randomness to the
network. Again, the regions given earlier can be specidlirethis scenario. For example, the following region is

achievable for this relay-eavesdropper model.

RRE 2 the closure of the convex hull o U R(p) ¢,
pEP(S1,02,|Q|=1)

whereP (S, 0, |Q| = 1) denotes the probability distributions (S, O2) with a deterministioQ).
For this relay-eavesdropper scenario, the noise forwgrhti-) scheme proposed in [18] achieves the following
rate.

RINFI — Ri(p), 18
pep (st gy TP) (18)

WhereR1 (p) £ [I(Sl, }/1|02) +H11H{I(02, }/1), I(OQ, }/e|81)} — mln{I(OQ, Yl), I(OQ, }/e)} — I(Sl, }/e|02)]+ The
following result shows that show that NF is a special caséefdooperative binning and channel prefixing scheme
and provides a simplification of the achievable secrecy. rate

Corollary 10: (RN 0) € RRE, where RINFI can be simplified as follows.

RINFI _ I(51;Y1]|02) + min{I(Oq; Y1), 1(O2; Ye|S1)} — I(S1, 02 Ye).

max
PEP(S1,02,|Q|=1) s.t. I(O2;Ye) <I(O2;Y1)
Proof: Please refer to Appendix IX. ]
Finally, the next result establishes the optimality of NFcertain relay-eavesdropper channels.

Corollary 11: Noise Forwarding scheme is optimal for the relay-eaveguEpphannels which satisfy
I(V; Y1) < I(Vas Ye V1), (19)
for all input distributions that factor gs(v1)p(v2)p(z1|v1)p(z2|v2), and the corresponding secrecy capacity is

CRE = ma: I(S1,02: Y1) — I(S1,0; Y.).
peEP(S1,02,|9|=1) S.t.)i(OQ;YC)SI(OQ;Yl) ( ! 2 1) ( ! 2 )

Proof: Please refer to Appendix X. ]
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1. THE GAUSSIAN CHANNEL

A. Inner Bound and Numerical Results

In its standard form [19], the two user Gaussian InterfeeeBbannel with an Eavesdropper (GIC-E) is given by

Yi = Xi+VenXo+ Ny
Yo = Jc12 X1+ Xo+ No (20)
Yo = Vec1eX1+ e X + N,

n

whereN, ~ N(0,1) is the noise at each receiver= 1,2, e and the average power constraints ar&" (X(t))? <
P, for k = 1,2. The secrecy capacity region of the GIC-E is denoted@&§E. !

The goal here is to specialize the results obtained in theique section to the Gaussian scenario and illustrate
the gains that can be leveraged from cooperative binningcliasinel prefixing, and time sharing. Towards this
end, we will need the following definitions. Consider a proiity mass function on the time sharing parameter

denoted byp(q). Let A(p(q)) denote the set of all possible power allocations, i.e.,
Alp(g) = { (PE(a). Pr (), PP (a), S (@), P3(a). PS(a), P{(a). Pi(a)) |

S (PE(a) + Pi(a) + PP(a) + PLa)p(a) < Pi, for k=1, 2.} (21)
qeQ

Now, we define a set of joint distributiorfd; for the Gaussian case as follows.
Pa = {p |p € P, (Pf(a), P{ (a), P(a), P5(a), P5 (a), P (a), P{ (a), P3 (a)) € A(p(a)),
Ci(q) ~ N(0, Pi(q)), S1(q) ~ N(0, PY(q)), O1(q) ~ N(0, PY(q)),
Ca(q) ~ N(0, P5(q)), S2(q) ~ N(0, 5 (q)), O2(q) ~ N (0, P3(q)),
Ji(q) ~ N(0, P{ (9)), J2(q) ~ N (0, P3 (a),
X1(q) = Ci(a) + S1(a) + O1(a) + J1(q), X2(q) = Ca(q) + S2(q) + O2(q) + Jz(Q)},

where the Gaussian model given in (20) giv€g1, y2, y.|21, z2). Using this set of distributions, we obtain the

following achievable secrecy rate region for the GIC-E.

Corollary 12: R®'CE £ the closure of{ |J R(p)} C CCICE,

It is interesting to see that our particuzi:\fcchoice of thencte prefixing distributionp(xy|ck, sk, 0r) in the
above corollary corresponds to a superposition codingagmbr whereX,, = C, + S + Oy + Ji.. This observation
establishes the fact that noise injection scheme of [15]jamening scheme of [16] argecial cases of the channel
prefixing technique of [14].

The following computationally simple subregion will be ds® generate some of our numerical results.

