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Abstract

This work considers the two way wiretap channel in which two legitimate users, Alice and Bob, wish to exchange

messages securely in the presence of a passive eavesdropperEve. In the full duplex scenario, where each node can

transmit and receive simultaneously, we obtain new achievable secrecy rate regions based on the idea of allowing

the two users tojointly optimize their channel prefixing distributions and binningcodebooks; in addition to key

sharing. The new regions are shown to be strictly larger thanthe known ones for a wide class of discrete memoryless

and Gaussian channels. In the half duplex case, where a user can only transmit or receive on any given degree of

freedom, we introduce the idea ofrandomized schedulingand establish the significant gain it offers in terms of the

achievable secrecy sum-rate. We further develop an experimental setup based on a IEEE 802.15.4-enabled sensor

boards to validate our theoretical analysis. Using this testbed, it is shown that one can exploit the two way nature of

the communication, via appropriately randomizing the transmit power levels and transmission schedule, to introduce

significant ambiguity ata noiseless Eve. To the best of our knowledge, this is one of the first attempts aiming towards

building practical secrecy protocols inspired by information theoretic principles.

I. I NTRODUCTION

In a pioneering paper [1], Shannon established the achievability of perfectly secure communication in the presence

of an eavesdropper with unbounded computational complexity. However, the necessary condition for perfect secrecy,

i.e., that the entropy of the private key is at least as large as that of the message, appears to be prohibitive for most

practical applications. In [2], Wyner revisited the problem and proved the achievability of a positive secrecy rate over

a degraded discrete memoryless channel, via akey-lesssecrecy approach, by relaxing thenoiselessassumption and

the strict notion of perfect secrecy employed in [1]. Wyner’s results were later extended to the Gaussian and broadcast

channels in [3] and [4], respectively. In [5], Maurer showedhow to exploit the presence of apublic discussion
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channel to achieve positive secrecy over the one way wiretapchannel even when the eavesdropper channel is less

noisy than the legitimate one. In [6], the authors considered a more practical feedback scenario where the noiseless

public channel is replaced byreceiver feedbackover the same noisy channel. Under this assumption, it was shown

that the perfect secrecy capacity is equal to the capacity ofthe main channel in the absence of the eavesdropper

for full duplex modulo-additive discrete memoryless channels. More interestingly, [6] established the achievability

of positive secrecy rates, even under the half duplex constraint where each feedback symbol introduces an erasure

event in the main channel.

Our work generalizes this line of work by investigating the fundamental limits of the two way wiretap channel,

where Alice and Bob wish to exchange secure messages in the presence of a passive eavesdropper Eve. It is easy to

see that the one way channel with feedback considered in [6] is a special case of this model. Using the cooperative

channel prefixing and binning technique proposed in [7], [8], along with an innovative approach for key sharing

between Alice and Bob, we first derive an inner bound on the secrecy capacity region of the full duplex discrete

memoryless two way wiretap channel. By specializing our results to the additive modulo-2 and Gaussian channel,

our region is shown to be strictly larger than those reportedrecently in the literature [9]–[11]. The gain can be

attributed to the fact that we allow both nodes to simultaneously send secure messages when the channel conditions

are favorable. We then proceed to the half duplex setting where each node can only transmit or receive on the

same degree of freedom. Here, we introduce the concept ofrandomized scheduling for secrecy, whereby Alice and

Bob send their symbols at random time instants to maximally confuse Eve at the expense of introducingcollisions

and erasure events in the main channel. Remarkably, this approach is shown to result in significant gains in the

achievable secure sum rate, as compared with the traditional deterministic scheduling approach. In the Gaussian

scenario, we show that the ambiguity at Eve can be further enhanced by randomizing the transmit power levels.

Inspired by our information theoretic foundation, we then develop an IEEE802.15.4 testbed to validate our

theoretical claims in near field wireless sensor networks where the distance between the legitimate nodes is

significantly smaller than that to the potential eavesdropper. A representative scenario corresponds to Body Area

Networks (BAN) which are being considered for a variety of health care applications. Here, the sensor nodes are

mounted on the body, and hence, any potential eavesdropper is expected to be at a significantly larger distance

from each legitimate node. Clearly, ensuring the confidentiality of the messages exchanged between sensors is an

important design consideration in this application. Assuming an eavesdropper equipped with an energy classifier,

analytical and experimental results that quantify the achievable secrecy sum rate under a two dimensional path

loss model are derived. Overall, these results establish the gain offered by the two way randomization concept and

establish the feasibility of our approach in realistic scenarios.

The rest of the paper is organized as follows. In Section II, we develop an achievable secrecy rate region for the

full duplex discrete memoryless two way wiretap channel, and specialize the result to the additive modulo-2 and

Gaussian channel. Section III is devoted to the half duplex scenario where the concept of randomized scheduling

is introduced. Our practical implementation, using the TinyOS-enabled sensor boards, is described in Section IV.

The analytical and experimental results of this section establish the feasibility of our approach in near field wireless
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sensor network applications. Finally, we offer some concluding remarks in Section V. To enhance the flow of the

paper, the detailed proofs are collected in the appendices.

II. FULL DUPLEX CHANNELS

In the full duplex scenario, each of the two legitimate terminals is equipped with a transmitter and a receiver

that can operate simultaneously on the same degree of freedom. The two users intend toexchangemessages in

the presence of a (passive) eavesdropper. More specifically, the kth user wishes to transmit a secret messagewk,

selected from a set ofequiprobablemessagesWk = {1, . . . ,Mk}, to the other user, inn channel uses, where

k = 1, 2. For messagewk, a codewordXk(wk) = {Xk(1), . . . , Xk(n)} is transmitted at a rateRk = 1
n log2 Mk.

The kth decoder employs a decoding functionφk(.) to map the received sequenceYk to an estimatêwk of wk.

