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Abstract—Wyner’s work on wiretap channels and the recent
works on information theoretic security are based on random
codes. Achieving information theoretical security with practical
coding schemes is of definite interest. In this note, the attempt
is to overcome this elusive task by employing the polar coding
technique of Arıkan. It is shown that polar codes achieve non-
trivial perfect secrecy rates for binary-input degraded wiretap
channels while enjoying their low encoding-decoding complexity.
In the special case of symmetric main and eavesdropper chan-
nels, this coding technique achieves the secrecy capacity.Next,
fading erasure wiretap channels are considered and a secretkey
agreement scheme is proposed, which requires only the statistical
knowledge of the eavesdropper channel state information (CSI).
The enabling factor is the creation of advantage over Eve,
by blindly using the proposed scheme over each fading block,
which is then exploited with privacy amplification techniques to
generate secret keys.

I. I NTRODUCTION

The notion of information theoretic secrecy was introduced
by Shannon to study secure communication over point-to-point
noiseless channels [1]. This line of work was later extended
by Wyner [2] to noisy channels. Wyner’s degraded wiretap
channel assumes that the eavesdropper channel is a degraded
version of the one seen by the legitimate receiver. Under this
assumption, Wyner showed that the advantage of the main
channel over that of the eavesdropper, in terms of the lower
noise level, can be exploited to transmit secret bits using
random codes. Thiskeyless secrecyresult was then extended
to a more general (broadcast) model in [3] and to the Gaussian
setting in [4]. Recently, there has been a renewed interest in
wireless physical layer security (see, e.g., Special Issueon
Information Theoretic Security,IEEE Trans. Inf. Theory, June
2008 and references therein). However, designing practical
codes to achieve secrecy for any given main and eavesdropper
channels remained as an elusive task.

In [5], the authors constructed LDPC based wiretap codes
for certain binary erasure channel (BEC) and binary symmetric
channel (BSC) scenarios. In particular, when the main channel
is noiseless and the eavesdropper channel is a BEC, [5]
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presented codes that approach secrecy capacity. For other
scenarios, secrecy capacity achieving code design is stated
as an open problem. Similarly, [6] considers the design of
secure nested codes for the noiseless main channel setting (see
also [7]).

This work considers secret communication over a binary-
input degraded wiretap channel. Using the polar coding tech-
nique of Arıkan [8], we show that non-trivial secrecy rates
are achievable. According to our best knowledge, this coding
technique is the first provable and practical (having low en-
coding and decoding complexity) secrecy encoding technique
for this set of channels. In the special case of the symmetric
main and eavesdropper channels, this technique achieves the
secrecy capacity of the channel1. Next, we consider fading
wiretap channels and propose a key agreement scheme where
the users only assumed to have the statistical knowledge of
the eavesdropper CSI. The enabling observation is that by
blindly using the scheme over many fading blocks, the users
will eventually create an advantage over Eve, which can then
be exploited to generate secret keys using privacy amplification
techniques.

II. N OTATIONS

Throughout this paper, vectors are denoted byxN
1 =

{x1, · · · , xN} or by x̄ if we omit the indices. Random
variables are denoted with capital lettersX , which are defined
over sets denoted by the calligraphic lettersX . For a given set
A ⊂ {1, · · · , N}, we writexA to denote the sub-vector{xi :
i ∈ A}. Omitting the random variables, we use the following
shorthand for probability distributionsp(x) , Pr(X = x),
p(x|y) , Pr(X = x|Y = y).

III. POLAR CODES

Consider a binary-input DMC (B-DMC) given byW (y|x),
wherex ∈ X = {0, 1} andy ∈ Y for some finite setY. The
N uses ofW is denoted byWN (yN1 |xN

1 ). The symmetric

1We acknowledge that the concurrent work [9] independently established
the result that polar codes can achieve the secrecy capacityof the degraded
wiretap channels, when both main and eavesdropper channelsare binary-input
and symmetric (Corollary 7 of this note).
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capacity of a B-DMCW is given by

I(W ) ,
∑

x∈X

∑

y∈Y

1

2
W (y|x) log2







W (y|x)
∑

x′∈X

1
2W (y|x′)






, (1)

which is the mutual informationI(X ;Y ) when the inputX
is uniformly distributed. The Bhattacharyya parameter ofW

is given by

Z(W ) ,
∑

y∈Y

√

W (y|0)W (y|1), (2)

which measures the reliability ofW as it is an upper bound
on the probability of ML decision error on a single use of the
channel.