Corollary 13: RS'®E £ the convex closure ok |J R(p) p € RECE c CCICE, where
PE€PG2

Paz2 2 {p|p € Pc,|Q| =1,P(q) = P{(q) = P5(q) = P5(q) = 0 for any Q = ¢}.
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10

Another simplification can be obtained from the following WMB-like approach. Here we divide the channel
uses into two parts of lengths representeddayand (1 — a)n, where0 < o < 1 and an is assumed to be an
integer. During the first period, transmittérgenerates binning codewords using pou#i(1) and transmitterR
jams the channel using powé’ﬁ(l). For the second period, the roles of the users are reversedevthe users use
powersP;s(2) and Pf(2). We refer to this scheme cooperative TDMA (C-TDMA) which mstes the following
region.

Corollary 14: Rc.1pwa C RCE'CE ¢ CCICE, where

Retoma 2 the closure of U (R1,Ry) p,
a€[q,1]
aPP(1)+(1—a)P{ (2)<P;
aPJ (1)+(1—a)P§ (2)< Py

N
llog<l+ P (1) >_1og<1+ 1Py (1) )] |
1+621Pg(1) 1+625P27(1)

N
_ -, P2\, c2 5 (2)
fo="—5 [1g<1+1+012Pf(2)> 1g<1+1+c1613-17'(2)ﬂ

Proof: This is a subregion of th€®'°-E, where we use a time sharing random variable satisfylgg= 1) = «

where

Ry =

[\l e}

and

andp(qg = 2) = 1 —«, and utilize the random variables and.S,. The proof also follows by respective single-user
Gaussian wiretap channel result [20] with the modified nemgances due to the jamming signals. ]

In the C-TDMA scheme above, we only add randomness by nojsetion at thehelper node. However, our
cooperative binning and channel prefixing scheme (Coroll#) allows for the implementation of more general
cooperationstrategies. For example, in a more general TDMA approacth eaer can help the other via both
binning and channel prefixing (i.e., the noise forwardinigesne described in Section 111-B.2). In addition, one can
develop enhanced transmission strategies with a timergheandom variable of cardinality greater than

We now provide numerical results for the following subregi®f the achievable region given in Corollary 12.

« RS'CE: Here we utilize both cooperative binning and channel pirgix

« RS'E(b or cp): Here we utilize either cooperative binning (b) bacnel prefixing (cp) scheme at a transmitter,

but not both.

« RS'°E(ncp): Here we only utilize cooperative binning, no chanpfixing (ncp) is implemented.

e Rc-toma: This region is an example of utilizing both time-sharinglarooperative channel prefixing.

e Rc-toma(nep): This region is a subregion &c.tpma, for which we set the jamming powers to zero.

The first scenario depicted in Fig. 3 shows the gain offerethbyooperative binning technique, as compared with
the various cooperative TDMA approaches. Also, it is shdwat tooperative channel prefixing does not increase the
secrecy rate region in this particular scenario. In Fig. é,0ensider a channel with a rather capable eavesdropper.

In this case, it is straightforward to verify that the copesding single user channels have zero secrecy capacities.
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11

However, with the appropriate cooperation strategies bewhe twanterfering users, the two users can achieve
non-zero rates (as reported in the figure). In Fig. 5, we d@msan asymmetric scenario, in which the first user has
a weak channel to the eavesdropper, but the second user tras@ channel to the eavesdropper. In this case, the
proposed cooperative binning technique allows the seceadto achieve a positive secure transmission rate, which
is not possible by exploiting only the channel prefixing aimdetsharing techniques. In addition, by prefixing the
channel, the second user can help the first one to increaseciise transmission rate. Finally, we note that for some
channel coefficient®c.toma outperformsR$'©E and for some other®S'E outperformsRc.tpma. Therefore, in
general, the proposed techniques (cooperative binnirgperative channel prefixing, and time-sharing) should be

exploited simultaneously as considered in Corollary 12.

B. Special Cases

1) The Multiple Access ChanneFirst, we define a set of probability distributions

Pus 2 {p |p € P, P(g) = PY(g) = P5(q) = PS(q) = 0 for any Q = q}. (22)

Using this notation, one can easily see that the re@&% € in Corollary 12 reduces to the following achievable

secrecy rate region for the Gaussian Multiple Access CHanitle an Eavesdropper (GMAC-E).

ROMACE 2 the closure of U R(p) ¢
pEPG3

where the expressions in the regi®{p) are calculated for the channel given b1, ye|21, 22)3(y2 — y1).