The two way communication is governed byreliability and secrecyconstraints. The former is measured by the

average probability of error,

Pe,k =
1

Mk

∑

wk∈Wk

P{ŵk 6= wk|wk is sent}, for k = 1, 2; (1)

whereas the latter is quantified by the mutual information leakage rate to the eavesdropper, i.e.,

1

n
I(W1,W2;Z), (2)

whereZ = {Z(1), . . . , Z(n)} is the observed sequence at the eavesdropper. Here, we focuson theperfect secrecy

rate region, where the leakage rate is made arbitrarily small [2], as formalized in the following.

Definition 1: We say that the secret rate tuple(R1, R2) is achievable for the two way wiretap channel, if for

any givenǫ > 0, there exists an(n,M1,M2, Pe,1, Pe,2) code such that,

R1 =
1

n
log2 M1

R2 =
1

n
log2 M2

max(Pe,1, Pe,2) ≤ ǫ

1

n
I(W1,W2;Z) ≤ ǫ,

for sufficiently largen.

We note that the last condition implies that (see, e.g., [8, Lemma 15])

1

n
H(Wk|Z) ≥ Rk − ǫ for k = 1, 2.

The secrecy capacity region is defined as the set of all achievable secret rate tuples(R1, R2) and is denoted byCF .

Throughout the sequel we will use the following shorthand notation for probability distributions:p(x) , p(X = x),

p(x|y) , p(X = x|Y = y), andp(x, y) , p(X = x, Y = y), whereX andY denote arbitrary random variables.

We will also uselog(x) to denotelog2(x), and[a]+ to denotemax(a, 0). Furthermore, for the full duplexdiscrete

memoryless two way channel with an external passive eavesdropper (DM-TWC-E), we will use the calligraphic

lettersX1 andX2 to denote the discrete input finite alphabets for user1 and user2, respectively; andY1, Y2, and
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Z, to denote the output alphabets observed at the decoders of user 1, user2, and the eavesdropper, respectively.

The channel is given byp(y1, y2, z|x1, x2) and is memoryless in the following sense.

p(y1(i), y2(i), z(i)|xi
1,x

i
2,y

i−1
1 ,yi−1

2 , zi−1) = p(y1(i), y2(i), z(i)|x1(i), x2(i)).

Our general achievable region is obtained via a coding scheme inspired by [8] where the codewordsC1 andC2

are drawn from the two binning codebooks and passed on to the two respective prefix channels. To maximize the

ambiguity at Eve, both the binning codebooks and channel prefixing distributions are jointly optimized. In addition,

the proposed scheme involves key sharing with a block encoding technique to facilitate the secrecy generation. In

particular, the key received from the other user during the previous block is used in a one time pad scheme [12]

to transmit additional secret bits. The codeword consisting of the XOR of the message and the key serves a) as

a cloud center in the superposition coding and b) as an additional randomization for the binning codebook. The

following result characterizes the set of achievable ratesusing our coding scheme.

Theorem 1:The proposed coding scheme achieves the regionR for the full duplex DM-TWC-E.

R , closure of







⋃

p∈P
R(p)







⊆ CF , (3)

whereP denotes the set of all joint distributions of the random variablesQ, U1, U2, C1, C2, X1, andX2 satisfying

p(q, u1, u2, c1, c2, x1, x2) = p(q)p(u1|q)p(c1|u1)p(x1|c1)p(u2|q)p(c2|u2)p(x2|c2) (4)

andR(p) is the closure of all rate pairs(R1 = Ru
1 + Rs

1 + Ro
1, R2 = Ru

2 + Rs
2 + Ro

2), with non-negative tuples

(Ru
1 , R

s
1, R

o
1, R

x
1 , R

u
2 , R

s
2, R

o
2, R

x
2) satisfying

Rs
1 +Rk

1 +Ro
1 +Rx

1 ≤ I(C1;Y2|X2, U1, Q) (5)

Ru
1 +Rs

1 +Rk
1 +Ro

1 +Rx
1 ≤ I(U1, C1;Y2|X2, Q) (6)

Rs
2 +Rk

2 +Ro
2 +Rx

2 ≤ I(C2;Y1|X1, U2, Q) (7)

Ru
2 +Rs

2 +Rk
2 +Ro

2 +Rx
2 ≤ I(U2, C2;Y1|X1, Q) (8)

Ro
1 +Rx

1 ≤ I(C1;Z|U1, U2, C2, Q) (9)

Ro
2 +Rx

2 ≤ I(C2;Z|U1, U2, C1, Q) (10)

Ro
1 +Rx

1 +Ro
2 +Rx

2 = I(C1, C2;Z|U1, U2, Q) (11)

Ru
1 +Ro

1 ≤ Rk
2 (12)

Ru
2 +Ro

2 ≤ Rk
1 (13)

Proof: Please refer to Appendix A.

Remark 1:The proposed coding scheme can be used to exchange open messages in addition to the secure ones

between Alice and Bob. messages. Specifically, letRsecret
k and Ropen

k be the secret and open message rates of
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transmitterk = 1, 2. Then, the proposed scheme readily achieves the four-dimensional rate region given by the

closure of the union (over all input probability distributions) of the set of rate tuples

(Rsecret
1 = Rs

1 +Ro
1 +Rus

1 , R
open
1 = Rx

1 +Ruo
1 , Rsecret

2 = Rs
2 +Ro

2 +Rus
2 , R

open
2 = Rx

2 +Ruo
2 ),

with the non-negative rate tuples(Rus
1 , Ruo

1 , Rs
1, R

o
1, R

x
1 , R

us
2 , Ruo

2 , Rs
2, R

o
2, R

x
2) satisfying (5)-(11) withRu

1 = Rus
1 +

Ruo
1 , Ru

2 = Rus
2 +Ruo

2 andRus
1 +Ro

1 ≤ Rk
2 , Rus

2 +Ro
2 ≤ Rk

1 .

One can immediately see that the regionR does not lend itself to simple computational approaches. Therefore,

the rest of the section will focusprimarily on the following sub-regionRF .

