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Abstract

This work studies the achievable secure rate per source-destination pair in wireless networks. First, a path loss modelis
considered, where the legitimate and eavesdropper nodes are assumed to be placed according to Poisson point processes with
intensitiesλ andλe, respectively. It is shown that, as long asλe/λ = o

(

(log n)−2
)

, almost all of the nodes achieve a perfectly

secure rate ofΩ
(

1
√
n

)

for the extended and dense network models. Therefore, underthese assumptions, securing the network
does not entail a loss in the per-node throughput. The achievability argument is based on a novel multi-hop forwarding scheme
where randomization is added in every hop to ensure maximal ambiguity at the eavesdropper(s). Secondly, an ergodic fading
model withn source-destination pairs andne eavesdroppers is considered. Employing the ergodic interference alignment scheme
with an appropriate secrecy pre-coding, each user is shown to achieve a constant positive secret rate for sufficiently large n.
Remarkably, the scheme does not require eavesdropper CSI (only the statistical knowledge is assumed) and the secure throughput
per node increases as we add more legitimate users to the network in this setting. Finally, the effect of eavesdropper collusion on
the performance of the proposed schemes is characterized.

I. I NTRODUCTION

A. Background

In their seminal work [1] Gupta and Kumar have shown that the randomly located nodes can achieve at most a rate that
scales like 1√

n
, as the number of nodesn → ∞, under an interference-limited channel model. However, the proposed multi-hop

scheme of [1] only achieves a scaling of 1√
n logn

per node. This gap was recently closed in [2], where the authors proposed
a highway based multi-hop forwarding protocol that achieves1√

n
rate per source-destination pair in random networks. In

this approach, a set of connected highways, which span the network both horizontally and vertically, are constructed. Then,
each source-destination pair communicates via a time-division strategy, where the source first transmits its message to the
closest horizontal highway. Then, the message is transported in multi-hop fashion to the appropriate vertical highway, which
carries the message as close to the destination as possible.Finally, the message is delivered to the destination node from
the vertical highway. The existence of highways, which satisfy certain desirable properties, is established by borrowing tools
from percolation theory. Contrary to this multi-hop approach, a single-hop scheme called as ergodic interference alignment [3]
(see also [4], [5]) is recently employed in [6] and, with arbitrary node placement and arbitrary traffic pattern, the unicast and
multicast capacity regions of dense networks are characterized (up to a factor oflogn) under the Gaussian fading channel
model. These line of works assumed an interference-limitedchannel model, where the interference is considered as noise (the
focus of this work as well). Contrary to this model, [7] considered Gaussian fading channel model and proposed hierarchical
cooperation schemes that can increase the per-node rate. This approach is further improved in the follow-up works (see,e.g.,
[8], [9], and references therein).

The broadcast nature of the wireless communication makes itsusceptible to eavesdropping. This motivates considering
secrecy as a quality of service (QoS) constraint that must be accounted for in the network design. State of the art crypto-
graphic approaches can be broadly classified into public-key and private-key protocols. Public-key cryptography assumes that
the eavesdropper(s) has limited computational power, whereas the decryption requires a significant complexity without the
knowledge of the key [10]. Private-key approaches, on the other hand, assume that a random key is shared in private between
the legitimate transmitter and receiver. This key is used tosecure the transmitted information from potential eavesdropper(s).
One of the earliest examples of private-key cryptography isthe Vernam’s one time pad scheme [11], where the transmitter
sends the XOR of the message bits and key bits. The legitimatereceiver can decode the messages by XORing the shared key
with the received sequence. In [12], Shannon showed that this scheme achieves perfect secrecyif and only if the two nodes
share a key of the same length as the message. The scaling lawsof wireless networks under the assumption ofpre-distributed
private keys was studied in [13]. However, it is important tonote that, the key agreement step of the cryptographic protocols is
arguably the most challenging part and this step becomes even more daunting as the network size grows. Our work avoids the
aforementioned limitations by adopting an information theoretic framework for secrecy in wireless networks. In particular, we
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assume the presence of eavesdropper(s) withinfinite computational power and characterize the scaling laws of the network
secrecy capacity whilerelaxing the idealistic assumption of pre-distributed keys.

The notion of information theoretic secrecy was introducedby Shannon to study secure communication over point-to-point
noiseless channels [12]. This line of work was later extended by Wyner [14] to noisy channels. Wyner’s degraded wiretap
channel assumes that the eavesdropper channel is a degradedversion of the one seen by the legitimate receiver. Under this
assumption, Wyner showed that the advantage of the main channel over that of the eavesdropper, in terms the lower noise
level, can be exploited to transmit secret bits using randombinning codes. Thiskeyless secrecy result was then extended to
a more general (broadcast) model in [15] and to the Gaussian setting in [16]. Recently, there has been a renewed interest in
wireless physical layer security (see, e.g., Special Issueon Information Theoretic Security,IEEE Trans. Inf. Theory, June 2008
and references therein). The secrecy in stochastic networks is studied in [17], where it is shown that even a small density of
eavesdroppers has a drastic impact on the connectivity of the secrecy graph. Connectivity in stochastic networks with secrecy
constraints is also studied in [18], [19], where the node degree distribution is analyzed. However, according to the best of our
knowledge, information theoretical analysis of secrecy capacity scaling in large wireless networks has not been studied in the
literature before.

B. Contributions

This paper considers wireless networks with secrecy constraints. We study two different channel models: 1) Static pathloss
model, and 2) ergodic fading model. For the first model, we consider a stochastic node placement on a square region, where the
legitimate nodes and eavesdroppers are distributed according to Poisson point processes with intensityλ andλe, respectively.
(For extended networks, the area of the region isn andλ = 1; and, for dense networks, area of the region is1 andλ = n.)
The path loss is modeled with a power loss exponent ofα > 2. This model suits for the scenarios where the channel gains are
mostly determined by path losses. In the second model,n source-destination pairs andne eavesdroppers are considered, where
the gain of each link is assumed to follow some fading process. (The assumptions on the fading processes will be clear in the
next section. Here, we note that our model includes a large set of fading distributions.) Arguably, this model suits for (dense)
networks in which the inter node distances have a negligibleeffect on the channel gains compared to that of the underlying
fading processes.

The results of this work can be summarized as follows.
1) For the path loss model, we construct a ”highway backbone”similar to [2]. However, in addition to the interference

constraint considered in [2], our backbone construction and multi-hop forwarding strategy are designed to ensure secrecy.
More specifically, an edge can be used in the highway if and only if there is a legitimate node within the corresponding square
of the edge and if there is no eavesdropper within a certainsecrecy zone around the node. We show that the network still
percolates in thisdependent edge model, and many highway paths can be constructed. Here,in addition to the careful choice of
the secrecy zone, our novel multi-hop strategy, which enforces the usage of anindependent randomization at each hop, allows
the legitimate nodes to create an advantage over the eavesdroppers, which is, then, exploited to transmit secure bits over the
highways. This way, we show that, as long asλe/λ = o

(

(logn)−2
)

, almost all source-destination pairs achieve a secure rate

of Ω
(

1√
n

)

with high probability, implying that the secrecy constraint does not entail a loss in the per-node throughput (in
terms of the scaling). (Note thatλ = 1 for extended networks andλ = n for dense networks.) In these scenarios, the proposed
scheme, which uses independent randomization at the transmitter of each hop, is the crucial step to obtain the results.

2) For the ergodic fading model, employing the ergodic interference alignment scheme ([3], [4], [5]) with an appropriate
secrecy pre-coding we show that each user can achieve secrecy. Here, the secrecy rate per user is shown to be positive for most
of the relevant fading distributions. In particular, in thehigh SNR regime, the proposed scheme allows each user to achieve a
secure degrees of freedom ofη = [ 12 − 1

n
]+ even with the absence of eavesdropper CSI. We observe that, per node performance

of usersincrease as we add more legitimate users in the network for this scenario compared to the result obtained for the path
loss model.

3) Finally, we focus on the eavesdropper collusion, where the eavesdroppers are assumed to share their observations freely.
For the extended networks with the path loss model, the same scaling result is shown to hold for the colluding eavesdropper
scenario whenλe = O

(

(logn)−2(1+p)
)

for any p > 0. For the ergodic fading model, extensions to many eavesdropper
collusion scenarios are discussed. In the extreme case, where all the eavesdroppers collude, it is shown that the proposed
scheme allows each user to achieve a secure degrees of freedom of η = [ 12 − ne

n
]+. We note that, for the path loss model

under the stated assumptions, the eavesdropper collusion does not affect the performance of our multi-hop scheme (in terms
of scaling). On the contrary, for the ergodic fading model, the eavesdropper collusion has a clear effect on the achievable
performance of our ergodic interference alignment scheme.

C. Organization

The rest of this paper is organized as follows. Section II introduces the two network models (path loss and ergodic fading
models). In Section III, we consider the path loss model and develop our novel multi-hop secret encoding scheme. SectionIV
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focuses on the ergodic fading scenario and proposes ergodicinterference alignment scheme for security applications.In
Section V, we focus on the colluding eavesdropper scenarios. Concluding remarks are given in Section VI, and, to enhance
the flow of the paper, some of technical lemmas and proofs are relegated to the Appendix.