The regionREMACE generalizes the one obtained in [16] for the two user daskhe underlying reason is
that, in the achievable scheme of [16], the users are eithasmitting their codewords or jamming the channel
whereas, in our approach, the users can transmit their @xdevand jam the channel simultaneously. In addition,
our cooperative TDMA approach generalizes the one proposgtb], as we allow the two users to cooperate in
the design of binning codebooks and channel prefixing dutiegtime slots dedicated to either one.

2) The Relay-Eavesdropper Channét: the previous section, we argued that the noise forwarfitte) scheme
of [18] can be obtained as a special case of our generalizgpkecation scheme. Here, we demonstrate the positive
impact of channel prefixing on increasing the achievablessgaate of the Gaussian relay-eavesdropper channel. In

particular, the proposed region for the Gaussian IC-E, wdpmtialized to the Gaussian relay-eavesdropper setting,

results in
RERE 2L closure of the convex hull 0 U R(p) ¢,
PEPGa
where
Pos = {PlPGPG,|Q| =1,Pi(q) = PY(q) = P5(q) = P5(q) —0}- (23)

2|t is important to note that we have used the binning codelmmistruction here, whereas in [16] the authors claimed ttiesame region

is achievable with the superposition coding approach.
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One the other hand, noise forwarding with no channel prefiX®@NF-ncp) results in the following achievable

rate.
1 1 P 1
RIGNF-ncp] [5 1og(1+P1)+min{§1og (1+ fi le) ,Elog(l—i—czePg)}
. 1 021P2 1 026P2 1 +
- —log |1 —log |14+ ——]r—zlog(1 P, ) 24
mm{2 0g( +1+P1),20g( +1+c16P1)} 2og( +a 1)] (24)

where we choose&(; = S; ~ N (0, P;) and X5 = O2 ~ N(0, P») in the expression oRINFI (see also [18]).
Numerically, the positive impact of channel prefixing isifitrated in the following example. First, it is easy to

see that the following secrecy rate is achievable with chhprefixing

1 P1 1 Clepl *
Ry =|=1 14 —— ) — =1 14— 25
! |:2 Og< +1+021P2> 2 Og< +1+026P2>:| ’ ( )

since(R;,0) € RORE (i.e., we setP; = P, and Pj = P,). Now, we letc;, = co. = 1 and P, = P, = 1, resulting

in RIGNFnerl — 0 and Ry > 0 if ¢o1 < 1.

IV. CONCLUSIONS

This work considered the two-user interference channeh wit (external) eavesdropper. An inner bound on
the achievable secrecy rate region was derived using a scligsth combines random binning, channel prefixing,
message splitting, and time-sharing techniques. Moreifsgaly, our achievable scheme allows the two users to
cooperatively construct their binning codebooks and ckhprefixing distributions. Outer bounds are then derived
and used to establish the optimality of the proposed schemsmiine special cases. For the Gaussian scenario,
channel prefixing was used to allow the users to transmitpaddently generated noise samples using a fraction
of the available power. Moreover, as a special case of timerslny we have developed a novel cooperative TDMA
scheme, where a user can alidictured and unstructuredoise to the channel during the allocated slot for the other
user. It is shown that this scheme reduces to the noise fdimgscheme proposed earlier for the relay-eavesdropper
channel. In the Gaussian multiple-access setting, oureratige binning and channel prefixing scheme was shown
to enlarge the achievable regions obtained in previous svarke most interesting aspect of our results is, perhaps,
the illumination of the role of interference in cooperaljvadding randomness to increase the achievable secrecy

rates in multi-user networks.

APPENDIX |

PROOF OFTHEOREM 1

Fix somep(q), p(c1lq), p(s1lq), p(oilq), p(z1ler, s1,01), pca|q), p(s2(q), p(oz]q), andp(zz|cs, s2,02) for the
channel given by(y1, y2, ye|21, z2). Generate a random typical sequergée wherep(q™) = ﬁ p(q(i)) and each
entry is chosen i.i.d. according fg¢). Every node knows the sequeng®. -

Codebook Generation:

Consider transmittek € {1,2} that has secret messafle. € Wy = {1,2,---, M}, where M, = 2"E We

construct each element in the codebook ensemble as follows.
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o GenerateMc, M¢, = gn(fo, +Re, —¢1) sequences?, each with probabilityp(c}t|q™) = ﬁ plex()]q(2)),
wherep(ci(i)|q(i)) = p(ck|q) for eachi. Distribute these intdV/c, = 2"%cx bins, Wheré:tlhe bin index is
wc,,. Each bin hasVig, = 2"(f&, =) codewords, where we denote the codeword index@s. Represent
each codeword with these two indices, i€} (wc,, wg, ).