Theorem 2:For the full duplex DM-TWC-E,

RF , closure of







⋃

p∈PF

RF (p)







⊆ R ⊆ CF , (14)

wherePF denotes the set of all joint distributions of the random variablesQ, C1, C2, X1, andX2 satisfying

p(q, c1, c2, x1, x2) = p(q)p(c1|q)p(c2|q)p(x1|c1)p(x2|c2) (15)

andRF (p) is the closure of all non-negative rate tuples(R1, R2) satisfying

R1 ≤ I(C1;Y2|X2, Q) (16)

R2 ≤ I(C2;Y1|X1, Q) (17)

R1 +R2 ≤ I(C1;Y2|X2, Q) + I(C2;Y1|X1, Q)− I(C1, C2;Z|Q). (18)

Proof: Please refer to Appendix B.

The above region,RF , is achievable without the need to use superposition coding(Please refer to Remark 2 in

Appendix B.)

A. The Modulo-Two Channel

To shed more light on the structural properties of our achievable rate region, we now consider the special case

of the full duplex modulo-2 two way wiretap channel described by the following set of input-output relations.

Y1 = X1 ⊕X2 ⊕N1 (19)

Y2 = X1 ⊕X2 ⊕N2 (20)

Z = X1 ⊕X2 ⊕Ne, (21)

whereN1= {N1(1), . . . , N1(n)}, N2= {N2(1), . . . , N2(n)}, andNe= {Ne(1), . . . , Ne(n)} are the additive binary

noise vectors impairing Alice, Bob, and Eve; respectively.The corresponding transition probabilities are given by:

p(N1(i) = 1) = ǫ1, p(N2(i) = 1) = ǫ2, andp(Ne(i) = 1) = ǫe for i = 1, . . . , n. The secrecy capacity region is
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denoted byCFM . In this special case, the transmitted codeword reduces to the modulo-2 sum of a binning codeword

and an independentprefix noise component, i.e.,

X1 = C1 ⊕ N̄1 (22)

X2 = C2 ⊕ N̄2, (23)

whereN̄1= {N̄1(1), . . . , N̄1(n)}, N̄2= {N̄2(1), . . . , N̄2(n)} are theprefix noise vectors transmitted by Alice and

Bob. The components of these vectors are generated according to i.i.d. distributions with the following marginals:

p(N̄1(i) = 1) = ǭ1, p(N̄2(i) = 1) = ǭ2 for i = 1, . . . , n. The binning codebooks, on the other hand, are generated

according to a uniform i.i.d. distribution. We further define the following crossover probabilities to describe the

cascade of the prefix and original channels.

p(y1 6= c2|c2) = ǫ̂1 , ǫ1(1− ǭ2) + ǭ2(1− ǫ1) (24)

p(y2 6= c1|c1) = ǫ̂2 , ǫ2(1− ǭ1) + ǭ1(1− ǫ2) (25)

p(z 6= (c1 ⊕ c2)|c1, c2) = ǫ̂e , ǫe(1− ǭ12) + ǭ12(1− ǫe) (26)

where, ǭ12 = ǭ2(1 − ǭ1) + ǭ1(1 − ǭ2). Using this notation, the achievable region in Theorem 2 reduces to the

following.

Corollary 1: For the full duplex modulo-2 two way wiretap channel

RFM , closure of the convex hull of







⋃

p∈PFM

RFM (p)







⊆ CFM , (27)

wherePFM is defined as,

PFM , {(ǭ1, ǭ2) : 0 ≤ ǭ1, ǭ2 ≤ 1},

andRFM (p) is the closure of all non-negative rate tuples(R1, R2) satisfying

R1 ≤ 1−H(ǫ̂2) (28)

R2 ≤ 1−H(ǫ̂1) (29)

R1 +R2 ≤ 1 +H(ǫ̂e)−H(ǫ̂1)−H(ǫ̂2). (30)

Moreover, our achievable region contains the two corner points of thesecrecy capacity region, namely

max
(R1,0)∈C

R1 = 1−H(ǫ1), and

max
(0,R2)∈C

R2 = 1−H(ǫ2).

Proof: Please refer to Appendix C.

A few remarks are now in order.

1) The region in Corollary 1 is strictly larger than the ones reported in [9], [10], as demonstrated by the numerical

results of Fig. 1. Here we compare our region with the one achieved by random binning and key sharing
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only; and channel prefixing only ( [9, Section 5]). The regionreported in [10, Theorem 2] can be achieved

via binning without key sharing, and hence, is astrict sub-region of Corollary 1.

2) The corner points of the region in Corollary 1 is achieved by random binning and key sharing only if

ǫe > max(ǫ1, ǫ2); and achieved by only channel prefixing ifǫe < min(ǫ1, ǫ2).

3) The previous result identifies the separate role of channel prefixing and binning. First, channel prefixing is

used to create an advantage of Alice and Bob over Eve; via thejoint optimization of ǭ1 and ǭ2. Then, the

binning codebooks are used to transform this advantage intoa secrecy gain for the two terminals.

B. The Gaussian Channel

In the full duplex Gaussian setting, the channel is given by,

Y1 =
√
g11X1 +X2 +N1 (31)

Y2 = X1 +
√
g22X2 +N2 (32)

Z =
√
ge1X1 +

√
ge2X2 +Ne (33)

whereg11, g22, ge1, andge2 are channel coefficients,N1, N2, andNe are noise vectors with i.i.d. zero-mean unit-

variance white Gaussian entries at user1, user2, and Eve, respectively. We assume the average power constraints

given by
1

n

n
∑

i=1

(Xk(i))
2 ≤ ρk, for k = 1, 2. (34)

The secrecy capacity of this channel is denoted byCFG.

We defineγ(x) , 1
2 log(1+x) andh(X) = −

∫

fX(x) log fX(x). LetC1(i) andN̄1(i) be i.i.d. with respect to the

time index, and each element is generated according toC1 ∼ N (0, ρc1) andN̄1 ∼ N (0, ρn1 ), whereρc1+ρn1 = ρ1−ǫ.