II. N ETWORK MODELS

The set of legitimate nodes is denoted byL, whereas the set of eavesdroppers is represented byE . During time slott, the
set of transmitting nodes are denoted byT (t) ⊂ L, where each transmitting useri ∈ T (t) transmits the signalXi(t). The
received signals at receiving nodej ∈ L − T (t) and at eavesdroppere ∈ E are denoted byYj(t) andYe(t), respectively:

Yj(t) =
∑

i∈T (t)

hi,j(t)Xi(t) + Zj(t) (1)

Ye(t) =
∑

i∈T (t)

hi,e(t)Xi(t) + Ze(t), (2)

where receivers are impaired by zero-mean circularly symmetric complex Gaussian noises with varianceN0. We denote this
distribution byCN (0, N0). Assuming that each transmitter is active overN channel uses, the average power constraint on

channel inputs at each transmitter is given by1
N

N
∑

t=1
|Xi(t)|2 ≤ P . Note that, for i.i.d.CN (0, P ) input distribution, SNR, P

No

is the signal-to-noise ratio per complex symbol.

A. Static Path Loss Model with Stochastic Node Distribution

In the path loss model we consider, the signal power decays with the distanced asd−α for someα > 2; and the distance
between nodei and nodej is denoted bydij . The path loss is modeled in (1) and (2) with

hi,j(t) =
√

d−α
i,j , hi,e(t) =

√

d−α
i,e . (3)

The set of all observations at eavesdroppere is denoted byYe , {Ye(t), ∀t}.
The extended network model is a square of side-length

√
n (the area of the region isn). The legitimate nodes and

eavesdroppers are assumed to be placed randomly according to Poisson point processes of intensityλ = 1 andλe, respectively.
The transmitters are assumed to knowa-priori whether there is any eavesdropper within some neighborhoodor not (the size of
the neighborhood will be clear in later parts of the text). Weare aware of the idealistic nature of this assumption, but believe
that it allows for extracting valuable insights in the problem. To analyze the worst case scenario from a security perspective, the
legitimate receivers are assumed to consider interferenceas noise, whereas no such assumption is made on the eavesdroppers,
all of which are assumed to be informed with the network topology perfectly.

Now, consider any random source-destination pair, where the sources wishes to transmit the messageWs,d securely to the
intended destinationd. In our multi-hop strategy, each transmission consists ofN channel uses per hop. We say that the secret
rate ofR is achievable for almost all the source-destination pairs (s, d), if

• The error probability of decoding the intended message at the intended receiver can be made arbitrarily small asN → ∞,
and

• The information leakage rate associated with the transmissions of the message over the entire path, i.e.,I(Ws,d;Ye)
N

, can
be made arbitrarily small∀e ∈ E asN → ∞,

for almost all (s, d).
If there areH hops carrying the messageWs,d, one only needs to consider the associated channel observations at the

eavesdropper when evaluating our security constraint. Hence, our second condition is satisfied ifI(Ws,d;Ye(1),··· ,Ye(H))
N

can
be made arbitrarily small for sufficiently large block lengths, whereYe(h) denotes the length-N channel output vector at
eavesdroppere ∈ E during hoph 1.

To derive our asymptotic scaling results, we use the following probabilistic version of Landau’s notation. We sayf(n) =
O(g(n)) w.h.p., if there exists a constantk such that

lim
n→∞

Pr{f(n) ≤ kg(n)} = 1.

We also say thatf(n) = Ω(g(n)) w.h.p., if w.h.p.g(n) = O(f(n)). We denotef(n) = Θ(g(n)), if f(n) = O(g(n)) and
f(n) = Ω(g(n)). Lastly, we sayf(n) = o(g(n)), if f(n)

g(n) → 0, asn → ∞.
We also analyze a dense networks with the path loss model and stochastic node distribution similar to above, where we

assume that the network is deployed on a square region of unitarea. In this case, we assume that the legitimate nodes have
an intensity ofλ = n.

1 We note that the length of the observation vectorYe regarding messageWs,d is NH for H hops andN channel uses per hop. Therefore, to analyze

the mutual information leakage rate per channel use one might be tempted to use
I(Ws,d;Ye(1),··· ,Ye(H))

NH
in the secrecy constraint. However, asH hops

carry the same messageWs,d, the overall information accumulation at the eavesdroppermight be large even if
I(Ws,d;Ye(1),··· ,Ye(H))

NH
is made arbitrarily

small.
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B. Ergodic Fading Model

Fading process for the link fromi to k, denoted byhi,k(t), is assumed to be drawn i.i.d. across time according to some
ergodic fading process. The ergodic fading is modeled in (1)and (2) with the following two assumptions:

• The channel gains for the legitimate users,hi,j , are assumed to be drawn from independent distributions (for eachi, j ∈ K)
that are symmetric around zero (that is Pr{hi,j = h} = Pr{hi,j = −h}); and

• The fading process for eavesdroppere ∈ E , i.e., hi,e, is assumed to be drawn independently from the same distribution
∀i ∈ K.

Note that, as we assume a certain distribution for any given transmitter-receiver pair, the location of the nodes are notrelevant
in this model. In addition, the second assumption on the fading processes ensures that each eavesdropper has statistically the
same channel to each transmitter.

We denoteYe , {Ye(1), · · · , Ye(N)}, H(t) , {hi,j(t), ∀i, j ∈ K}, H , {H(1), · · · ,H(N)}, He(t) , {hi,e(t), ∀i ∈
K, ∀e ∈ E}, andHe , {He(1), · · · ,He(N)}. Here,H is assumed to be known at legitimate users, whereas eavesdroppers
are assumed to know bothH andHe.

We assume that each transmitter in the network has an arbitrary and distinct receiver and the set of legitimate nodes, i.e.,
L, consists ofn source-destination pairs. For notational convenience, weenumerate each transmitter-receiver pair using an
element ofK = {1, · · · , n}, and denote the channel gain process associated with transmitter-receiver pairi with hi,i(t). In
this model, transmitter-receiver pairi ∈ K tries to communicate a secret messageWi ∈ Wi. Denoting the decoding error at
the receiver byPe,i, we say that the secret rateRi is achievable, if for anyǫ > 0, 1) |Wi| ≥ 2NRi , 2) Pe,i ≤ ǫ, and 3)
1
N
I(Wi;Ye,H,He) ≤ ǫ, ∀e ∈ E , for sufficiently largeN . We finally say that the symmetric secure degrees of freedom (DoF)

(per orthogonal dimension) ofη is achievable, if the rateRi is achievable for pairi ∈ K and

η ≤ lim
SNR→∞

Ri

log(SNR)
, ∀i ∈ K. (4)

III. T HE PATH LOSSMODEL

In this section, we first focus on extended networks with a path loss model (α > 2) and stochastic node distribution (Poisson
point processes) as detailed in Section II-A. Our achievability argument is divided into the following four key steps:

1) Lemma 1 uses the idea ofsecrecy zoneto guarantee the secrecy of the communication over a single hop.
2) In Lemma 2, we introduce our novel multi-hop forwarding strategy which uses independent randomization signal in each

hop. This strategy is shown to allow for hiding the information from an eavesdropper which listens to the transmissions
over all hops.

3) Using tools from percolation theory, we show the existence of a sufficient number of horizontal and vertical highways
in Lemma 3, and we characterize the rate assigned to each nodeon the highway in Lemma 4.

4) The accessibility of highways foralmost all the nodes in the networks with the appropriate rates is established in
Lemma 5.

Our main result, i.e., Theorem 6, is then proved by combiningthe aforementioned steps with a multi-hop routing scheme
(Fig. 1).

We partition the network area into squares of constant side length c. We further divide the area into larger squares of
sideftdc, each of which contains(ftd)2 small squares. These small squares take turn over a Time-Division-Multiple-Access
(TDMA) frame of size(ftd)2 slots. In each slot, a transmitter within each active small square can transmit to a receiver
that is located at mostd squares away as illustrated in Fig.2. On the same figure, we also show the secrecy zone, around a
transmitting square, consisting of squares that are at mostfed squares away. Our first result establishes an achievablesecure
rate pera single hop, active overN channel uses, under the assumption of a single eavesdropperon the boundary of the
secrecy zone.

Lemma 1 (Secure Rate per Hop): In a communication scenario depicted in Fig.2, the secure rate, simultaneously achievable
between any active transmitter-receiver pair is:

RTR =
1

(ftd)2
[

log(1 + SNRTR)− log(1 + SNRe∗)
]

, (5)

where

SNRTR ,
P (d+ 1)−αc−α(

√
2)−α

No + P8(ft)−αd−αc−αS(α)
, (6)

S(α) ,

∞
∑

i=1

i(i− 0.5)−α, (7)

SNRe∗ ,
P (fe)

−αd−αc−α

No

, (8)

ft ≥ 2(d+ 1)

d
, (9)
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and
(d+ 1)α(

√
2)α

(d)α

[

1 +
P

No

8(ft)
−αd−αc−αS(α)

]

< (fe)
α. (10)

Here, secrecy is guaranteed assuming the presence of an eavesdropper on the boundary of the secrecy zone.
Proof: In Fig. 2, consider that one node per filled square is transmitting. Assuming that there is a transmission from every

such square, we denote the interference set seen by our designated legitimate receiver asI. Since the legitimate receivers
simply consider other transmissions as noise in our model, we obtain the following SNR at the legitimate receiver.