Polar codes is recently introduced by Arıkan [8]. These
codes can be encoded and decoded with complexity
O(N logN), while achieving an overall block-error proba-
bility that is bounded asO(2−Nβ

) for any fixed β < 1
2

([8], [10]). In [8], channel polarization is used to construct
codes (polar codes) that can achieve the symmetric capacity,
I(W ), of any given B-DMCW . Channel polarization consists
of two operations: Channel combining and channel splitting.
Let uN

1 be the vector to be transmitted. The combined channel
is represented byWN and is given by

WN (yN1 |uN
1 ) = WN (yN1 |uN

1 BNF⊗n), (3)

whereBN is a bit-reversal permutation matrix,N = 2n, and

F ,

(

1 0
1 1

)

. Note that the actual channel input here is

given byxN
1 = uN

1 BNF⊗n. The channel splitting constructs
N binary input channels fromWN , where the transformation
is given by

W
(i)
N (yN1 , ui−1

1 |ui) ,
∑

uN
i+1∈XN−i

1

2N−1
WN (yN1 |uN

1 ). (4)

The polarization phenomenon is shown by the following
theorem.

Theorem 1 (Theorem 1 of [8]):For any B-DMCW , N =
2n for somen, andδ ∈ (0, 1), we have

lim
N→∞

|{i ∈ {1, · · · , N} : I(W
(i)
N ) ∈ (1− δ, 1]}|

N
= I(W ),

lim
N→∞

|{i ∈ {1, · · · , N} : I(W
(i)
N ) ∈ [0, δ)}|

N
= 1− I(W ).

In order to derive the rate of the channel polarization, the
random processZn is defined in [8] and in [10]. Basically,

Pr{Zn ∈ (a, b)} =
|{i ∈ {1, · · · , N} : Z(W

(i)
2n ) ∈ (a, b)}|

N
(5)

The rate of the channel polarization is given by the following.

Theorem 2 (Theorem 1 of [10]):For any B-DMCW and
for any givenβ < 1

2 ,

lim
n→∞

Pr{Zn < 2−2nβ

} = I(W ).

Now, the idea of polar coding is clear. The encoder-decoder
pair, utilizing the polarization effect, will transmit data through
the subchannels for whichZ(W

(i)
N ) is near 0. In [8], the

polar code (N,K,A, uAc) for B-DMC W is defined by
xN
1 = uN

1 BNF⊗n, whereuAc is a given frozen vector, and
the information setA is chosen such that|A| = K and
Z(W

(i)
N ) < Z(W

(j)
N ) for all i ∈ A, j ∈ Ac. The frozen vector

uAc is given to the decoder. Arıkan’s successive cancellation
(SC) estimates the input as follows: For the frozen indices
ûAc = uAc . For the remaining indices s.t.i ∈ A; ûi = 0, if
W

(i)
N (yN1 , ûi−1

1 |0) ≥ W
(i)
N (yN1 , ûi−1

1 |1) andûi = 1, otherwise.
With this decoder, it is shown in [8] that the average block
error probability over the ensemble (consisting of all possible
frozen vector choices) of polar codes is bounded by

Pe(N) ≤
∑

i∈A

Z(W
(i)
N ).

We now state the result of [8] using the bound given in [10].
Theorem 3 (Theorem 2 of [10]):For any given B-DMCW

with I(W ) > 0, letR < I(W ) andβ ∈ (0, 1
2 ) be fixed. Block

error probability for polar coding under SC decoding (averaged
over possible choices of frozen vectors) satisfies

Pe(N) = O(2−Nβ

).