The prefix channel is chosen asX1 = C1 + N̄1. By the weak law of large numbers,1n
∑n

i=1(X1(i))
2 → ρ1 − ǫ

asn → ∞. X2 is constructed similarly to obtain the following.

Corollary 2: For the full duplex Gaussian two way wiretap channel

RFG , closure of the convex hull of

{

⋃

p∈PFG

RFG(p)

}

⊆ CFG,

wherePFG is defined as,

PFG , {(ρc1, ρn1 , ρc2, ρn2 ) : ρc1 + ρn1 ≤ ρ1, ρ
c
2 + ρn2 ≤ ρ2},

andRFG(p) is the closure of all non-negative rate tuples(R1, R2) satisfying

R1 ≤ γ

(

ρc1
1 + ρn1

)

(35)

R2 ≤ γ

(

ρc2
1 + ρn2

)

(36)
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R1 +R2 ≤ γ

(

ρc1
1 + ρn1

)

+ γ

(

ρc2
1 + ρn2

)

− γ

(

ρc1ge1 + ρc2ge2
1 + ρn1 ge1 + ρn2 ge2

)

(37)

Proof: The proof follows by extending Theorem 2 to continuous random variables, where we also set|Q| = 1,

and use the convex hull operation.

In Fig. 2, we compare the region of Corollary 2 with the following special cases: 1) Both users implement

cooperative binning and key sharing without channel prefixing and 2) One of the users implements individual

secrecy encoding [2], the other helps only with channel prefixing. The same trends of the modulo-2 case are

observed here except for the fact that channel prefixing doesnot achieve the two extreme points ofRFG. We note

that the region reported in [10, Theorem 2] can be achieved byimplementing binning without key sharing, and

hence, is a sub-region of Corollary 2. The scheme in [10, Section V] is either binning only at both users, or binning

at one user and channel prefixing (jamming) at the other user.The resulting regions are subregions of Corollary 2

(the first one is a subregion of the red-dashed region and the second one is the green-dotted region in Fig.2.).

Next, we compare our results with that of [11]. Let,

R∗
1 , max

α∈[0,1]
α



γ(P1)−
[

γ

(

ge1P1

1 + ge2P2

)

− 1− α

α

[

γ (P2)− γ

(

ge2P2

1 + ge1P1

)]+
]+




+

(38)

R∗
2 is obtained by reversing the indices above. Then, the achievable rate region proposed in [11] is given by the

convex hull of the following three points:

[0, 0], [R∗
1, 0], and [0, R∗

2].

We note that the regionRFG given in Corollary 2strictly includes this one. (The proof of the inclusion part is

given in Appendix D.) Fig. 3 demonstrates the fact that the inclusion can be strict. The same figure also includes

the achievable region obtained bybackward key sharing only. In this scheme, users utilize only the one time pad

scheme in a time division manner where the node first receivesa secret key and then uses it to secure the message.

The corresponding region can be described as follows. Let

R†
1 , max

α∈[0,1]
min

{

αγ(P1), (1 − α)

[

γ(P2)− γ

(

ge2P2

1 + ge1P1

)]+
}

. (39)

R†
2 is obtained by reversing the indices above. Thenbackward key sharingachieves the convex hull of the following

three points:

[0, 0], [R†
1, 0], and [0, R†

2].

Note that, this is a subregion ofR (given in Theorem 1), in whichC2 is used to transmit secret key from user

2 to user1, andU1 is utilized to transmit secret message in a one time pad fashion. ComparingR†
1 andR∗

1 in

Fig. 3, we can see that this scheme can achieve higher rates than the ones reported in [11]. We also remark that

this example is an evidence of the fact that the region in Theorem 1 strictly includes that of Theorem 2. (That is,

RF ( R asR†
1 /∈ RF but R†

1 ∈ R for the Gaussian channel.) In summary, the region in Theorem1 includes all

the stated regions as special cases.
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III. H ALF DUPLEX CHANNELS

Our first step is to define the following equivalent full duplex model for the half duplex channel.

Definition 2: For a given half duplex channel governed byp(y2, z|x1), p(y1, z|x2), p(z|x1, x2), andp(y1)p(y2)p(z)

an equivalentfull duplex channelp∗(y1, y2, z|x1, x2) is defined as follows.

We allow the channel inputs to take the values inX ∗
k = {Xk, ∅}, where∅ represents the no transmission event.

Similarly the channel outputs take values inY∗
k = {Yk, ∅}, where∅ represents the no reception event (due to the

half duplex constraint). Then, for theith symbol time, the full duplex channelp∗(y1, y2, z|x1, x2) is said to be in

one of the following states:

1) x1(i) ∈ X1, x2(i) = ∅ : User1 is transmitting, user2 is in no transmission state.

2) x1(i) = ∅, x2(i) ∈ X2 : User1 is in no transmission state, user2 is transmitting.

3) x1(i) ∈ X1, x2(i) ∈ X2 : Both users are transmitting.

4) x1(i) = ∅, x2(i) = ∅ : Both users are in the no transmission state.

Accordingly, the channelp∗(y1, y2, z|x1, x2) is given by

p∗(y1, y2, z|x1, x2) =































p(y2, z|x1)I(y1, ∅), for state1

p(y1, z|x2)I(y2, ∅), for state2

p(z|x1, x2)I(y1, ∅)I(y2, ∅), for state3

p(y1)p(y2)p(z), for state4,

(40)

whereI(x, y) = 1, if x = y andI(x, y) = 0, if x 6= y; andp(y2, z|x1), p(y1, z|x2), p(z|x1, x2), andp(y1)p(y2)p(z)

are given by the half duplex channel.

Using this definition and our results for the full duplex channel, we obtain the following result.

Corollary 3 (Deterministic Scheduling):The following regionRH−D is achievable for the half duplex DM-

TWC-E with deterministic scheduling.