SNRTR =
Pd−α

TR

No +
∑

i∈I
Pd−α

iR

, (11)

where the distance between the transmitter and receiver is denoted asdTR and that between interfereri ∈ I and our receiver
is denoted bydiR.

We now consider an eavesdroppere ∈ E listening to the transmission and upper bound its received SNR by the following.

SNRe ≤
Pd−α

Te

No

, (12)

where the distance between the transmitter and the eavesdropper e is denoted bydTe. Here, the upper bound follows by
eliminating the interference at the eavesdropper. The construction in Fig.2 allows for showing that

dTR ≤ (d+ 1)c
√
2, (13)

dTe ≥ fedc, (14)

and
∑

i∈I
d−α
iR =

∞
∑

i=1

8i(iftd− (d+ 1))−αc−α

(a)

≤ 8(ftdc)
−α

∞
∑

i=1

i(i− 0.5)−α

= 8(ftdc)
−αS(α), (15)

where(a) follows by choosing
ftd ≥ 2(d+ 1), (16)

and the last equality follows by defining

S(α) ,

∞
∑

i=1

i(i− 0.5)−α, (17)

which converges to some finite value asα > 2.
Using (13), (14), (15) in (11) and (12), we obtain the followings.

SNRTR ≥ SNRTR ,
P (d+ 1)−αc−α(

√
2)−α

No + P8(ft)−αd−αc−αS(α)
, (18)

and

SNRe ≤ SNRe∗ ,
P (fe)

−αd−αc−α

No

. (19)

Hence, SNRTR > SNRe for every eavesdroppere, once we choosefe such that

(d+ 1)α(
√
2)α

(d)α

[

1 +
P

No

8(ft)
−αd−αc−αS(α)

]

< (fe)
α. (20)

We then construct the secrecy codebook at the transmitter byconsidering an eavesdropper that observes the signals of the
transmission ofthis hop only with an SNR ofSNRe∗ . Based on the Gaussian wiretap channel capacity [16], one can easily
show that the followingperfectly securerate is achievable

RTR =
1

(ftd)2
[

log(1 + SNRTR)− log(1 + SNRe∗)
]

, (21)

where the(ftd)2 term is due to time-division described above.
Next we introduce our novel multi-hoprandomization strategy which ensures secrecy over theentire path, from a source to

a destination node, atevery eavesdropper observingall transmissions.
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Lemma 2 (Securing a Multi-Hop Path): Securing each hop from an eavesdropper that is located on theboundary of the
secrecy zone is sufficient to ensure secrecy from any eavesdropper which listens the transmissions from all the hops and lie
outside the secrecy zones of transmitters of hops.

Proof: We consider a sources, a destinationd, and an eavesdroppere in the network. Without loss of generality, we
assume that the multi-hop scheme usesH hops to route the message. We design the secrecy codebook at each transmitter
according to highest possible eavesdropper SNR assumptionfor each hop. In our multi-hop routing scenario, each code ofthe
ensemble at the transmitter of hopi generates2N(Ri+Rx

i −
ǫ1
H

) codewords each entry with i.i.d.CN (0, P ), for someǫ1 > 0,
and distributes them into2NRi bins. Each codeword is, therefore, represented with the tuple (ws,d, w

x
i ), wherews,d is the bin

index (secret message) andwx
i is the codeword index (randomization message). To transmitthe messagews,d, the encoder of

transmitteri will randomly choose a codeword within the binws,d according to a uniform distribution. This codeword, i.e.,
Xi(ws,d, w

x
i ), is sent from transmitteri. It is clear now that each transmitter on the path addsindependent randomness, i.e.,

the codeword indexwx
i is independent ofwx

j for i 6= j.
We consider an eavesdropper at the boundary of the secrecy zone around the transmitter of the hopi, and denote it by

e∗i . We subtract all the interference seen by this virtual node and denote its observations for hopi as Ye∗
i
. Omitting the

indices(ws,d, w
x
i ), for simplicity, we denote the symbols transmitted from thetransmitteri asXi; and setRx

i = I(Xi;Ye∗
i
) =

log
(

1 + SNRe∗
i

)

. (Note that this is the rate loss in (5).) We continue as below.

I(Ws,d;Ye) = I(Ws,d;Ye(1), · · · ,Ye(H))
(a)

≤ I(Ws,d;Ye∗
1
, · · · ,Ye∗

H
)

= I(Ws,d,W
x
1 , · · · ,W x

H ;Ye∗
1
, · · · ,Ye∗

H
)− I(W x

1 , · · · ,W x
H ;Ye∗

1
, · · · ,Ye∗

H
|Ws,d)

(b)

≤ I(X1, · · · ,XH ;Ye∗
1
, · · · ,Ye∗

H
)−H(W x

1 , · · · ,W x
H |Ws,d) +H(W x

1 , · · · ,W x
H |Ye∗

1
, · · · ,Ye∗

H
,Ws,d)

(c)
=

H
∑

i=1

I(X1, · · · ,XH ;Ye∗
i
|Ye∗

1
, · · · ,Ye∗

i−1
)−H(W x

1 , · · · ,W x
H)

+

H
∑

i=1

H(W x
i |Ws,d,Ye∗

1
, · · · ,Ye∗

H
,W x

1 , · · · ,W x
i−1)

=

H
∑

i=1

[

I(Xi;Ye∗
i
|Ye∗

1
, · · · ,Ye∗

i−1
) + I(X1, · · · ,Xi−1,Xi+1, · · · ,XH ;Ye∗

i
|Ye∗

1
, · · · ,Ye∗

i−1
,Xi)

−NRx
i +N

ǫ1
H

+H(W x
i |Ye∗

i
,Ws,d)

]

(d)

≤
H
∑

i=1

[

H(Ye∗
i
|Ye∗

1
, · · · ,Ye∗

i−1
)−H(Ye∗

i
|Ye∗

1
, · · · ,Ye∗

i−1
,Xi)−NRx

i +N
ǫ1 + ǫ2

H

]

(e)

≤
H
∑

i=1

[

H(Ye∗
i
)−H(Ye∗

i
|Xi)−NRx

i +N
ǫ1 + ǫ2
H

]

=

H
∑

i=1

[

I(Xi;Ye∗
i
)−NRx

i +N
ǫ1 + ǫ2

H

]

(f)

≤
H
∑

i=1

[

NI(Xi;Ye∗
i
)−NRx

i +N
ǫ1 + ǫ2
H

]

= N(ǫ1 + ǫ2),

where (a) is due to the fact thatYe∗
i

is an enhanced set of observations compared to that ofYe(i), (b) is due to the data
processing inequality and the Markov chain{Ws,d,W

x
1 , · · · ,W x

H} → {X1, · · · ,XH} → {Ye∗
1
, · · · ,Ye∗

H
}, (c) follows since

Ws,d andW x
i are independent, (d) is due to fact that the second term in thesum is zero and due to Fano’s inequality (as we

chooseRx
i ≤ I(Xi;Ye∗

i
), the binning codebook construction allows for decoding randomization message at the eavesdropper

given the bin index for almost all codebooks in the ensemble): We define the decoding error probability asPe,e∗
i
, Pr{Ŵ x

i 6=
W x

i }, whereŴ x
i is the estimate of the randomization messageW x

i given (Ye∗
i
,Ws,d), and bound

H(W x
i |Ye∗

i
,Ws,d) ≤ N

(

H(Pe,e∗
i
)

N
+ Pe,e∗

i
Rx

i

)

≤ N
ǫ2
H

(22)

with someǫ2 → 0 asN → ∞, (e) follows by the fact that conditioning does not increasethe entropy and the observation that

H(Ye∗
i
|Ye∗

1
, · · · ,Ye∗

i−1
,Xi) = H(Ye∗

i
|Xi), and (f) is due to the fact thatI(Xi;Ye∗

i
) =

N
∑

t=1
I(Xi;Ye∗

i
(t)|Ye∗

i
(1), · · · , Ye∗

i
(t−
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1)) ≤
N
∑

t=1
H(Ye∗

i
(t)) −H(Ye∗

i
(t)|Xi(t)) = NI(Xi;Ye∗

i
).

After setting,ǫ = ǫ1 + ǫ2, we obtain our result: For any givenǫ > 0, I(Ws,d;Ye)
N

< ǫ asN → ∞.
Note that, the number of hops scale asH = O(

√
n) and in (22) we havePe,e∗

i
decays exponentially inN . Thus, we can

say that the multi-hop transmissions require larger block lengths, asn gets large, to assure secrecy with this scheme.
The following result uses tools from percolation theory to establish the existence of a sufficient number ofsecure highways

in our network.
Lemma 3 (Secure Highways): There exist a sufficient number ofsecure vertical and horizontal highways such that, as

n → ∞, each secure highway is required to serveO(
√
n) nodes and an entry (exit) point has w.h.p. a distance of at most

κ′ logn away from each source (respectively, destination) for somefinite constantκ′ > 0, if c ≥ c0 for some finite constant
c0 > 0 andλe → 0.