Note that, for any givenβ ∈ (0, 1
2 ) and ǫ > 0, we can

define the sequence of polar codes by choosing the information
indices as

AN = {i ∈ {1, · · · , N} : Z(W
(i)
N ) ≤

1

N
2−Nβ

}.

Then, from the above theorems, for sufficiently largeN , we
can achieve the rate

R =
|AN |

N
≥ I(W )− ǫ

with average block error probability (averaged over the possi-
ble choices ofuAc

N
)

Pe(N) ≤
∑

i∈AN

Z(W
(i)
N ) ≤ 2−Nβ

under SC decoding. (See also [11].)
This result shows the existence of a polar code

(N,K,A, uAc) achieving the symmetric capacity ofW . We
remark that, any frozen vector choice ofuAc will work for
symmetric channels [8]. For our purposes, we will denote a
polar code for B-DMCW with C(N,F , uF), where the frozen
set is given byF , Ac. Note that,A denotes the indices of
information transmission for the polar code, whereasF is the
set of frozen indices.

We conclude this section by noting the following lemma
(given in [11]) regarding polar coding over degraded channels.

Lemma 4 (Lemma 4.7 of [11]):Let W : X → Y andW ′ :
X → Y ′ be two B-DMCs such thatW is degraded w.r.t.W ′,
i.e., there exists a channelW ′′ : Y ′ → Y such that

W (y|x) =
∑

y′∈Y′

W ′(y′|x)W ′′(y|y′).

Then,W (i)
N is degraded w.r.t.W ′(i)

N andZ(W
(i)
N ) ≥ Z(W ′(i)

N ).



IV. SECURE TRANSMISSION OVERWIRETAP CHANNEL

A discrete memoryless wiretap channel with is denoted by

(X ,W (ym, ye|x),Ym × Ye),

for some finite setsX ,Ym,Ye. Here the symbolsx ∈ X
are the channel inputs and the symbols(ym, ye) ∈ Ym × Ye

are the channel outputs observed at the main decoder and at
the eavesdropper, respectively. The channel is memorylessand
time-invariant:

p(ymi, yei|x
i
1, ym

i−1
1 , ye

i−1
1 ) = W (ymi, yei|xi).

We assume that the transmitter has a secret messageM which
is to be transmitted to the receiver inN channel uses and
to be secured from the eavesdropper. In this setting, a secret
codebook has the following components:
1) The secret message setM. The transmitted messages are

assumed to be uniformly distributed over these message sets.
2) A stochastic encoding functionf(.) at the transmitter

which maps the secret messages to the transmitted symbols:
f : m → XN

1 for eachm ∈ M.
3) Decoding functionφ(.) at receiver which maps the

received symbols to estimate of the message:φ(Ym
N
1 ) = {m̂}.

The reliability of transmission is measured by the following
probability of error.

Pe =
1

|M|

∑

(m)∈M

Pr
{

φ(Ym
N
1 ) 6= (m)|(m) is sent

}

We say that the rateR is an achievable secrecy rate, if, for
any givenǫ > 0, there exists a secret codebook such that,

1

N
log(|M|) = R

Pe ≤ ǫ
1

N
I
(

M ;Ye
N
1

)

≤ ǫ (6)

for sufficiently largeN .
Consider a degraded binary-input wiretap channel, where,

for the input setX = {0, 1}, the main channel is given by

Wm(ym|x) (7)

and the eavesdropper channel is

We(ye|x) =
∑

ym∈Ym

Wm(ym|x)Wd(ye|ym). (8)

Here, the degradation is due to the channelWd(ye|ym).
Note that, due to degradation, polar codes designed for the

eavesdropper channel can be used for the main channel. For
a given sufficiently largeN andβ ∈ (0, 12 ), let

Am = {i ∈ {1, · · · , N} : Z(Wm
(i)
N ) ≤

1

N
2−Nβ

},

Ae = {i ∈ {1, · · · , N} : Z(We
(i)
N ) ≤

1

N
2−Nβ

}.