« Similarly, generatel/s, Mg = 2" 5.~ sequencesy, each with probability(s}|q") = iﬁlp(sk(iﬂq(i)),
wherep(si(i)|q(i)) = p(sklq) for eachi. Distribute these inta\/s, = 2"%sx bins, where the bin index is
wg, . Each bin has\[§, = 2"(5, =) codewords, where we denote the codeword indexas Represent
each codeword with these two indices, i€} (ws, , w§, ).

T
n(Ro,

« Finally, generate//g, = 2 —e) sequences}, each with probabilitp(o}|q") = ﬁ p(or(4)|q(7)), where
p(ok(i)|q(i)) = p(ok|q) for eachi. Denote each sequence by indeg, and repreézlnt each codeword with
this index, i.e..op (wg, ).

ChooseM;, = M¢, Ms,, and assign each paituc, , ws, ) to a secret message,. Note that,R; = R¢, + Rs,

fork =1,2.

Every node in the network knows these codebooks.

Encoding:

Consider again uset € {1,2}. To sendw;, € W, userk gets corresponding indicesc, andwsg,. Then user

k obtains the following codewords:

« From the codebook foC, userk randomly chooses a codeword in bin-, according to the uniform
distribution, where the codeword index is denoteddjy and it gets the corresponding entry of the codebook,
i.e. ¢t (wey, wg,)-

« Similarly, from the codebook fof,, userk randomly chooses a codeword in hin, according to the uniform
distribution, where the codeword index is denoteduddy and it gets the corresponding entry of the codebook,
i.e.sp(ws,, ws, )

« Finally, from the codebook foOy, it randomly chooses a codeword, which is denotedpywg, ).

Then, uselk, generates the channel inputd, where each entry is chosen accordinge|ck, sk, or) using the

codewordse (we, , wg, ), sy (ws, , wg, ), andoy (wg, ); and it transmits the constructegt in n channel uses. See

Fig. 2.

Decoding:

Here we remark that although each user needs to decode snbwit message, we also require receivers to

decode common and other information of the other transm@tgppose receiverhas receiveg?. Let A7 . denote

the set of typicallq”, ¢}, s7, c3, 04, yT') sequences. Decodérchoosegwc, , wg, , ws,, w§, , we,, W, , wh,) St

(qn’ c?(wcl,wél), S?(wsl’wgl)’ C;(wawé'g)vog(wgz)ay?) S Ayll,ev

if such a tuple exists and is unique. Otherwise, the decodelatks an error. Decoding at receieis symmetric
and a description of it can be obtained by reversing the @xlicand2 above.

Probability of Error Analysis:
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Below we show that the decoding error probability of useaveraged over the ensemble can be arbitrarily made
small for sufficiently large:. This demonstrates the existence of a codebook with theepipthatmax (P 1, Pe 2) <
¢, for any givene > 0. The analysis follows from similar arguments given in [2keSalso [17] for joint typical
decoding error computations. Here, for any givern 0, each receiver can decode corresponding messages given

above with an error probability less tharasn — oo, if the rates satisfy the following equations.

RS + Rg < I(S;Y1|SC,Q), VS C {01,51,02702}, (26)

Rs + R% < I(S;Y3|8%,Q), VS C {C1,01,Cs, Ss}. 27)

Equivocation Computation:

We first write the following.

H(W17 W2|Ye) = H(W01 ) W51 ) WCza WSQ |Y8) (28)
Z H(WC11 W517W021 W52|Y€1 Q) (29)
= H(W015W517W025W527Y8|Q) - H(Y8|Q) (30)

= H(Cla Sh 017 CQa 827 02|Q) + H(WCUWSleCza W527Y8|017 Sla 017 CQv SQa 023 Q)

- H(Cl7 Sla Ola 027 SQ, 02|W017W31 ) WCza W521Y67 Q) - H(Y€|Q) (31)

Y

H(Cy,S51,01,C2,8,,05|Q) + H(Y.|C1,S81,01,C5,S2,02,Q)
— H(C1,81,01,C2,S:,02|We,, Ws,, We,, Ws,, Ye, Q) — H(Y|Q) (32)
= H(C1,81,01,C2,82,02|Q) — I(Cy,81,01,C2,S2,02; Y. [Q)
— H(C1,81,01,Cs,82,02|We,, Ws,, We,, W, Y, Q), (33)

where inequalities are due to the fact that conditioningsdoat increase entropy.