RH−D , the closure of







⋃

p∈PH ,Ps1+Ps2=1

RH−D(p)







, (41)

wherePH denotes the set of all joint distributions of the random variablesQ, C1, C2, X1, andX2 satisfying

p(q, c1, c2, x1, x2) = p(q)p(c1|q)p(c2|q)p(x1|c1)p(x2|c2), (42)

RH−D(p) is the closure of all non-negative rate tuples(R1, R2) satisfying

R1 ≤ Ps1I(C1;Y2|Q, state 1) (43)

R2 ≤ Ps2I(C2;Y1|Q, state 2) (44)

R1 +R2 ≤ Ps1[I(C1;Y2|Q, state 1)− I(C1;Z|Q, state 1)]+

+Ps2[I(C2;Y1|Q, state 2)− I(C2;Z|Q, state 2)]+, (45)

and the channel is given byp∗(y1, y2, z|x1, x2).
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Proof: The proof follows by Theorem 1 with the channel given byp∗(y1, y2, z|x1, x2). In each block we

randomly select a stateS = k with probability Psk. We replaceQ = {Q,S}, where the random sequences

represents the channel states (and given to all nodes). The mutual information expressions are averaged accordingly

as we invoke the achievability scheme according to channel states. The achievable region can be represented with

the given description, where the inputs are chosen such thatwe only utilize state1 and2 as the states3 and4 do

not increase the achievable rates.

The previous region is achievable with a deterministic scheduling approach whereby the two users Alice and Bob

agreea-priori on the schedule. Consequently, Eve is made aware of the schedule. Now, in order to further confuse

eavesdropper, we propose anovel randomized schedulingscheme whereby, in each channel use, userk will be in

a transmission state with probabilityPk. Clearly, this approach will result in collisions, wastingsome opportunities

for using the channels. However, as established shortly, the gain resulting from confusing Eve about the source of

each transmitted symbol will outweigh these inefficienciesin many relevant scenarios. To simplify our derivations,

we assume that all the nodes can identify perfectly state4 (no transmission state). Furthermore, we also give Eve

an additional advantage via informing her of the symbol durations belonging to state3. These assumptions are

practical in the Gaussian channel, where the users can use the received power levels to distinguish these states. The

following result characterizes the corresponding achievable region.

Corollary 4 (Randomized Scheduling):The regionRH is achievable for the half duplex DM-TWC-E with ran-

domized scheduling.

RH , closure of







⋃

p∈PH ,0≤P1,P2≤1

RH(p)







, (46)

wherePH denotes the set of all joint distributions of the random variablesQ, C1, C2, X1, andX2 satisfying

p(q, c1, c2, x1, x2) = p(q)p(c1|q)p(c2|q)p(x1|c1)p(x2|c2), (47)

RH(p) is the closure of all non-negative rate tuples(R1, R2) satisfying

R1 ≤ P1(1− P2)I(C1;Y2|X2, Q, state 1) (48)

R2 ≤ (1− P1)P2I(C2;Y1|X1, Q, state 2) (49)

R1 +R2 ≤ P1(1− P2)I(C1;Y2|X2, Q, state 1) + (1− P1)P2I(C2;Y1|X1, Q, state 2)

−P1P2I(C1, C2;Z|Q, state 3)− (P1(1− P2) + (1− P1)P2)I(C1, C2;Z|Q, state 1 or 2), (50)

and the channel is given byp∗(y1, y2, z|x1, x2).

Proof: Please refer to Appendix E.

Similar to the full duplex scenario, we now specialize our results to the modulo-2 case. We model this channel as

a ternary inputchannel where the third input corresponds to the no-transmission event. This way, the three nodes

can identify the symbol intervals when no one is transmitting. Those symbols will, therefore, be identified and
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erased, and the crossover probabilities corresponding to the other three states are given by,

p(z 6= c1|only user1 is transmitting) = ǫe1 , ǫe(1− ǭ1) + ǭ1(1− ǫe)

p(z 6= c2|only user2 is transmitting) = ǫe2 , ǫe(1− ǭ2) + ǭ2(1− ǫe)

p(z 6= (c1 ⊕ c2)|both users are transmitting) = ǫ̂e

whereǫ̂e is given as in the previous section. Moreover, for someµ1, µ2 ∈ [0, 1], we define the followings,

p(y1 = 1|only user2 is transmitting) = µ̂1 , ǫ̂1(1 − µ2) + µ2(1− ǫ̂1) (51)

p(y2 = 1|only user1 is transmitting) = µ̂2 , ǫ̂2(1 − µ1) + µ1(1− ǫ̂2) (52)

p(z = 1|only user1 is transmitting) = µe1 , ǫe1(1 − µ1) + µ1(1− ǫe1) (53)

p(z = 1|only user2 is transmitting) = µe2 , ǫe2(1 − µ2) + µ2(1− ǫe2) (54)

p(z = 1|both users are transmitting) = µ̂e , ǫ̂e(1 − µ12) + µ12(1− ǫ̂e), (55)

where,ǫ̂1 and ǫ̂2 are given as in the previous section, andµ12 = µ1(1−µ2) +µ2(1−µ1). Using these definitions,

the following result is obtained.

Proposition 1: The set of achievable rates for the half duplex modulo-2 two way wiretap channel is given by,

RHM , closure of the convex hull of







⋃

p∈PHM

RHM (p)







, (56)

wherePHM is defined as,

PHM , {(ǭ1, ǭ2, µ1, µ2, P1, P2) : 0 ≤ ǭ1, ǭ2, µ1, µ2, P1, P2 ≤ 1, },

andRHM (p) is the closure of all non-negative rate tuples(R1, R2) satisfying

R1 ≤ P1(1− P2)(H(µ̂2)−H(ǫ̂2)) (57)

R2 ≤ P2(1− P1)(H(µ̂1)−H(ǫ̂1)) (58)

R1 +R2 ≤ P1(1 − P2)(H(µ̂2)−H(ǫ̂2)) + P2(1− P1)(H(µ̂1)−H(ǫ̂1))

− P1P2(H(µ̂e)−H(ǫ̂e))

− (P1(1− P2) + P2(1 − P1))
(

H(µe1d1 + µe2d2)− 0.5H(d1ǫe1 + d2ǫe2)− 0.5H(d1(1− ǫe1) + d2ǫe2)

)

,

where

d1 =
P1(1− P2)

P1(1− P2) + P2(1− P1)
, and (59)

d2 = 1− d1. (60)
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Proof: Please refer to Appendix F.