Proof: We first describe the notion of secure highway and the percolation model we use in the proof. We note that most
of this percolation based construction is developed in [2],[20] and here we generalize it for secrecy. We say that each square
is ”open” if the square has at least one legitimate node and there are no eavesdroppers in the secrecy zone around the square.
We denote the probability of having at least one legitimate node in a square byp. It is evident that

p = 1− e−c2 ,

and hence,p can be made arbitrarily close to1 by increasingc. For any given transmitting square, we denote the probability
of having an eavesdropper-free secrecy zone byq. The number of eavesdroppers within a secrecy zone is a Poisson random
variable with parameterλe(2fed+ 1)2c2, and hence,

q = e−λe(2fed+1)2c2 .

Thus,q gets arbitrarily close to1, asn → ∞, sinceλe → 0 with n (fe, d, andc are some finite numbers for the highway
construction).

We then map this model to a discrete edge-percolation model (a.k.a. bond percolation on the random square grid [21])
by drawing horizontal and vertical edges over the open squares, where an edge is called open if the corresponding square is
open (see Fig.3). We are interested in characterizing (horizontal and vertical) open paths that span the network area. Such
open paths are ourhorizontal and vertical highways. We only focus on horizontal highways for the rest of the section as the
results hold, due to symmetry, for the vertical highways. Weremark that, in our model, the status of edges are not statistically
independent due to the presence of associated secrecy zonesthat intersect for successive squares. Notice that the status of two
edges would be independent if their secrecy zones did not intersect, which happens if there were at least2fed squares between
two edges. Therefore, this dependent scenario is referred to as finite-dependent model, asfe andd are some finite numbers.
Due to Lemma 12, given in Appendix A, this dependent modelstochastically dominates an independent model, in which edges
are independently open with probabilityp′, wherep′ can be made arbitrarily high ifpq can be made arbitrarily high. This
independent scenario can be constructed by following the steps provided in [22]. Therefore, after proving the percolation of
the network with some desirable properties under the independence assumption, the network will also percolate with thesame
properties under the finite dependence model as bothp andq can be made sufficiently large.

Using the independent edge model, applying Lemma 13, given in Appendix A, with edge openness probability ofp′, and
noting the fact thatm =

√
n

c
√
2

(Fig. 3), we obtain the following: There are w.h.p.Ω(
√
n) horizontal paths, which, for any given

κ > 0, can be grouped into disjoint sets of⌈δ logn⌉ highways that span a rectangle area of size(κ logn− ǫ)×√
n, for some

δ > 0, and someǫ → 0 asn → ∞ if p′ is high enough. Then, the network area is sliced into slabs ofside lengthw, chosen
so that the number of slabs match with the number of highways in each rectangle. Then, each source (destination) in theith
horizontal (vertical) slab will access the corresponding highway (Fig.4). This way, each highway is required to serve at most
2w

√
n nodes and an entry (exit) point has w.h.p. a distance of at most κ′ logn away from each source (respectively, destination)

for some finite constantκ′ > 0. The former claim follows by an application of Chernoff bound, given in Lemma 14, and union
bound (see [2, Lemma 2] or [20, Lemma 5.3.5] for details) and the latter incorporates the negligible horizontal distance(at
mostc

√
2) in addition to the vertical distance, which scales asκ logn. Finally, due to the statistical domination argument given

above, these percolation results will also hold for our finite-dependent model, aspq can be made arbitrarily large asn → ∞.
Formally,∃c0 ∈ (0,∞) such that, for anyc ≥ c0, pq can be made sufficiently high ifλe → 0 asn → ∞. This translates to
high enoughp′ by Lemma 12, which shows that the dependent model has the property given in Lemma 13 as well.

With the following lemma we conclude the discussion of highways.
Lemma 4 (Rate per Node on the Highways): Each node on the constructed highways can transmit to their next hop at a

constant secure rate. Furthermore, the number of nodes eachhighway serves isO(
√
n), and therefore each highway can w.h.p.

carry a per-node secure throughput ofΩ
(

1√
n

)

.
Proof: The highways are constructed such that there is at least one legitimate node per square and there are no eavesdroppers

within the secrecy zone around the squares of the highway. Wechoose one legitimate node per square as a member of the
highway, and compute the rate that can be achieved with the multi-hop strategy. From Lemma 1 (withd = 1) and Lemma 2,
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one can see that highways can carry datasecurely with a constant positive rate. As each highway carries the data forO(
√
n)

nodes due to Lemma 3, the achievable rate per node on highwaysis Ω
(

1√
n

)

.
Our final step is to show that almost all the nodes can access the highways simultaneously with high probability with a rate

scaling higher thanΩ
(

1√
n

)

.
Lemma 5 (Access Rate to Highways): Almost all source (destination) nodes can w.h.p. simultaneously transmit (receive)

their messages to (from) highways with a secure rate ofΩ
(

(logn)−3−α
)

, if λe = o
(

(log n)−2
)

.
Proof: To calculate the rate of each node transmitting to the closest horizontal highway, we follow the same procedure

given in the proof of Lemma 4. However, this time we choosed = κ′′ logn in Lemma 1 for some finiteκ′′ > 0, as the
nodes within each transmitting squares need to transmit to areceiver at a distance of at mostκ′′ logn squares away (due to
Lemma 3). (Here, we can choose smallest numberκ′′ ≥ κ′

c
making κ′′ logn integer.) In addition, compared to Lemma 4,

where only one node per square is transmitting, here all legitimate nodes within small squares should access the highways
w.h.p., which is accomplished with a TDMA scheme.

As d = κ′′ log n → ∞, we see from (6), (8), (5) that a per-node rate ofΩ
(

(logn)−2−α
)

is achievable. Note that, to
satisfy (10) and thus (5), any choice offe >

√
2 suffices asn → ∞. However, for this case, due to time division between

nodes within squares this rate needs to be further modified. Again applying the Chernoff bound (Lemma 14) and the union
bound one can show that there are w.h.p.O(log n) legitimate nodes in each square (see [2, Lemma 1] or [20, Lemma 5.3.4]
for details). Therefore, w.h.p. the secure rateΩ

(

(logn)−3−α
)

is achievable to the associated highway from a source node, if
there isno eavesdropperin the associated secrecy zone. Next, we show that this will happen with a very high probability if
λe = o

(

(logn)−2
)

asymptotically (asn → ∞).
From Fig.2, it is clear that the presence of an eavesdropper eliminatesthe possibility of secure access to a highway from

a region of areaA = (2fed + 1)2c2. We denote the total number of eavesdroppers in the network as |E| (Poisson r.v. with
parameterλen), and the total number of legitimate users in the network as|L| (Poisson r.v. with parameterλn = n). Let the
total area in which the eavesdroppers make it impossible to reach a highway beAE . Clearly,AE ≤ A|E|. Let us further denote
the number of legitimate users in an area ofA|E| as |LA|E||. Then, using the Chebyshev inequality (please refer to Lemma 15
in Appendix A), we obtain

|E| ≤ (1 + ǫ)λen,

|L| ≥ (1− ǫ)n, (23)

|LA|E|| ≤ (1 + ǫ)A|E|,
for any ǫ ∈ (0, 1) with high probability (asn → ∞). We denote the fraction of users that can not transmit to highways due
to eavesdroppers asF which can be upper bounded by

F ≤ |LA|E||
|L| ≤ (1 + ǫ)2(2fed+ 1)2c2λen

(1− ǫ)n
→ 0 (24)

with high probability (asn → ∞). The first inequality follows since the eavesdroppers can have intersecting secrecy regions,
the second inequality follows from (23), and the limit holdsasd = κ′′ log(n) andλe = o

(

(logn)−2
)

. This argument shows
that almost all of the nodes are connected to the highways asn → ∞.

Similar conclusion can be made for the final destination nodes: Any given destination node can w.h.p. receive data from the
highways securely with a rate ofΩ

(

(log n)−3−α
)

.
Now we are ready to state our main result.
Theorem 6: If the legitimate nodes have unit intensity (λ = 1) and the eavesdroppers have an intensity ofλe = o

(

(log n)−2
)

in an extended network, almost all of the nodes can achieve a secure rate ofΩ
(

1√
n

)

with high probability.
Proof: In our multi-hop routing scheme, each user has a dedicated route (due to the time division scheme described

below) with each hop sending the message to the next hop overN channel uses. The secrecy encoding at each transmitter is
designed assuming an eavesdropper on the boundary of the secrecy zone and listening to this hop (observations of lengthN )
only. This way, a transmitter can achieve the rate reported in Lemma 1. Then, we can argue that this secrecy encoding scheme
will ensure secrecy from an eavesdropper that listens to thetransmissions of every hop due to Lemma 2.