Now, consider a polar codeCm , C(N,Fm, uFm
) for the

main channel with someuFm
. Due to Lemma 4, we have

Ae ⊂ Am and henceFm ⊂ Fe. Now, for any given

length |Fe| − |Fm| vector v̄m and uFm
, we define the

frozen vector for the eavesdropper, denoted byuFe
(v̄m), by

choosing(uFe
(v̄m))Fm

= uFm
and (uFe

(v̄m))Fe\Fm
= v̄m.

Note that, denotingCe(v̄m) , C(N,Fe, uFe
(v̄m)), the en-

semble∪v̄m,uFm
Ce(v̄m) is a symmetric capacity achieving

polar code ensemble for the eavesdropper channelWe (if
the eavesdropper channel is symmetric, any frozen vector
choice will work [8], and hence the code achieves the capacity
of the eavesdropper channel for anyv̄m, uFm

). This implies
that the code for the main channel can be partitioned as
Cm = ∪v̄mCe(v̄m). This observation, when considered over the
ensemble of codes, enables us to construct secrecy achieving
polar coding schemes, even if the eavesdropper channel is not
symmetric, as characterized by the following theorem.

Theorem 5:For a binary-input degraded wiretap channel,
the perfect secrecy rate ofI(Wm) − I(We) is achieved by
polar coding.

Proof:
Encoding: We map the secret message to be transmitted to

v̄m and generate a random vectorv̄r, according to uniform
distribution overX , of length |Ae|. Then, the channel input
is constructed withxN

1 = uN
1 BNF⊗n, where uFm

is the
frozen vector of the polar codeCm, uFe\Fm

= v̄m, and
uAe

= v̄r. The polar code ensemble is constructed over all
different choices of frozen vectors, i.e.,uFm

.
Decoding: The vectorsv̄m and v̄r can be decoded with

the SC decoder described above with error probabilityPe =
O(2−Nβ

) (averaged over the ensemble) achieving a rateR =
|v̄m|
N

= I(Wm)− I(We) for sufficiently largeN .
Security: Lets assume that the vector̄vm is given to

the eavesdropper along withuFm
. Then, employing the SC

decoding, the eavesdropper can decode the random vectorv̄r
with Pe = O(2−Nβ

) averaged over the ensemble. Utilizing
the Fano’s inequality and average it over the code ensemble
seen by the Eve, i.e. over̄Vm andUFm

, we obtain

H(V̄r|V̄m, UFm
, Ye

N
1 ) ≤ H(Pe) +N log(|X |)Pe ≤ Nǫ(N), (9)

whereǫ(N) → 0 asN → ∞.
Then, the mutual information leakage to the eavesdropper

averaged over the ensemble can be bounded as follows.
I(M ;Ye

N
1 |UFm

) = I(V̄m;Ye
N
1 |UFm

)

= I(V̄m, V̄r ;Ye
N
1 |UFm

)− I(V̄r;Ye
N
1 |V̄m, UFm

) (10)
(a)
= I(UN

1 ;Ye
N
1 )−H(V̄r) +H(V̄r|V̄m, UFm

, Ye
N
1 )(11)

(b)

≤ I(XN
1 ;Ye

N
1 )−H(V̄r) +H(V̄r|V̄m, UFm

, Ye
N
1 )(12)

(c)

≤ NI(We)− |Ae|+H(V̄r|V̄m, uFm
, Ye

N
1 ) (13)

(d)

≤ NI(We)− |Ae|+Nǫ(N), (14)

where in (a) we haveUN
1 each entry with i.i.d. uniformly

distributed, (b) follows from data processing inequality,(c) is

due toI(XN
1 ;Ye

N
1 ) =

N
∑

i=1

I(XN
1 ;Yei|Ye

i−1
1 ) ≤

N
∑

i=1

H(Yei)−

H(Yei|Xi) = NI(Xi;Yei) with a uniformly distributedXi,



and (d) follows from (9) withǫ(N) → 0 as N → ∞. As
|Ae|
N

→ I(We) asN gets large, we obtain

1

N
I(V̄m;Ye

N
1 |UFm

) ≤ ǫ (15)

for a givenǫ > 0 for sufficiently largeN . As the reliability and
secrecy constraints are satisfied averaged over the ensemble,
there exist a polar code with some fixeduFm

achieving the
secure rateI(Wm)− I(We).