The advantage offered byrandomized schedulingis best demonstrated in the following example. First, we observe

that cooperative binning and channel prefixing scheme withdeterministicscheduling fails to achieve a non-zero

secrecy rate if Eve’s channel isnot more noisy than the legitimate channels. Now, consider the noiseless case, i.e.,

ǫ1 = ǫ2 = ǫe = 0. By settingµ1 = µ2 = P1 = P2 = 0.5, ǭ1 = 0, and ǭ2 = 0.5, Proposition 1 shows that the

randomized scheduling approach allows user1 to achieve a secure rate ofR1 = 0.25− 0.5(1−H(0.25)) > 0.

The final step is to specialize the region to the Gaussian channel with half duplex nodes. Eve is again assumed

to perfectly identify the no transmission and simultaneous transmission states. We select codewords and jamming

sequences as Gaussian (with powersρck andρnk , respectively). In addition, to further increase Eve’s ambiguity, users

jointly set (ρck +ρnk )gek to the same valueρr (assuming the channel knowledge at both users). The following result

is readily available.

Proposition 2: The set of achievable rates for the half duplex Gaussian two way wiretap channel is given by,

RHG , closure of the convex hull of

{

⋃

p∈PHG

RHG(p)

}

wherePHG is defined as,

PHG , {(ρc1, ρn1 , ρc2, ρn2 , P1, P2) : 0 ≤ P1, P2 ≤ 1, (ρc1 + ρn1 )ge1 = (ρc2 + ρn2 )ge2 = ρr,

P1(ρ
c
1 + ρn1 ) ≤ ρ1, P2(ρ

c
2 + ρn2 ) ≤ ρ2},

andRHG(p) is the closure of all non-negative rate tuples(R1, R2) satisfying

R1 ≤ P1(1 − P2)γ

(

ρc1
1 + ρn1

)

(61)

R2 ≤ P2(1 − P1)γ

(

ρc2
1 + ρn2

)

(62)

R1 +R2 ≤ P1(1− P2)γ

(

ρc1
1 + ρn1

)

+ P2(1− P1)γ

(

ρc2
1 + ρn2

)

+ h(Z|C1, C2)− h(Z), (63)

where

h(Z)− h(Z|C1, C2) = P1P2γ

(

ρc1ge1 + ρc2ge2
1 + ρn1 ge1 + ρn2 ge2

)

+ (P1(1− P2) + P2(1 − P1))
1

2
log(2πe(1 + ρr))

−(P1(1− P2) + P2(1− P1))

∫

fC1
(i)fC2

(j)h(Z|i, j)dfC1
dfC2

,

(64)

and

fZ|C1,C2
(z|i, j) = d1N (i, 1 + ρn1 ge1) + d2N (j, 1 + ρn2 ge2), (65)

d1 =
P1(1 − P2)

P1(1 − P2) + P2(1− P1)
, (66)

d2 = 1− d1. (67)
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We remark that the ambiguity at Eve can be further increased by randomizing the transmit power levels at the

expense of more receiver complexity (due to the non-coherent nature of the transmissions). We implemented this

randomization idea in the next section, where the complexity issue is resolved by using energy classifiers.

IV. RANDOMIZATION FOR SECRECY: PRACTICAL IMPLEMENTATION

In this section, we study a more practical half duplex Gaussian setting where the channel coefficients are

determined by the distance-based path losses in a2-D geometric model. Our focus will be devoted to the symmetric

case where the two messages have the same rate. Without any loss of generality, Alice and Bob are assumed to be

located on thex-axis at opposite ends of the origin and Eve is assumed to be locatedoutside a circle centered around

the origin of radiusrE at an angleθ of the x-axis. Thiskey assumption faithfully models the spatial separation,

between the legitimate nodes and eavesdropper(s), which characterizes near field wireless networks (e.g., BAN). The

performance of the proposed secure randomized scheduling communication scheme will be obtained as a function

of rE and the distance between Alice and Bob, i.e.,dAB . In the discrete-time model, the signals received by the

three nodes in theith symbol interval are given by

Y1(i) = [1− I(X1(i))]
[

GA(d
−α/2
AA X1(i)e

−jkdAA + d
−α/2
AB X2(i)e

−jkdAB ) +N1(i)
]

Y2(i) = [1− I(X2(i))]
[

GB(d
−α/2
AB X1(i)e

−jkdAB + d
−α/2
BB X2(i)e

−jkdBB ) +N2(i)
]

Z(i) = GE(d
−α/2
AE X1(i)e

−jkdAE + d
−α/2
BE X2(i)e

−jkdBE ) +Ne(i),

wherek is the wave number,GA, GB andGE are propagation constants which depend on the receive antenna

gains, andα is the path loss exponent which will be taken to2 as in the free space propagation scenario. (One can

easily extend our results for other scenarios with different path loss exponents.) For further simplicity, we restrict

ourselves to binary encoding implying thatX1(i) ∈
{

−
√

ρ(i), 0,
√

ρ(i)
}

, whereρ(i) is the instantaneous signal

to noise ratio at unit distance in theith symbol interval if Alice decides to transmit.X1(i) = 0 if Alice decides

not to transmit. The same applies toX2(i). ρ(i) is selected randomly in the range[ρmin, ρmax], by varying the

transmit power, according to a distribution that is knowna priori to all nodes.I (X1(i)) is the indicator function,

i.e., I (X1(i)) = 1 if X1(i) 6= 0 and zero otherwise. In order to ensure the robustness of our results, we assume

that Eve employs a large enough receive antenna, i.e.,GE >> 1, such that the additive noise effect inZ can

be ignored. We assumeGA = GB = 1, and a hard decision decoder at both the legitimate receiver(s) and the

eavesdropper. We consider amemorylessclassifierC used by Eve to identify the origin of each received symbol,

i.e., the decision is based only on the power level of the observed symbol in the current time interval. Here,Pm and

Pf represent the probability of miss detection and false alarm; respectively. Furthermore, we usePe|m to denote

the probability of symbol error given occurrence of the missdetection event. Finally, we use the following notation:

φ(x) ,
x
∫

−∞
1√
2π

e
−t

2

2 dt.