Now, the main result follows by Lemma 4 and Lemma 5 by utilizing a time division approach. That is the total transmission
time of the network is divided into four phases, as shown in Fig. 1. During the first phase, the sources that are not affected by
eavesdroppers (i.e., almost all of them due to Lemma 5) will w.h.p. transmit their messages to the closest highway entry point.
Then, the secret messages of all nodes are carried through the horizontal highways and then the vertical highways (Lemma4).
During the final phase, the messages are delivered from the highways to almost all of the destinations (Lemma 5). Hence, by
Lemma 4 and Lemma 5, as the secrecy rate scaling per node is limited by the transmissions on the highway, we can see that
almost all of the nodes achieve a secure rate ofΩ

(

1√
n

)

with high probability. This concludes the proof.
Few remarks are now in order.
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1) The expected number of legitimate nodes isn, whereas the expected number of eavesdroppers isne = o(n(log n)−2) in
this extended network. Note thatne satisfiesne = O(n1−ǫ) for any ǫ > 0, and hence network can endure eavesdroppers as
long as total number of eavesdroppers scale slightly lower than that of legitimate nodes.

2) Utilizing the upper bound of [1] for the capacity of wireless networks, we can see that Theorem 6 establishes the
achievability of the sameoptimal scaling law with and without security constraints. It is worth noting that, in our model,
the interference is considered as noise at the legitimate receivers. As shown in [7], more sophisticated cooperation strategies
achieve the same throughput for the case of extended networks with α ≥ 3. This leads to the conclusion that cooperation in
the sense of [7] does not increase the secrecy capacity whenα ≥ 3 andλe = o

(

(log n)−2
)

.
3) λe = o(1) is tolerable if each node shares key only with the closest highway member. If each node can share a secret

key with only the closest highway member, then the proposed scheme can be combined with a one-time pad scheme (see,
e.g., [11] and [12]) for accessing the highways, which results in the same scaling performance for anyλe → 0 asn → ∞.

4) Can network endureλe = o(1) without key sharing? Note that in our percolation theory result, we have chosen squares
of side lengthc (edge length in the square lattice wasc

√
2, see Fig.3) satisfyingc ≥ c0 to makepq sufficiently large in order

to havep′ > 5
6 for Lemma 13. We remark that for independent percolation with edge probabilityp′ in a random grid, for any

γ ∈ (0, 1), ∃p∗(γ) such that forp′ > p∗(γ), the random grid contains a connected component of at leastγn2 vertices (see,
e.g., [20, Theorem 3.2.2]). Thus, as long asλe = o(1), for someǫ′, ǫ∗ > 0, we can choose a very large, but constant,c (to
make sure thatpq is very close to1) to havep′ = 1− ǫ′ > p∗(1− ǫ∗), which implies that there are w.h.p.(1− ǫ∗)n2 connected
vertices. Therefore, we conjecture that, for any givenǫ > 0 and forλe = o(1), per-node secure throughput ofΩ(1/

√
n) is

achievable for(1− ǫ) fraction of nodes (we conjecture that these are the nodes that have constant distances to highways).
We now focus on the dense network scenario. The stochastic node distribution for this scenario can be modeled by assuming

that the legitimate and eavesdropper nodes are distributedas Poisson point processes of intensitiesλ = n andλe, respectively,
over a square region of unit area. The proposed scheme in the previous section can be utilized for this topology and the same
scaling result can be obtained for dense networks as formalized in the following corollary.

Corollary 7: Under the stochastic modeling of node distribution (Poisson point processes) in a dense network (on a unit
area region) with the path loss model (withα > 2), if the legitimate nodes have an intensity ofλ = n and the eavesdropper
intensity satisfiesλe

λ
= o

(

(log n)−2
)

, then almost all of the nodes can simultaneously achieve a secure rate ofΩ
(

1√
n

)

.
Proof: The claim can be proved by following the same steps of the proof of Theorem 6 with scaling the transmit power

from P to P
(
√
n)α

at each transmitter, and scaling each distance parameter bydividing with
√
n. Note that, with these scalings,

signal to interference and noise ratio (SINR) calculationsand percolation results remain unchanged.

IV. T HE ERGODIC FADING MODEL

We now focus on the ergodic fading model described in SectionII-B and utilize the ergodic interference alignment for
secrecy. Frequency selective slow fading channels are studied in [23], where each symbol timet = 1, · · · , N corresponds to
F frequency uses and the channel states of each sub-channel remain constant for a block ofN ′ channel uses and i.i.d. among
B blocks (N = N ′B). For such a model, one can obtain the following high SNR result by utilizing the interference alignment
scheme [4].

Theorem 8 (Theorem 3 of [23]): For n source-destination pairs withne number of external eavesdroppers, a secure DoF of
η =

[

1
2 − 1

n

]+
per frequency-time slot is achievable at each user in the ergodic setting, in the absence of the eavesdropper

CSI, for sufficiently high SNR,N , andF .
This interference alignment scheme is shown to achieve a secure DoF of

[

1
2 − ne

n

]+
per orthogonal dimension at each user

when all the eavesdroppers collude [24]. Remarkably, with this scheme, the network is secured against colluding eavesdroppers
and only a statistical knowledge of the eavesdropper CSI is needed at the network users. However, the proposed scheme only
establishes a high SNR result in terms of secure DoF per user.In addition, the stated DoF gain is achieved in the limit of
large number of sub-channels, which is unrealistic in practice for large number of users,n. (The result is achieved when the
design parameterm gets large, whereF = Ω(mn2

) [23], [24].)
Providing secure transmission guarantees for users at any SNR with finite number of dimensions is of definite interest. In

this section, we utilize the ergodic interference alignment scheme [3] to satisfy this quality of service (QoS) requirement at the
expense of large coding delays. Ergodic interference alignment can be summarized as follows. Suppose that we can find some
time indices in{1, · · · , N}, represented byt1, t2, · · · and their complements̃t1, t̃2, · · · , such thathi,i(tm) = hi,i(t̃m), ∀i ∈ K,
andhi,j(tm) = −hi,j(t̃m), ∀i, j ∈ K with i 6= j, for m = 1, 2, · · · , N1. Now, consider that we sent the same codeword over
the resulting channels, i.e., we setXi(tm) = Xi(t̃m), ∀m. Then, by adding the observations seen by destinationi for these
two time instance sequences, the effective channel can be represented as

Ỹi(tm) = 2hi,i(tm)Xi(tm) + Zi(tm) + Zi(t̃m), (25)

whereas the eavesdroppere observes

Ỹe(tm) =

n
∑

i=1

[

hi,e(tm)
hi,e(t̃m)

]

Xi(tm) +

[

Ze(tm)
Ze(t̃m)

]

, (26)
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for m = 1, 2, · · · , N1. Remarkably, while the interference is canceled for the legitimate users, it still exists for the eavesdropper,
whose effective channel becomes multiple access channel with single input multiple output antennas (SIMO-MAC). By
taking advantage of this phenomenon together with exploiting the ergodicity of the channel, secure transmission against
each eavesdropper is made possible at each user for any SNR (depending on the underlying fading processes) as reported in
the following theorem, which is the main result of this section.

Theorem 9: For t = 1, 2, · · · , let

Ỹi(t) , 2hi,i(t)Xi(t) + Zi(t) + Z̃i(t), (27)

Ỹe(t) ,

n
∑

i=1

H̃i,e(t)Xi(t) + Z̃e(t), (28)

H̃i,e(t) , [hi,e(t) h̃i,e(t)]
T , and Z̃e(t) , [Ze(t) Z̃e(t)]

T , where,∀i ∈ K and ∀e ∈ E , Z̃i and Z̃e are i.i.d. asZi and Ze,
respectively; and̃hi,e is i.i.d. ashi,e. Then, source destination pairi ∈ K can achieve the secret rate

Ri =

[

1

2
E[I(Xi; Ỹi|H)]− 1

2n
E[I(X1, · · · , Xn; Ỹe|H,He)]

]+

, (29)

on the average, where the expectations are over underlying fading processes.
Proof: We first need to quantize the channel gains to have a finite set of possible matrices. (These steps are given in [3]

and provided here for completeness.) Letǫ′ > 0. Chooseτ > 0 such that Pr{∪i,j{|hi,j | > τ}} ≤ ǫ′. This will ensure a finite
quantization set. Forγ > 0, the γ-quantization ofhi,j is the point amongγ(Z + jZ) that is closest tohi,j in Euclidean
distance. Theγ-quantization of channel gain matrixH(t) is denoted byHγ(t), where each entry isγ-quantized. Thus,γ-
quantized channel alphabetHγ has size satisfying(

√
2τ
γ

)2n
2 ≤ |Hγ | ≤ (2τ

γ
)2n

2

. We denote each channel type withHb
γ , for

b = 1, · · · , B = |Hγ |. The complement of the channelHb
γ is denoted byHb̃

γ , whose diagonal elements are the same asH
b
γ

and the remaining elements are negatives of that ofH
b
γ .

We next utilize strong typicality [25] to determine the number of channel uses for each type. Consider any i.i.d. sequence
of quantized channel matricesHγ(1), · · · ,Hγ(N). Such a sequence is calledδ-typical, if

N(Pr{Hb
γ} − δ) ≤ #{Hb

γ |Hγ(1), · · · ,Hγ(N)} ≤ N(Pr{Hb
γ}+ δ), (30)

where#{.|.} operator gives the number of blocks of each type. The set of such strong typical sequences is denoted byA(N)
δ .