Here,
H(Cl, Sl, 01, Cg, SQ, 02|Q) = TL(RCl +Ré1 +R51 +R§1 +RIO] +R02 +R%2 +R52 +R§2 +R32 —661), (34)

as, giverQ = q, the tuple(Cy, S1, O1, Ca, Sa, Oy) has2n(For+Re, +Rsy +15, +86, +Roy +Re, +Rsy +15, + 7o, —6e1)
possible values each with equal probability.
Secondly,
I(C1,81,01,C2,8,,02; Y. |Q) < nl(C1,51,01,Cy, 82,02 Ye|Q) + nea, (35)

wheree; — 0 asn — oo. See, for example, Lemmaof [13].

Lastly, for anyWe, = we,, Ws, = ws,, We, = we,, Ws, = ws,, andQ = q, we have

H(C4,81,01,C3,85,0:|We, =we,,Ws, =ws,, We, =we,, Ws, =ws,, Ye, Q =q) < nes, (36)
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for somees — 0 asn — oo. This is due to the Fano’s inequality together with the hignéodebook construction:
Given all the bin indices of two users, eavesdropper candietoe randomization indices among those bins. Due

to joint typicality, this latter argument holds as long ae tates satisfy the following equations.
Rg < 1(83}/6|SC7Q)5 VS C {01781501702782502}' (37)

This follows as given bin indice®/¢,, Ws,, W¢,, andWg,, this reduces to MAC probability of error computation
among the codewords of those bins. See [17] for details ofpedimg error probabilities in MAC. Then, averaging
overWe,, Ws,, We,, Ws,, andQ, we obtain

H(Cla Sh 017 CQa SQa 02|W017WS15WC27 WS25Y67 Q) S nes. (38)

Hence, using (34), (35), and (38) in (28) we obtain

1
Ry + Ry — EH(Wl,WﬂY;) <6er+exatez=e—0, (39)
asn — oo, where we set

RS =1(S;Y.|Q), S = {C1,51,01,C%, S2,0}. (40)

Combining (26), (27), (37), and (40) we obtain the result,,iR(p) is achievable for any € P.

APPENDIXII

PROOF OFTHEOREM 2

We boundR; below. The bound omR; can be obtained by following similar steps below and reveyshe

A

indices1 and2. We first state the following definitions. For any random ahteY, Yt 2 [Y (i +1)---Y (n)],

and

nL & il(Yi“;Yl(z')lYi*) (41)
i=1

hoe S IYELY6YE @2)
=1

L, % il(?@“;m(i)w;—l,wg (43)
i=1

i, 2 zn:.r(ygfl;ye(i)ﬁ{gﬂ,wl) (44)
i=1
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Then, we consider the following bound.
1
Rl — € S —H(W1|Y€)

(HW1) = I(W1;Ye))

SI—=3|—3

(HWi|Y 1) +I(Wi; Y1) — I(Wi5Ye))

< at- <i1 Wi Ya ()| Y - anl(wl;ife(i)lfffl))

=1

IW Y ()Y L YSF Y 41 — 1

[

oy

_l’_
S|
7N
=1

N
Il
-

= e +-— <ZI Wi V(i)Y Yt — zn:I(Wl, Yo (i)[Y§ ! YZ“)) (45)

i=1
where the first inequality is due to Lemma 15 given at the enthisfsection, the second inequality is due to the
Fano’s inequality at the receiverwith somee; — 0 asn — oo, the last equality is due to observatiohs= I
andI, = I, (see [14, Lemm&)]).
We defineU (i) & (Y1, Yt 40), Vi(i) £ (U(i),W1), andVa(i) £ (U(3i), Wa). Using standard techniques

(see, e.g., [17]), we introduce a random varialllewvhich is uniformly distributed ovef1,--- ,n}, and continue
as below.
Ri—e < ett (ZI Wi i ()| YY) — ZI(W1;12<1'>|Y§‘1,Y2“>>
=1 1=1
= a+-— <ZI Va(i U(@) - Z;I(Vl(i);Ye(i)lU(i))>
= e1+21v1 NUG)) val NUGpT = j)
< e1+21v1 MIV2(), U(3)) ZI% MNUGpT = j)
= €1+I(V1,Y1|V2, U) = I(Vi; Y |U), (46)

where the last inequality follows from the fact tHat(j) — U(j) — Va(4), which impliesI (Vi (5); Y1(H)|U(j)) <
I(V1(y); Y1(5)|Va(4),U(j)) after using the fact that conditioning does not increaseopgt and the last equality
follows by using a standard information theoretic argunienthich we define random variables for the single-letter

expression, e.gk; has the same distribution a5(J). Hence, we obtain the bound,
Ry < [I(Vi; V4|V, U) — I(Vi; Yo U)TT (47)

for some auxiliary random variables that factorspés)p(vi |u)p(va|u)p(x1|v1)p(z2|v2)p(Y1, Y2, Ye|T1, T2).
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Lemma 15:The secrecy constraint