The deterministic scheduling paradigm is represented by aTime Division Multiplexing scheme whereby only a

single message is transmitted in any given time frame, and the legitimate receiverjams the channel with random-

content feedback symbols at random time intervals. More specifically, the receiver will transmit a feedback symbol
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at any time interval with probabilityβ. This feedback will result in erroneous outputs at the eavesdropper due to

its inability to identify the symbols corrupted by the random feedback signal and erasures at the legitimate receiver

due to the half duplex constraint. As argued in [6], this scheme is capable of completely impairing Eve in modulo-

additive channels. In ourreal-valuedchannel, however, a simple energy classifier based on the average received

signal power [13] can be used by Eve to differentiate betweencorrupted andnon-jammedsymbols. To overcome

this problem, we use pre-determined distributions for the transmit power of both the data symbols,f1, and feedback

symbolsf2. This randomized power allocation strategy is intended to increase the probability ofmisclassification

at Eve. The following result characterizes the achievable rate with this scheme.

Theorem 3:Using the proposed TDM protocol with randomized feedback and power allocation, the following

secrecy rate is achievable at each user.

Rs = 0.5 max
β,f1,f2

{

min
θ,C

{

[RM −RE ]
+
}

}

, (68)

where

RM = (1 − β)

(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

RE = (1− β (1− Pm)− (1 − β)Pf )

(

1−H

(

βPmPe|m
1− β (1− Pm)− (1− β)Pf

))

Proof: Please refer to Appendix G.

In randomized scheduling approach, each node will transmitits message in randomly selected time intervals,

where a single node’s transmitter is active in any given timeinterval with probabilityPt, and the transmit power level

is randomly selected according to the distributionf . Consequently, there are four possible states of both transmitters

in any particular time intervali. Due to our noiseless assumption, the eavesdropper’s antenna will easily identify

silenceintervals. Eve’s challenge, however, is to differentiate between the other three states. LetA andB represent

the transmission event of Alice and Bob, respectively. Similarly, Ac andBc are the complementary events. Finally,

we let E1 → E2 to denote the occurrence of eventE1 and its classification by Eve as eventE2, and denote the

probability of error given that the event(A,B) was mistaken for(A,Bc) by the classifier asPe|(A,B)→(A,Bc). The

following is the achievable secrecy rate with the two way randomization approach.

Theorem 4:Using thetwo way randomized scheduling and power allocation protocol, the following secrecy rate

is achievable at each user.

Rs = max
Pt,f

(min
θ,C

([RM −max(REA, REB)]
+)), (69)

where

RM = Pt (1− Pt)

(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

REA = DA

(

1−H

(

P
(EA)
e

DA

))

REB = DB

(

1−H

(

P
(EB)
e

DB

))
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DA = P 2
t P(A,B)→(A,Bc) + Pt (1− Pt)P(Ac,B)→(A,Bc) + Pt (1− Pt)

(

1− P(A,Bc)→(Ac,B) − P(A,Bc)→(A,B)

)

DB = P 2
t P(A,B)→(Ac,B) + Pt (1− Pt)P(A,Bc)→(Ac,B) + Pt (1− Pt)

(

1− P(Ac,B)→(A,Bc) − P(Ac,B)→(A,B)

)

P
(EA)
e = P 2

t P(A,B)→(A,Bc)Pe|(A,B)→(A,Bc) + 0.5Pt (1− Pt)P(Ac,B)→(A,Bc)

P
(EB)
e = P 2

t P(A,B)→(Ac,B)Pe|(A,B)→(Ac,B) + 0.5Pt (1− Pt)P(A,Bc)→(Ac,B)

andDA, DB represent the portion of symbols classified by Eve as being transmitted by Alice or Bob respectively.

Proof: Please refer to Appendix H.

One can argue that the achievable secrecy rate increases asrE increases. The reason is that a largerE will impair

Eve’s ability to differentiate between the symbols transmitted by Bob and Alice. The following result characterizes

the secrecy rate achievable in the asymptotic scenario whenrE >> dAB.

Corollary 5: Let Rmax be the achievable secrecy rateusing the randomized scheduling and power allocation

schemewhenrE → ∞. Then,

Rmax = max
Pt

([RM − (1− (1 − Pt)
2)(1−H(0.25))]+), (70)

where

RM = Pt (1− Pt)

(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

Proof: Please refer to Appendix I.

A. Numerical Results

In our numerical examples, we assume a uniform power distribution for both Alice and Bob, and a threshold-

based energy classifier is used by Eve. Our noiseless assumption implies that Eve will decode the received symbols,

corresponding to concurrent transmissions, as the symbolswith the higher received signal power. To simplify the

calculations, we further assume that Alice and Bob use sufficient error control coding to overcome the additive

noise effect. More precisely, Alice and Bob are assumed to use asymptotically optimal forward error control coding

and that their received SNR is above the minimal level required to achieve arbitrarily vanishing probability of error.

Fig. 4 reports the achievable secrecy rateRs of Theorems 3 and 4 at different values for the distance ratiodmin
dmax

(dmin = min(dAE , dBE), dmax = max(dAE , dBE)). A few remarks are now in order.