Note that in the above result, the code satisfying the reliabil-
ity and the secrecy constraints can be found from the ensemble
by an exhaustive search. However, as block length increases,
almost all the codes in the ensemble will do equally well.
If the eavesdropper channel is symmetric, then the secrecy
constraint is satisfied for any given frozen vectoruFm

and
the code search is only for the reliability constraint. If the
eavesdropper channel is not symmetric, a prefix channel can
be utilized to have this property.

Corollary 6: For non-symmetric eavesdropper channels, the
channel can be prefixed with somep(x|x′) such that the
resulting eavesdropper channel

W ′
e(ye|x

′) =
∑

ym∈Ym

p(x|x′)Wm(ym|x)Wd(ye|ym)

is symmetric. Then, using the scheme above, the secret rate

R = I(W ′
m)− I(W ′

e)

is achievable, whereW ′
m(ym|x′) = p(x|x′)Wm(ym|x).

Finally, we note that the scheme achieves the secrecy capacity
and any code in the ensemble, i.e., any fixeduFm

, will satisfy
both the reliability and secrecy constraints, if the main and
eavesdropper channels are symmetric.

Corollary 7: For a binary-input degraded wiretap channel
with symmetric main and eavesdropper channels, polar coding
achieves the secrecy capacity, i.e.,C(Wm) − C(We), of the
channel.

We note that the stated results are achievable by encoders
and decoders with complexity ofO(N logN) for each. In
addition, if the channels are binary erasure channels (BECs),
then there exists algorithms with complexityO(N) for the
code construction [8].

V. SECRET KEY AGREEMENT OVERFADING WIRETAP

CHANNELS

In this section, we focus on the following key agreement
problem: Alice, over fading wiretap channel, would like to
agree on a secret key with Bob in the presence of passive
eavesdropper Eve. We focus on the special case of binary
erasure main and eavesdropper channels, for which the code
construction is shown to be simple [8].

Fading blocks are represented byi = 1, · · · , LM and each
block hasN channel uses. Random variables over blocks are
represented with the following bar notation.Ȳ (l;m)

e denotes
the observations of Eve over the fading blockm of the super
block l, the observations of Eve over super blockl ∈ [1, L]

is denoted by¯̄Y (l)
e = Ȳ

(l;1···M)
e , {Ȳ

(l;1)
e , · · · , Ȳ

(l;M)
e }, and

Eve’s total observation over all super blocks is denoted by
Y ∗
e = ¯̄Y

(1···L)
e = { ¯̄Y

(1)
e , · · · , ¯̄Y

(L)
e }.

Main and eavesdropper channels are binary erasure channels
and are denoted byW (i)

m and W
(i)
e , respectively. Here, the

channelsWm andWe are random, outcome of which result in
the channels of each block. Instantaneous eavesdropper CSIis
not known at the users, only the statistical knowledge of it is
assumed. The channels are assumed to be physically degraded
w.r.t. someorder at each block.2 Note that, in this setup,
eavesdropper channel can be better than the main channel on
the average.

We utilize the proposed secrecy encoding scheme for the
wiretap channel at each fading block. Omitting the block
indices, frozen and information bits are denoted asuFm

and
uAm

, respectively. Information bits are uniformly distributed
binary random variables and are mapped touAm

. Secret and
randomization bits among these information bits are denoted
by V̄m and V̄r , respectively. Frozen bits are provided both to
main receiver and eavesdropper at each block. (We omitted
writing this side information below as all zero vector can be
chosen as the frozen vector for the erasure channel [8].) Note
that Alice and Bob do not know the length of̄V (i)

m at fading
block i. In particular, there may not be any secured bits at a
given fading block.

Considering the resulting information accumulation over a
block, we obtain the followings.