1
Ry + Ry — —H(W,W5|Y,) <€
n

implies that
1
Rl — EH(W”Ye) S €,
and
1
Ry — —H(W3|Y.) <e.
n
Proof:
1 1 1
EH(W1|Y6) = EH(Wl’ Wo|Y,) — EH(W2|Y6, Wh) (48)
1
> R1—€+RQ—EH(W2|Ye,W1) (49)
1 1
= Ri—e+ EH(Wz) - EH(WzlYe,Wl) (50)
2 Rl — €, (51)

where the second equality follows B§(W>) = nRs, and the last inequality follows due to the fact that comditng

does not increase entropy. Second statement follows froimiéas observation. [ ]

APPENDIXIII

PROOF OFTHEOREM 3

From arguments given in [5, Lemma], the assumed properthefthannel implies the following.
I(V2; Y3 |Vy) < I(V2; Y4 V1) (52)
Then, by considerind’ (i) = Wy and V(i) = Wh, fori =1,--- ,n, we get
I(Wa; Yo |W1) < T(Wa;Y1|W7) (53)
We continue as follows.

1 1 1
EH(WI’ ngYl) = EH(W1|Y1) + EH(W2|Y17W1)

IN

1
€+ EH(W2|Y1’W1)

IN

1
€+ EH(W2|Y2’W1)

IN

1
€1 + EH(W2|Y2)

< € + e, (54)

where the first inequality is due to the Fano’s inequalityhat teceiverl with somee; — 0 asn — oo, the second
inequality follows from (53), the third one is due to conditing can not increase entropy, and the last one follows

from the Fano’s inequality at the receivemwith somee; — 0 asn — co.
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We then proceed following the standard techniques giverd3j, [14]. We first state the following definitions.

LA S IR (55)
i=1

i S IO (56)
=1

I, £ i](?;@“;m(i)wg—l,m,Wz) (57)
=1

I; 2 iI(Yifl;n(i)mﬂ,WhWg), (58)

1
where Y+ = [Y'(i 4 1) --- Y (n)] for random variable”.

.
Il

Then, we bound the sum rate as follows.

1
Ri+Ry—¢ < —H(W17W2|Ye)
n

1
= (HWh, Wa Y1)+ I(W1, Wa; Y1) — I(W1, Wa; Y.))

1 n ' . n -
< atet- (ZI(Wth;Yl(mYl Y —ZI(Wl,Wz;Ye(zﬂYe“))
i=1 =1

1 ) ~ .
= t IWy, Wa: Vi)Y L, YY)+ 1, — T
€1+62+n(; (W, Wo; Yi()| YT, Y ) + I 3

= S LWL W Ya(0) Y YY) — ]+ fg)

=1

RS Nyl i - Nyl i
= atet- (ZI(Wl,Wg;Yl(zMYl YO = T T(W, Was Y (i) Y 1,Ye+1)> :
=1 =1
where the first inequality is due to the secrecy requirenthat|ast inequality follows by (54), and the last equality
follows by the fact thatl; = I; and 5 = I3, which can be shown using arguments similar to [14, LenTina
We defineU (i) & (Y1, Yt 40), Vi(i) £ (U(i),W1), andVa(i) £ (U(3), Wa). Using standard techniques
(see, e.g., [17]), we introduce a random varialflevhich is uniformly distributed ovefl,--- ,n}, and continue

as below.

3

1 ) - n ) -
Ri+Ry—¢ < ea+e+— (Z (Wi, Was i ()Y, Y - ZI(WL Wz;Ye(inlaY?l))

3 i=1

Il
-

(2

;

= e+ S TG, VR0):iGITG)PU = 5) = S I0AG), Val): YeG) TGP = 5)
j=1 j=1

Vla‘/27}/1|U)_I(V17‘/271/;/|U)7 (59)