By the strong law of large numbers, we choose sufficiently largeN to have Pr{A(N)
δ } ≥ 1− ǫ′.

Assuming that the realized sequence of quantized channel gain matrices, i.e.,Hγ(1), · · · ,Hγ(N), is δ-typical, we use the
first Nb , N(Pr{Hb

γ}− δ) channel uses for each channel typeb. This causes a loss of at most2δNB channel uses out ofN ,
which translates to a negligible rate loss. With again a negligible loss in the rate, we choose eachNb as even. Note that the
complement block ofb is b̃, which lasts forNb̃ = Nb channel uses, as Pr{Hb

γ} = Pr{Hb̃
γ}.

We now describe the coding scheme, which can be viewed as an ergodic interference alignment coding scheme with a
secrecy pre-coding. For each secrecy codebook in the ensemble of transmitteri, we generate2N(Ri+Rx

i ) sequences each of

length
B
∑

b=1

Nb

2 , where entries are chosen such that they satisfy the long term average power constraint ofP . We assign each

codeword to2NRi bins each with2NRx
i codewords. Givenwi, transmitter randomly chooses a codeword in bini according to

the uniform distribution, which is denoted byXi(wi, w
x
i ), wherewx

i is the randomization index to confuse the eavesdroppers.
The codeword is then divided intoB blocks each with a length ofNb

2 symbols. The codeword of blockb is denoted by
{Xb

i (t), t = 1, · · · , Nb

2 } and is repeated during the lastNb

2 channel uses of the block̃b, i.e., Xb
i (t) = X b̃

i (
Nb

2 + t), for
t = 1, · · · , Nb

2 . The channel gains, additive noises, and the received symbols is denoted with the same block, i.e., channel
type, notation. Here, the effective channels during blockb is given by

Ỹ b
i (t) = 2hb

i,i(t)X
b
i (t) + Zb

i (t) + Z b̃
i

(

Nb

2
+ t

)

, (31)

and

Ỹ
b
e(t) =

n
∑

i=1

[

hb
i,e(t)

hb̃
i,e

(

Nb

2 + t
)

]

Xb
i (t) +

[

Zb
e(t)

Z b̃
e

(

Nb

2 + t
)

]

, (32)

for t = 1, 2, · · · , Nb

2 .
We essentially code over the above two fading channels seen by destinations and eavesdroppers. Here, to satisfy both the

secrecy and the reliability constraints, we choose the rates as follows.

Ri =
1

2
E[I(Xi; Ỹi|H)]− 1

2n
E[I(X1, · · · , Xn; Ỹe|H,He)]− ǫ (33)

Rx
i =

1

2n
E[I(X1, · · · , Xn; Ỹe|H,He)], (34)
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where the expectation is over the ergodic channel fading, and the channel outputs̃Yi andỸe are given by the transformations
(27) and (28), respectively.

For anyǫ > 0, we choose sufficiently smallδ. Then, in the limit ofN → ∞, τ → ∞, γ → 0, each legitimate receiveri
can decodeWi andW x

i with high probability (covering a-typical behavior of the channel sequence as well) as

Ri +Rx
i =

1

2
E[I(Xi; Ỹi|H)]− ǫ, (35)

whereǫ covers for quantization errors and unused portion of the channel uses.
For the secrecy constraint we first consider each expressionon the right hand side of the following equality.

1

N
I(WK;Ye,H,He) =

1

N
I(WK,W

x
K;Ye,H,He) +

1

N
H(W x

K|WK,Ye,H,He)

− 1

N
H(W x

K|WK,H,He), (36)

where we denoteWK , {Wi, ∀i ∈ K} andW x
K , {W x

i , ∀i ∈ K}.
We have

1

N
I(WK,W

x
K;Ye,H,He) =

1

N
I(WK,W

x
K;Ye|H,He)

(a)

≤ 1

N
I({Xb

i (t), ∀i, b, t}; {Ỹb
e(t), ∀b, t}|H,He)

(b)

≤

B
∑

b=1

Nb

2

N

(

E[I(X1, · · · , Xn; Ỹe|H,He)]− ǫ1

)

(c)
=

(1− ǫ2)

2

(

E[I(X1, · · · , Xn; Ỹe|H,He)]− ǫ1

)

≤ 1

2
E[I(X1, · · · , Xn; Ỹe|H,He)] + ǫ1ǫ2, (37)

where (a) is due to the coding scheme and the data processing inequality, (b) is due to ergodicity with someǫ1 → 0 as
N → ∞, (c) is due to unused portion of channel uses with someǫ2 → 0 asN → ∞.

Secondly, due to the ergodicity and the symmetry among tranmitters, the rate assignment implies the following: The rates
satisfy

∑

i∈S
Rx

i ≤ 1

2
E[I(XS ; Ỹe|XK−S ,H,He)], (38)

for any S ⊆ K. (Please refer to Lemma 8 of [23] for details.) Thus, the randomization indicesW x
K can be decoded at the

eavesdroppere given the bin indicesWK. Then, utilizing Fano’s inequality and averaging over the ensemble of the codebooks,
we have

1

N
H(W x

K|WK,Ye,H,He) ≤ ǫ3, (39)

with someǫ3 → 0 asN → ∞.
Third, asW x

K is independent of{WK,H,He} and as eachW x
i is independent, we have

1

N
H(W x

K|WK,H,He) =
1

N
H(W x

K) =
1

N

n
∑

i=1

H(W x
i ) =

1

N

n
∑

i=1

NRx
i =

1

2
E[I(X1, · · · , Xn; Ỹe|H,He)]. (40)

Finally, using (37), (39), and (40) in (36), we obtain

1

N
I(WK;Ye,H,He) ≤ ǫ, (41)

which implies that

1

N
I(Wi;Ye,H,He) ≤ ǫ, ∀i ∈ K (42)

with someǫ → 0 asN → ∞, which establishes the claim.
Note that for i.i.d. complex Gaussian input distribution, i.e., whenXi(t) ∼ CN (0, P ), ∀i, t, the proposed scheme achieves

Ri =

[

1

2
E

[

log

(

1 +
2P |hi,i|2

N0

)]

− 1

2n
E

[

log det

(

I2 +
P

N0

n
∑

i=1

H̃i,eH̃
∗
i,e

)]]+

, (43)
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for useri ∈ K. Here, for any non-degenerate fading distribution, e.g., Rayleigh fading wherehi,k ∼ CN (0, 1), ∀i ∈ K, ∀k ∈
K ∪ E , the second term of (43) diminishes asn gets large. In particular, asn → ∞, Ri scales as

Ri =

[

1

2
E

[

log

(

1 +
2P |hi,i|2

N0

)]

− O(log(n))

n

]+

,

and hence we can say that each user can achieve at least a positive constant secure rate for any given SNR for sufficiently
largen. (Please refer to Appendix B.)

To quantify the behavior of the scheme in the high SNR regime,we now focus on the achievable secure DoF per user,
which can be characterized by dimension counting arguments. The proposed scheme achievesη =

[

1
2 − 1

n

]+
secure DoF per

user for any given non-degenerate fading model. (This can beshown by dividing both sides of (43) withlogSNR and taking
the limit SNR→ ∞ for any givenn.) Note that the pre-log gain of the proposed scheme is the same as that of [23]. But,
remarkably, ergodic interference alignment allows us to attain secrecy at any SNR by only requiring a statistical knowledge
of the eavesdropper CSI. We note that this gain is obtained atthe expense of large coding delay (at least exponential in the
number of users).

V. EAVESDROPPERCOLLUSION

In a more powerful attack, eavesdroppers cancollude, i.e., they can share their observations. Securing information in such
a scenario will be an even more challenging task compared to non-colluding case [19], [26]. Interestingly, even with colluding
eavesdroppers, we show that the scaling result for the path loss model remains the same with the proposed multi-hop scheme
with almost the same eavesdropper intensity requirement.

Theorem 10: If the legitimate nodes have unit intensity (λ = 1) and the colluding eavesdroppers have an intensity of
λe = O

(

(logn)−2−ρ
)

for any ρ > 0 in an extended network, almost all of the nodes can achieve a secure rate ofΩ
(

1√
n

)

under the static path loss channel model.
Proof: Please refer to Appendix C.

We note that, in the colluding eavesdropper scenario, the result requires only a slightly modified eavesdropper intensity
condition compared to the non-colluding case. Also, for thehighway construction of the non-colluding case, the secrecy zone
with an area of(2dfe + 1)2c2 with fe >

√
2 was sufficient. However, for the colluding eavesdropper scenario, legitimate

nodes need to know whether there is an eavesdropper or not within the first layer zone, which has an area of(2dfl1 + 1)2c2

with fl1 = δ′ log(n), where δ′ can be chosen arbitrarily small (see (62)). Hence, securingthe network against colluding
eavesdroppers requires more information regarding the eavesdroppers compared to the non-colluding case. But, remarkably,
the optimal scaling law (see [2]) is achieved even when the eavesdroppers collude under these assumptions.