1

N
H(V̄ (i)

m ) = [C(W (i)
m )− C(W (i)

e )]+

1

N
H(V̄ (i)

r ) = min{C(W (i)
m ), C(W (i)

e )},

where the former denotes the amount of secure information
generated at blocki (here the secrecy level is the bound
on the mutual information leakage rate), and the latter de-
notes the remaining information. Note that these entropiesare
random variables as channels are random over the blocks.
Remarkable, this scheme converts the fading phenomenon
to the advantage of Alice and Bob (similar to the enabling
observation utilized in [12]). Exploiting this observation and
coding overLM fading blocks, the proposed scheme below
creates advantage for the main users: AsL,M,N get large,
information bits, denoted byW ∗, are w.h.p. reliably decoded
at the Bob,H(W ∗) → LMNE [C(Wm)], andH(W ∗|Y ∗

e ) →
LMN E [[C(Wm)− C(We)]

+]. This accomplishesboth ad-
vantage distillation and information reconciliation phases of a
key agreement protocol [13], [14]. Now, a third phase (called
as privacy amplification) is needed to distill a shorter string
K from W ∗, about which Eve has only a negligible amount
of information. The privacy amplification step can be done
with universal hashing as considered in [13]. We first state the
following definitions and lemma regarding universal hashing,
and then formalize the main result of this section in the
following theorem.

2Remarkable, a random walk model with packet erasures can be covered
with this model. Also, parallel channel model is equivalentto this scenario.



Definition 8: A classG of functionsA → B is universal if,
for any x1 6= x2 in A, the probability thatg(x1) = g(x2) is
at most 1

|B| wheng is chosen as random fromG according to
the uniform distribution.

There are efficient universal classes, e.g., to mapn bits
to r bits, class of linear functions given byr × n matrices
needsrn bits to describe [15]. Note that hash function should
have complexity as 1) it will be revealed to each user, and 2)
Alice and Bob will computeg(W ∗). There are more efficient
classes with polynomial time evaluation complexity andO(n)
description complexity [15].

Generalized privacy amplification, proposed in [13], is
based on the following property of universal hashing.

Lemma 9 (Theorem 3, [13]):Let X ∈ X be a random
variable with distributionPX and Rényi entropy (of second
order)R(X) = − log2 E[PX(X)]. Let G be a random choice
(according to uniform distribution) of a member of universal
class of hash functionsX → {0, 1}r, and letQ = G(X).
Then, we have

H(Q|G) ≥ R(Q|G) ≥ r−log2

(

1 + 2r−R(X)
)

≥ r−
2r−R(X)

ln 2
.

Exploiting the proposed coding scheme, which creates ad-
vantage in favor of Bob over the fading channel, we use the
hash functions described above and obtain the following result.

Theorem 10:For anyǫ, ǫ∗ > 0, let

n = LM N (E [C(Wm)]− ǫ∗) ,

r = LM N
(

E
[

[C(Wm)− C(We)]
+
]

− ǫ∗
)

.

Then, for sufficiently largeL, M andN , Alice and Bob can
w.h.p. agree on the random variableW ∗ , ¯̄W (1···L) of length
n over LM fading blocks (i.e., Pr{W ∗ 6= Ŵ ∗} ≤ ǫ, where
Ŵ ∗ denotes the estimate at Bob); and chooseK = G(W ∗)
as their secret key (hereG is chosen uniformly random from
universal class of hash functions{0, 1}n → {0, 1}r) satisfying

I(K;Y ∗
e , G) ≤ ǫ,

whereY ∗
e , ¯̄Y

(1···L)
e denotes the Eve’s total received symbols.

Proof:
We repeat the described scheme overLM fading blocks.