M=

SRS

= atet I(VA(0), Va(i); (@)U 8) — S I(VA(3), Va(i); Yeu')w(z')))

i=1

3
I
=

= € te+

—~

where, using a standard information theoretic argumenthawe defined the random variables for the single-letter

expression, e.gV; has the same distribution 45 (.J). Now, due to the memoryless property of the channel, we
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have(U, V1, V2) — (X1, X2) — (Y1, Ya, Ye), which impliesp(y1, vz, ye|z1, 22, v1, v2, 1) = p(y1, Y2, Ye|T1, x2). AS
we defineVy(J) = (U(J),W1) andVa(J) = (U(J), W2), we haveV; — U — Va, which impliesp(vy,ve|u) =
p(v1|u)p(vz|u). Finally, as X;(J) is a stochastic function of¥;, X,(J) is a stochastic function ofV,, and
Wy and W, are independent, we hav&,(J) — Vi(J) — Va(J), Xao(J) — Va(J) — Vi(J), and X1 (J) —
(V1(J), Va(J)) — X2(J), which together implies that(x+, z2|v1, va, u) = p(@1, 2|v1, v2) = p(21|v1, v2)p(T2|V1,V2) =
p(a1|vr)p(x2|v2).

Hence, we obtain a sum-rate bound,

Ry 4 Ry < [I(V1, Vo; Vi |U) — I(V1, Vo, Yo U, (60)

for some auxiliary random variables that factorsp@s)p(v1|u)p(ve|w)p(z1|v1)p(z2|ve)p(y1, Y2, Ye|T1, T2), If (9)
holds.

APPENDIX IV
PROOF OFCOROLLARY 4
Achievability follows from Theorem 1 by only utilizing; and O, together with the second equation in (12),
where we sef?; = 0 and setR; as follows. For a givep € P(S1, Os), if I(S1;Y1]|02,Q) < I(S1;Y.|Q), we set

Ry = 0; otherwise we assign the following rates.

Rs, = I(S51;Y1|02,Q) — I(S1;Ye|Q)
5 = 1(S1;Ye|Q)
32 = I(OQ;}/B|S17Q)7

whereR; = Rg,.
Converse follows from Theorem 2. That is, (i1, R2) is achieavable, thedk; < m%x (51; Y1102, Q) —
rePo
I(S1;Y.|Q) and Ry = 0, due to the first condition given in (12).

APPENDIXV
PROOF OFCOROLLARY 5
Achievability follows from Theorem 1 by only utilizing; and Cs together with the channel condition given
in (14). For a giverp € P(S1,Cy), if I(S1,C2;Y1|Q) < I(S1,C2;Ye|Q), we setR; = Ry = 0; otherwise we

assign the following rates.

Rs, = I(S1;11]C2,Q) — I(S15Ye|C2, Q)
5 = 1(51:Ye]C2,Q)

Rc, = I(Cy11]Q) —1(Ca;Ye|Q)
G, = 1(C2YelQ),

whereRy = Rg, andRe = Rc,.

Converse follows from Theorem 3 as the needed conditiontisfiea by the channel.
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APPENDIX VI

PROOF OFCOROLLARY 6
Achievability follows from Theorem 1 by only utilizing; and O, together with the channel condition given
in (15). For a giverp € P(S1,02), if 1(51,02;Y1|Q) < I(S1,0;Y.|Q), we setR; = R, = 0; otherwise we

assign the following rates.

Rs, = I(S1,02;Y1|Q) — I(S1,02;Y,|Q)
5 = 1(51,02:Y|Q) — I1(02;Y1[51, Q)
0, = 1(02;Y1|51,Q),

where Ry = Rg, and Ry = 0.

Converse follows from Theorem 3 as the needed conditiontisfisal by the channel.

APPENDIX VII

PROOF OFCOROLLARY 7

Achievability follows from Theorem 1 by only utilizing; and O together with the channel condition given
in (16). For a giverp € P(S1,0-), if I(S1,02;Y1|Q) < I(S1,09;Y.|Q), we setR; = Ry = 0; otherwise we

assign the following rates.

Rs, = I(51,02:Y1|Q) — I(S1,02;Yc|Q)
g = 1(S1;Ye|Q)
82 = I(OQ;}/6|815Q)7

whereR; = Rg, and Ry = 0.

Converse follows from Theorem 3 as the needed conditiontisfisal by the channel.