For the ergodic fading model, the eavesdropper collusion decreases the achievable performance. Let us add independent
observations to the received vector given in (28) of Theorem9 according to eavesdropper collusion and denote colluding
eavesdroppers’ observations bỹYe∗ for e∗ ∈ E∗ , {e∗1, e∗2, · · · }. For example, ife1 and e2 colludes, their cumulative
observations is denoted bỹYe∗

1
(SIMO-MAC with 4 receive antennas). In such a scenario, the proposed scheme can be used

to achieve the following rate.
Corollary 11: For a given eavesdropper collusion setE∗, source-destination pairi ∈ K achieves the following rate with the

proposed ergodic interference alignment scheme for the ergodic fading channel model:

Ri = min
e∗∈E∗

[

1

2
E[I(Xi; Ỹi|H)]− 1

2n
E[I(X1, · · · , Xn; Ỹe∗ |H,He)]

]

. (44)

Note that the proposed scheme achievesη =
[

1
2 − ne

n

]+
secure DoFs per user for non-degenerate fading distributions

when all the eavesdroppers collude. (This can be shown from (44) by settingE∗ = E , choosing the input distribution as
i.i.d. CN (0, P ), dividing both sides bylogSNR, and taking the limit SNR→ ∞ for any givenne andn.)

VI. CONCLUSION

In this work, we studied the scaling behavior of the capacityof wireless networks under secrecy constraints. For extended
networks with the path loss model (the exponent is assumed tosatisfyα > 2), the legitimate nodes and eavesdroppers were
assumed to be randomly placed in the network according to Poisson point processes of intensityλ = 1 andλe, respectively.
It is shown that, whenλe = o

(

(logn)−2
)

, almost all of the nodes achieve a secure rate ofΩ
(

1√
n

)

, showing that securing
the transmissions does not entail a loss in the per-node throughput for our model, where transmissions from other users are
considered as noise at receivers. Our achievability argument is based on novel secure multi-hop forwarding strategy where
forwarding nodes are chosen such that no eavesdroppers exist in appropriately constructedsecrecy zones around them and
independent randomization is employed in each hop. Tools from percolation theory were used to establish the existence
of a sufficient number ofsecure highways allowing for network connectivity. Finally, a time division approach was used
to accomplish an end-to-end secure connection between almost all source-destination pairs. The same scaling result isalso
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obtained for the dense network scenario whenλe

λ
= o

(

(log n)−2
)

. We note that, in the proposed scheme, we assumed that
nodes know whether an eavesdropper exist in a certain zone (secrecy zone) or not. An analysis of a more practical scenario,
in which legitimate nodes have no (or more limited) eavesdropper location information, would be interesting.

We next focused on the ergodic fading model and employed ergodic interference alignment scheme with an appropriate
secrecy pre-coding at each user. This scheme is shown to be capable of securing each user at any SNR (depending on the
underlying fading distributions), and hence provides performance guarantees even for the finite SNR regime compared to
previous work. For the high SNR scenario, the scheme achieves [ 12 − 1

n
]+ secure DoFs per orthogonal dimension at each

user. Remarkably, the results for the ergodic fading scenarios do not require eavesdropper CSI at the legitimate users,only a
statistical knowledge is sufficient. However, this gain is obtained at the expense of large coding delays.

Lastly, the effect of the eavesdropper collusion is analyzed. It is shown that, for the path loss model, the same per-node
throughput scaling, i.e.,Ω

(

1√
n

)

, is achievable under almost the same eavesdropper intensity requirement. For the fading model,
the proposed model is shown to endure various eavesdropper collusion scenarios. In particular, when all the eavesdroppers
collude, a secure DoF of[ 12 − ne

n
]+ is shown to be achievable.

We list several future directions here: 1) Characterizing the full trade-off between secure throughput vs. eavesdropper node
intensity is of definite interest. 2) We have not exploited cooperation techniques to enhance security in this work. Cooperation
in the sense of [7] may be helpful. For example, in the extended network scenario, hierarchical cooperation might increase
the per-node throughput forα < 3 or achieve the optimal throughput forα ≥ 3 even with higher eavesdropper intensities.
In addition, cooperation for secrecy strategies (see, e.g., [27], [28] and references therein) may be beneficial in enhancing the
scaling results. 3) A uniform rate per user is considered in this work. Arbitrary traffic pattern can be considered for users
with distinct quality of service constraints. 4) Eavesdroppers are assumed to be passive (they only listen the transmissions).
An advanced attack might include active eavesdroppers, which may jam the wireless channel. Securing information in such
scenarios is an interesting avenue for further research.

APPENDIX A
LEMMAS USED IN SECTION III

Lemma 12 (Theorem 7.65, [21]): Let d, k ≥ 1. Consider random variablesYx andZπ
x taking values in{0, 1}, for x ∈ Z

d.
DenoteZπ = {Zπ

x : x ∈ Z
d} as a family of independent random variables satisfying Pr{Zπ

x = 1} = 1 − Pr{Zπ
x = 0} = π.

Also, denote Euclidean distance inZd asd(·, ·).
If Y = {Yx : x ∈ Z

d} is a k-dependent family of random variables, i.e., if any two sub-families {Yx : x ∈ A} and
{Y ′

x : x′ ∈ A′} are independent wheneverd(x, x′) > k, ∀x ∈ A, ∀x′ ∈ A′, such that

Pr{Yx = 1} ≥ δ, ∀x ∈ Z
d
,

then there exist a family of independent random variablesZπ(δ) such thatY statistically dominates Zπ(δ), whereπ(δ) is a
non-decreasing functionπ : [0, 1] → [0, 1] satisfyingπ(δ) → 1 as δ → 1.

Proof: The proof is given in [22], where the authors also provide a construction of the independent model. See also [21].

Lemma 13 (Theorem 5, [2]): Consider discrete edge percolation with edge existence probability p on a square grid of size
m×m (number of edges). For any givenκ > 0, partition the area into m

(κ logm−ǫm) rectangles of sizem× (κ logm − ǫm),
where ǫm = o(1) as m → ∞ and is chosen to have integer number of rectangles. Denote the maximal number of edge-
disjoint left to right crossings of theith rectangle asCi

m and letNm , miniC
i
m. Then,∀κ > 0 and∀p ∈ (56 , 1) satisfying

κ log(6(1− p)) < −2, ∃δ > 0 such that

lim
m→∞

Pr{Nm ≤ δ logm} = 0. (45)

Proof: The proof is given in [2, Appendix I]. See also [20, Theorem 4.3.9].
Lemma 14: Consider a Poisson random variableX of parameterλ. Then,

P (X ≥ x) ≤ e−λ(eλ)x

xx
, for x > λ. (46)

Proof: The proof follows by an application of the Chernoff bound. Please refer to [2, Appendix II] or [20, Appendix].
Lemma 15: Consider a Poisson random variableX of parameterλ. Then, for anyǫ ∈ (0, 1),

lim
λ→∞

P (X ≤ (1− ǫ)λ) = 0, (47)

and
lim
λ→∞

P (X ≤ (1 + ǫ)λ) = 1. (48)

Proof: The proof follows by utilizing the Chebyshev’s inequality.
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APPENDIX B
Ri > R FOR SOME CONSTANTR > 0 IN (43) AS n → ∞

Consider that the statistics ofhi,es are given by 1)q , E[ℜ{hi,e}] + jE[ℑ{hi,e}] is a complex number with finite real and

imaginary parts, and 2)s , E[|hi,e|2] is a finite real number,∀i ∈ K, e ∈ E . Let us further assume thatI2 + P
N0

n
∑

i=1

H̃i,eH̃
∗
i,e

is a positive definite matrix. Focusing on the second term of (43), we obtain

1

2n
E

[

log det

(

I2 +
P

N0

n
∑

i=1

H̃i,eH̃
∗
i,e

)]

(a)

≤ 1

2n
log det

(

I2 +
P

N0

n
∑

i=1

E
[

H̃i,eH̃
∗
i,e

]

)

(49)

(b)
=

1

2n
log

(

1 +
P

N0
2ns+

P 2

N2
0

n2(s2 − |q|4)
)

(50)

=
O(log(n))

n
, (51)

where (a) is due to Jensen’s inequality aslog det(·) function is concave in positive definite matrices, and (b) follows from

H̃i,eH̃
∗
i,e =

( |hi,e|2 hi,eh̃
∗
i,e

h̃i,eh
∗
i,e |h̃i,e|2

)

,

which implies

E
[

H̃i,eH̃
∗
i,e

]

=

(

s |q|2
|q|2 s

)

.

Thus, the second term of (43) becomes insignificant,o(1) asn → ∞; and∃R > 0 such thatRi > R, ∀i ∈ K for sufficiently

largen. Note that the assumption thatI2 + P
N0

n
∑

i=1

H̃i,eH̃
∗
i,e is a positive definite matrix holds in the limit of largen almost

surely. (Here, due to strong law of large numbers, the sum converges tonE
[

H̃i,eH̃
∗
i,e

]

with probability1.)

APPENDIX C
PROOF OFTHEOREM 10

The proof follows along the same lines of the proof of Theorem6 by generalizing the secrecy zone approach to multi-level
zones, where the area of each zone is carefully chosen to obtain a (statistically) working bound for the SNR of the colluding
eavesdropper.