Due to the construction above, we have

1

N
H(V̄ (i)

m )− ǫ1 ≤
1

N
H(V̄ (i)

m |Ȳ (i)
e ) ≤

1

N
H(V̄ (i)

m ), (16)

where 1
N
H(V̄

(i)
m ) = [C(W

(i)
m ) − C(W

(i)
e )]+ and ǫ1 → 0 as

N gets large (follows from the fact that conditioning does not
increase entropy and the security ofV̄

(i)
m ), and

1

N
H(V̄ (i)

r |Ȳ (i)
e , V̄ (i)

m ) ≤ ǫ2, (17)

whereǫ2 → 0 asN → ∞ (follows from Fano’s inequality).
We now consider the total information accumulation and

leakage. LetW ∗ = ¯̄W (1···L) , {V̄
(l;m)
m , V̄

(l;m)
r , ∀l ∈

[1, L], ∀m ∈ [1,M ]} and denote the estimate of it at Bob as

Ŵ ∗. We obtain that, there existN1,M1, s.t. for anyN ≥ N1

andM ≥ M1, we have

H(W ∗) ≥ LMN (E [C(Wm)]− ǫ∗) (18)

Pr{W ∗ 6= Ŵ ∗} ≤ LM2−Nβ

, (19)

for someβ ∈ (0, 1
2 ) due to polar coding and the union bound.

ConsideringY ∗
e , ¯̄Y

(1···L)
e at Eve, we write

H(W ∗|Y ∗
e ) =

L
∑

l=1

H( ¯̄W (l)| ¯̄Y
(l)
e )

=
LM
∑

i=1

H(V̄ (i)
m |Ȳ (i)

e ) +H(V̄ (i)
r |Ȳ (i)

e , V̄ (i)
m ). (20)

Focusing on a particular super block, omitting the index(l)

in ( ¯̄W (l), ¯̄Y
(l)
e ), and using (16) and (17) in (20), we obtain

MN (E [[C(Wm)− C(We)]
+]− ǫ4) ≤ H( ¯̄W | ¯̄Ye)

≤ MN
(

E
[

[C(Wm)− C(We)]
+
]

+ ǫ5
)

, (21)

whereǫ4 andǫ5 vanishes asM,N get large.
In order to translateH(W ∗|Y ∗

e ) to Rényi entropy, to use
Lemma 9 in our problem, we resort to typical sequences,
as for a uniform random variable both measures are the
same. Considering( ¯̄W (1), · · · , ¯̄W (L), ¯̄Y

(1)
e , · · · , ¯̄Y

(L)
e ) as L

repetitions of the experiment of super block random variables
( ¯̄W, ¯̄Ye), we define the eventT based on typical sets as
follows [16]: Let δ > 0. T = 1, if the sequences̄̄w(1···L) and
( ¯̄w(1···L), ¯̄y

(1···L)
e ) are δ-typical; and ¯̄y

(1···L)
e is such that the

probability that( ¯̄w′(1···L)
, ¯̄y

(1···L)
e ) is δ-typical is at least1−δ,

which is taken over̄̄w′(1···L) according top( ¯̄W ′(1···L)
|¯̄y

(1···L)
e ).

Otherwise, we setT = 0 and denoteδ0 , Pr{T = 0}. Then,
by Lemma 6 of [16], asL → ∞

Lδ0 → 0, Lδ → 0, and (22)

R( ¯̄W (1···L)| ¯̄Y (1···L)
e = ¯̄y(1···L)

e , T = 1)

≥ L(H( ¯̄W | ¯̄Ye)− 2δ) + log(1− δ). (23)

We continue as follows.
R( ¯̄W (1···L)| ¯̄Y

(1···L)
e = ¯̄y

(1···L)
e , T = 1)

≥ L(H( ¯̄W | ¯̄Ye)− 2δ) + log(1 − δ)

≥ LMN

(

E
[

[C(Wm)− C(We)]
+
]

− ǫ4

−
2δ

MN
+

log(1 − δ)

LMN

)

= LMN
(

E
[

[C(Wm)− C(We)]
+
]

− δ∗
)

, (24)

whereδ∗ → 0 asM,N → ∞. Thus, for the givenǫ∗, there
existsM2, N2 s.t. forM ≥ M2 andN ≥ N2, ǫ∗