APPENDIX VIII

PROOF OFCOROLLARY 9

For a given MAC-E withp(y1, ye |21, 22), we consider an IC-E defined Yy, y2, ye|z1, 2) = p(y1, Ye|21, 22)d (y2—
y1) and utilize Theorem 1 witlp € P(C4, Cs) satisfying (17). Then, the achievable region becomes
Ry =Rc, < I(C1;Y1|C2,Q) — RE,
Ry =Rc, < I(Cy;Yi|C1,Q)+ RE, —1(C1,C2;Ye|Q),
Ri+ R2 = Re, + Re, < I(C1,C2;Y1|Q) — I(Ch, Ca;Ye|Q), (61)

Whel’eI(Cl;YHQ) < R%l < I(CUYHCQ, Q) andRa = I(Cl, Csy; Y;|Q)—Rél .Hence,R1+Ry = [I(Cl, Cs; Yi|Q)—
I(Cy,C5;Ye|Q)]T is achievable for any € P(Cy, Cs) satisfying (17).
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The following outer bound on the sum rate follows by Theorenas8the constructed IC-E satisfies the needed
condition of the theorem.
Ry + Ry < I(C1,Co; Y1|Q) — I(C1, Ca;Ye|Q),

for anyp € P(C1, Cs). Which is what needed to be shown.

APPENDIXIX

PROOF OFCOROLLARY 10

We first remark that?NF! will remain the same if we restrict the union over the set afbability distributions
P(51,02,1Q] =1) £ {p|p € P(51,02,|Q = 1), 1(02;Ye) < I(02; Y1)}

As for anyp € P(S1,02,|Q| = 1) satisfyingI(O2;Y,) > I(O2;Y1), Ri(p) = [I(S1;Y1|02) — I(S1;Ye|O2)]T
since I(O2; Y1) < I(0O2;Y.) < I(O2;Y.|S1) in this case. And the highest rate achievable with the NF mehe
occurs if O is chosen to be deterministic, and hend®,;Y;) = 1(O2;Y.) case will result in the highest rate
among the probability distributions € P(S1, O, |Q| = 1) satisfying(Oz;Y.) > I1(O2;Y1). Therefore, without
loss of generality, we can write

RNl —  max Ri(p
PEP(51,02,|Q|=1)

WhereRl(p) = [I(Sl,Y1|02) + min{I(Og; Yi), I(Og; }/;|Sl)} — I(Sl, 02; }/;)]+.
Now, fix somep € P(S1,0s,|Q| = 1), and setR%,, = min{I(Os;Y1),1(02;Y.|S1)}, RE, = I1(S1,02;Ye) —
mlH{I(OQ,Yl),I(OQ,}/6|S1)}, andRSl = I(Sl,Y1|02) — I(Sl,OQ;}/e) + mlH{I(OQ,Yl),I(OQ,}/6|S1)}, where

we setR; = 0 if the latter is negative. Here,
Ry = [I1(S1;Y1]02) + min{I(02; Y1), 1(O2;Yc|S1)} — I(S1,09; Ye)|*

is achievable, i.e (R, (p),0) € RRE for anyp € P(S1, 0s,|Q| = 1). Observing that RN, 0) € RRE, we conclude

that the noise forwarding (NF) scheme of [18] is a speciak azsthe proposed scheme.

APPENDIX X
PROOF OFCOROLLARY 11
For any givenp € P(S1,0.,|Q| = 1) satisfyingI(02;Y.) < I(O2;Y7), we see thatR, = [I(S1,02;Y7) —
1(S1,02;Y.)]T is achievable due to (19) and Corollary 10. The conversevalby Theorem 3 as the needed
condition is satisfied by considering an IC-E definedpég, , y.|z1,22)d(y2 — y1), where we sefQ| = 1 in
the upper bound as the time sharing random variable is natedefor this scenario, and further limit the input
distributions to satisfyl (O3;Y.) < I(O2;Y7). The latter does not reduce the maximization for the uppendo

due to a similar reasoning given in the Proof of Corollary 10.
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Fig. 1. The discrete memoryless interference channel witeavesdropper (IC-E).
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Fig. 2. Proposed encoder structure for the IC-E.

Fig. 3. Numerical results for GIC-E withj2 = c21 = 1.9, c1e = c2¢ = 0.5, P = P> = 10.

May 25, 2009

R2 (bps)

0.8

0.7

0.6}

0.4

0.3

0.2

0.1

GIC-E
—e— R,

GIC-E

—O—Rz

0+ RS (ncp)
—¥— Rc_toma

g R

C-TDMA (ncp)

(b or cp)||

5

0.1 0.2 0.3 0.4 0.5

Rl (bps)

0.6

0.7 0.8

DRAFT



Fig. 4. Numerical results for GIC-E withi2 = c21 = 0.6,

Fig. 5. Numerical results for GIC-E withi2 = 1.9, co1 = 1, c1e = 0.5, c2¢ = 1.6, P1 = P> = 10.
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