In Fig. 5, we show thezones around a transmitting square: Zone of levelk for k ∈ {1, · · · , L} has an area ofAlk , and the
associated distance is denoted withflkdc with someflk ≥ 1 andflk ≥ flk−1

. Note that, we takeflk as a design parameter.
We will chooseflk differently, depending on whether a node is forwarding dataover a highway or accessing to/accessed by
a highway. Furthermore,d andflk may depend onn, i.e., expected number of users.

We now provide generalization of Lemma 1 to the colluding eavesdropper case.
Lemma 16 (Secure Rate per Hop): In a communication scenario depicted in Fig.5 (no eavesdroppers in the first zone), the

rate
RTR =

1

(ftd)2
[

log(1 + SNRTR)− log(1 + SNRE∗)
]+

, (52)

where

SNRTR ,
P (d+ 1)−αc−α(

√
2)−α

No + P8(ft)−αd−αc−αS(α)
, (53)

S(α) ,

∞
∑

i=1

i(i− 0.5)−α, (54)

SNRE∗ ,
P (1 + ǫ)9c2−αd−α

N0
λed

2
L
∑

k=2

(flk)
2(flk−1

)−α, (55)

ft ≥ 2(d+ 1)

d
, (56)

is w.h.p. securely and simultaneously achievable between any active transmitter-receiver pair ifflk is chosen such that

λed
2(flk)

2 → ∞, asn → ∞, for k = 2, 3, · · · . (57)
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Proof: The steps of the proof are similar to that of Lemma 1. Here, we need to derive a working upper bound for the
colluding eavesdropper SNR. In our case, secrecy is guaranteed assuming that the eavesdroppers are located on the boundary
of each level of zones. We first bound the number of eavesdroppers at each level. We have

Alk ≤ (2dflk + 1)2c2 ≤ 9d2(flk)
2c2, (58)

asd ≥ 1 andflk ≥ 1. Hence, the number of eavesdroppers in layerlk can be bounded, using the Chebyshev’s inequality (see
Lemma 15), by

|E∗
lk
| ≤ (1 + ǫ)λe9c

2d2(flk)
2 (59)

w.h.p., for a givenǫ > 0, as long as we chooseflk to satisfy

λed
2(flk)

2 → ∞, asn → ∞.

Now, we place|E∗
lk
| number of eavesdroppers from layerk at distanceflk−1

dc for k = 2, 3, · · · . This is referred to as
configurationE∗. These colluding eavesdroppers can do maximal ratio combining (this gives the best possible SNR for them)
to achieve the following SNR.

SNRE∗ =

P
L
∑

k=2

|E∗
lk
|(flk−1

)−αc−αd−α

N0

≤ P (1 + ǫ)9c2−αd−α

N0
λed

2
L
∑

k=2

(flk)
2(flk−1

)−α

, SNRE∗ . (60)

Note that the challenge here is to chooseflk such thatSNRE∗ < ∞, and at the same time to satisfy (57). With some
appropriate choices of these parameters, we generalize Lemma 4 and Lemma 5 to the colluding eavesdropper case.

Lemma 17 (Rate per Node on the Highways): If λe = O((log n)−2), each node on the constructed highways can transmit
to their next hop at a constant secure rate. Furthermore, if the number of nodes each highway serves isO(

√
n), each highway

can w.h.p. carry a per-node throughput ofΩ
(

1√
n

)

.
Proof:

We show the result forλe = Θ
(

(log n)−2
)

, which will imply the desired result (as lowering the eavesdropper density can
not degrade the performance). Consequently, there exists constantsΛ, Λ, andn1 such that

Λ(log n)−2 ≤ λe ≤ Λ(logn)−2, for n ≥ n1, (61)

whereΛ < Λ.
We choose each level of zones over the highways by setting

flk =

(

δ

9Λc2d2

)
1

2

(logn)(
α
2
)k−1

. (62)

Here,

λe(2fl1d+ 1)2c2 ≤ λe9(fl1)
2d2c2 (63)

= λe

δ(logn)2

Λ
(64)

≤ δ, for n ≥ n1. (65)

Therefore, due to our percolation result, i.e., Lemma3, each member of a given highway does not have any eavesdropper
within their first level secrecy zone asδ can be chosen arbitrarily small. Now, as the above choice also satisfies

λed
2(flk)

2 → ∞, asn → ∞, for k = 2, 3, · · · ,
we can utilize Lemma1 to achieve a secrecy rate of

RTR =
1

(ftd)2

[

1

2
log(1 + SNRTR)−

1

2
log(1 + SNRE∗)

]

. (66)

Now, we provide an upper bound forSNRE∗ . First, note that our setup results in

(flk)
2(flk−1

)−α =

(

δ

9Λc2d2

)
2−α

2

.
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Hence,

SNRE∗ =
P (1 + ǫ)9

N0
λe(L− 1)

(

δ

9Λ

)
2−α

2

(67)

≤ P (1 + ǫ)9

N0
Λ(logn)−2(L − 1)

(

δ

9Λ

)
2−α
2

,

for n ≥ n1 (68)

→ 0, asn → ∞, (69)

where the last step is due to the observation that the number of levels can be upper bounded by

L− 1 ≤ log(log n)

log(α2 )
. (70)

Therefore, there existsn2 such that for alln ≥ n2, the rate expression satisfiesRTR ≥ R for some constantR. The second
claim follows from Lemma3.

Lemma 18 (Access Rate to Highways): Almost all source (destination) nodes can w.h.p. simultaneously transmit (receive)
their messages to (from) highways with a secure rate ofΩ

(

(logn)−3−α
)

, if λe = O
(

(logn)−(2+ρ)
)

for any ρ > 0.
Proof:

We show the result forλe = Θ
(

(logn)−(2+ρ)
)

, which will imply the desired result (as lowering the eavesdropper density
can not degrade the performance). Consequently, there exists constantsΛ, Λ, andn3 such that

Λ(logn)−(2+ρ) ≤ λe ≤ Λ(logn)−(2+ρ), for n ≥ n3, (71)

whereΛ < Λ.
At this point, we can upper bound the fraction of nodes that can not access to a highway due to an existence of an

eavesdropper in their first secrecy zone. Following the analysis in Lemma 5, as long as we satisfy

λe(fl1)
2d2 → 0, asn → ∞, (72)

almost all the nodes can access to the highways. To compute the achievable secrecy rate with Lemma1, we need to satisfy

λe(flk)
2d2 → ∞, asn → ∞, for k = 2, 3, · · · . (73)

Further, we can show that as long as we satisfy

λed
2

L
∑

k=2

(flk)
2(flk−1

)−α ≤ C, asn → ∞, (74)

for some constantC, the achievable rateRTR in Lemma 16 scales likeΩ
(

(log n)−2−α
)

asd = κ′′ logn. Due to time-division
among the legitimate nodes accessing the highways (there are w.h.p.O(log n) nodes within small squares), the secrecy rate
per user satisfiesΩ

(

(log n)−3−α
)

.
Here, to satisfy (72), (73), (74) withd = κ′′ logn, we choose the secrecy zones as

flk = (logn)r(
α
2
)k−1

, (75)

with somer satisfying ρ
α
< r < ρ

2 .

Note that, Lemma 2 that the per hop security implies the multi-hop security also holds for the colluding eavesdropper
scenario. That is, the security obtained for configurationE∗ for each hop is sufficient to ensure secrecy against colluding
eavesdroppers listening all the hops. Combining these results with the percolation result given in Lemma 3 concludes the
proof.
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e|E|

d

Fig. 1. A typical multi-hop route consists of four transmission phases:1) From source node to an entry point on the horizontal highway, 2) Across horizontal
highway (message is carried until the desired vertical highway member),3) Across vertical highway (message is carried until the exitnode), and4) From the
exit node to the destination node.

fedc
e

e

e

c

dc

ftdc

Fig. 2. The transmitter located at the center of the figure wishes to communicate with a receiver that isd squares away. The second square surrounding the
transmitter is the secrecy zone, which is the region of points that are at mostfe d squares away from the transmitter. Side length of each square is denoted
by c. The time division approach is represented by the shaded squares that are allowed for transmission. It is evident from the dashed square that the time
division requires(ft d)2 time slots.
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Fig. 3. Horizontal and vertical edges in the discrete bond percolation model are denoted by dotted lines. A dotted edge isopen (used for the highway
construction) if the corresponding square is open. There are Θ(n) number of edges in the random graph.

w

κ log n − ǫ

√
n

Fig. 4. There are⌈δ logn⌉ number of disjoint highways within each rectangle of size(κ logn − ǫ) × √
n. The legitimate users in the slab, denoted by

dotted lines, of the rectangle is served by the highway denoted with red bold line.

fl2
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e

e

Al2

Al1
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dc
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ftdc

Fig. 5. The second square surrounding the transmitter is thesecrecy zone (zone of level1), which is the region of points that are at mostfl1d squares away
from the transmitter. The zone of levelk is denoted with distanceflkdc and has an area ofAlk

.
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