2 ≥ δ∗. We let
r = LMN (E [[C(Wm)− C(We)]

+]− ǫ∗) and consider the
following bound.
H(K|Y ∗

e , G) ≥ H(K|Y ∗
e , G, T )

(a)

≥ (1− δ0)
∑

y∗
e∈Y∗

e

(

H(K|Y ∗
e = y∗e , G, T = 1)

P (Y ∗
e = y∗e |T = 1)

)



(b)

≥ (1 − δ0)

(

r −
2−LMN(ǫ∗−δ∗)

ln 2

)

, (25)

where in (a)δ0 is s.t. Lδ0 → 0 as L → ∞, (b) is due to
Lemma 9 given above and due to (24) and the choice ofr.
Here, for the givenǫ > 0, there existsM3, N3 s.t. forM ≥ M3

andN ≥ N3, 2−LMN( ǫ
∗

2
)

ln 2 ≤ ǫ
2 . Hence, we obtain

I(K;Y ∗
e , G) = H(K)−H(K|Y ∗

e , G) (26)

≤ δ0r +
2−LMN(ǫ∗−δ∗)

ln 2
(27)

(a)

≤ δ0LMN +
2−LMN( ǫ∗

2 )

ln 2
(28)

(b)

≤ δ0LMN +
ǫ

2
, (29)

where (a) holds ifM ≥ M2 andN ≥ N2 and (b) holds if
M ≥ M3 andN ≥ N3.

Now, we choose someM ≥ max{M1,M2,M3}. For this
choice ofM , we choose sufficiently largeL and sufficiently
largeN such thatN ≥ max{N1, N2, N3} and

δ0LMN ≤
ǫ

2
(30)

LM2−Nβ

≤ ǫ, (31)

which holds asδ0L → 0 as L → ∞ in (22). (In fact, due
to [16, Lemma 4 and Lemma 6], for anyǫ′ > 0, we can
take δ0L ≤ ǫ′

L
asL gets large.) Therefore, for this choice of

L,M,N , we obtain the desired result from (18), (19), (29),
due to (30) and (31):

H(W ∗) ≥ LMN (E [C(Wm)]− ǫ∗) (32)

Pr{W ∗ 6= Ŵ ∗} ≤ ǫ (33)

I(K;Y ∗
e , G) ≤ ǫ (34)

In addition, for this choice ofL,M,N , we boundH(K) ≥
r − ǫ due to (25), which shows that the key is approximately
uniform.

Few remarks are now in order.
1) Existing code designs in the literature and the previous

section of this work assume that Eve’s channel is known at
Alice and Bob. In the above scheme, Alice and Bob only
need the statistical knowledge of eavesdropper CSI. Also, the
main channel is not necessarily stronger than the eavesdropper
channel, which is not the case for degraded wiretap settings.

2) The above scheme can be used for the wiretap channel
of Section IV by settingM = 0 to achieve strong secrecy
(assuring arbitrarily small information leakage) insteadof the
weak notion (making the leakage rate small). See also [16].

3) The results can be extended to arbitrary binary-input
channels along the same lines, using the result of Sec-
tion IV. In such a setting, the above theorem would be
reformulated withn = LMN(E[I(Wm)] − ǫ∗) and r =
LMN(E[[I(Wm)− I(We)]

+]− ǫ∗). However, the code con-
struction complexity of such channels may not scale as good
as that of the erasure channels [8].

VI. D ISCUSSION

In this work, we considered polar coding for binary-input
DMCs with a degraded eavesdropper. We showed that polar
coding can be utilized to achieve non-trivial secrecy rates
these set of channels. The results might be extended to
arbitrary discrete memoryless channels using the techniques
given in [17]. The second focus of this work was the secret
key agreement over fading channels, where we showed that
Alice and Bob can create advantage over Eve by using the
polar coding scheme at each fading block, which is then
exploited with privacy amplification techniques to generate
keys. This result is interesting in the sense that part of the
key agreement protocol is established information theoretically
over fading channels by only requiring statistical knowledge
of eavesdropper CSI at the users.
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