1) It is evident that our two way randomization scheme achieves higher rates than the TDM scheme. The reason

is the added ambiguity at Eve resulting from the randomization in the scheduling algorithm.

2) The lower secrecy rates for smaller values ofdmin
dmax

is due to Eve’s enhanced ability to capture the symbols

transmitted by the node closer to her.
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3) The rates plotted in Fig. 4 were found to be very close to those of a classifier that does not erase any received

symbols, i.e., jammed symbols are always classified as belonging to a single node and forwarded to Eve’s

decoder.

B. Experimental Results

We implemented our experiments on TinyOS [14] using TelosB motes [15], which have a built-in CC2420 radio

module [16]. The CC2420 module uses the IEEE 802.15.4 standards in the2.4 GHZ band [17]. Our setup consists

of four nodes, equivalent to Alice, Bob, Eve, and a Gateway module. The Gateway acts as a link between the

sensor network and a PC running a java program. Our experiment is divided into cycles. During each cycle, the PC

works as an orchestrator,through the Gateway, that determines, using a special message (TRIGGER-MSG), whether

Alice should send alone, Bob sends alone, or both send concurrently. It also determines the power level used for

transmission. These decisions are based on the transmission probabilityPt. Upon receiving the broadcast TRIGGER-

MSG, each trusted node transmits aDATA-MSGwhile Eve will start to continuously read the value in the Received

Signal Strength Indicator (RSSI) register (the RSSI value read by the CC2420 module is a moving average of the last

8 received symbols [16].). Eve then transfers the RSSI readings from the memory buffer to the Gateway node which

will forward them to the PC in anRSSI-MSG. For each cycle, the java program stores the received RSSI readings for

further processing by the energy classifier (implemented inMATLAB). When transmitting data messages (DATA-

MSG) from Alice or Bob, each node constructs a random payload of 100 bytes using the RandomMlcg component

of TinyOS, which uses the Park-Miller Minimum Standard Generator. Each symbol isO-QPSKmodulated [17]

representing4 bits of the data. We also had to remove the CSMA-CA mechanism from the CC2420 driver in order

to allow both Alice and Bob to transmit concurrently. Finally, it is worth noting that the orchestrator was used to

overcome the synchronization challenge in our experimental set-up. In practical implementations, Bob (or Alice)

could start jamming the channel upon receiving the Start of Frame Delimiter (SFD).

In our implementation of the energy classifier, the discretenature of the transmit power levels is taken into

consideration. First, the eavesdropper was given the advantage of having the classifier trained on a set of readings

taken by running the experiment in the same environment and at the same node locations as those for which the

classifier would be later used. In the training phase, our classifier is given prior information on the configuration,

power levels selected for each node, and the measured RSSI readings at each cycle. It then finds the mean and

variance of the measured RSSI values for each transmitted power level for Alice and Bob when each of them sends

alone in a cycle. Any received symbol is classified as being transmitted by either of the communicating nodes. This

choice is based on our third observation on the rates plottedin Fig. 4. When running the classifier, amaximum

likelihood rule is employed, where the following expression is evaluated,

maxi fAi
(y)

maxi fBi
(y)

A
≷
B
1

and the symbol is classified accordingly, wherefXi
(y) is the value of the approximated Gaussian distribution of

measured RSSI values when sourceX is the only transmitter with power leveli. In a practical implementation, the
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length of a cycle is the duration of a single symbol, and hence, in our setup the classifier bases its decision on a

single RSSI reading. In evaluating the classifier performance, we use the transmission scenario indicating the actual

status of the transmitters in each cycle and compare them with the classification results to obtain the probability of

each possible misclassification event. We also assume that,in case of concurrent transmission, Eve can correctly

decode the symbol received with the higher signal power, as suggested in [18]. This assumption is used to calculate

the values ofPe|(A,B)→(A,Bc) andPe|(A,B)→(Ac,B). We also use the same set of data to train and run a classifier for

the TDM protocol described above. Here, we only consider cycles when Alice’s transmitter is active, and consider

Bob’s concurrent transmission asjamming.

Our experiments were conducted in a hallway environment, where only few scatterers exist (only the wall

structure). We train, run, and evaluate our energy classifier, then use the resulting probabilities in the rate expressions

of Theorem 3 and Theorem 4 to find the achievable secrecy rates. Figs. 5 and 6 report these results in two

representative configurations. In the first, Alice and Bob are placed at the same location withdAE = dBE = 20ft,

whereasdAE = 1ft and dBE = 20ft in the second. We note that the measured difference of received signal

power values from both transmitting nodes was found to be2dB and19dB for Configurations1 and2, respectively.

This implies that the maximum rates in Fig. 6 and Fig. 5 shouldbe compared to the value ofRs in Fig. 4 at
dmin
dmax

= 0.79 and0.11 respectively. We believe that this difference between the theoretical and experimental results

can be attributed to hardware differences and the deviationof the actual channel from the simplistic free space

model used in our derivations. More specifically, we observethat the maximum secrecy rates for the two ways

randomized scheduling scheme in our experimental results is slightly lower than those calculated numerically. The

reason is Eve’s enhanced ability to distinguish between thetwo sources of transmission due to the discrete nature

of the selected transmit power values. Nevertheless, the experimental results establish the ability of our two way

randomized scheduling and power allocation scheme to achieve perfect secrecy in practical near field communication

scenarios where the distance between Eve and legitimate nodes will be larger than the inter-node distance,even if

Eve is equipped with a very large receive antenna.

V. CONCLUSION

In this paper, we used the cooperative binning and channel prefixing approach to obtain achievable secrecy rates for

both the discrete memoryless and Gaussian full duplex two way wiretap channels. In the proposed scheme, channel

prefixing is used to createan advantagefor the legitimate terminals over the eavesdropper which istransformed

by the binning codebooks into a non-trivial secrecy rate region. A private key sharing and encryption was used to

distribute the secure sum rate between the two users. We thenintroduced the idea of randomized scheduling and

established its fundamental role in the half duplex two way wiretap channel. Numerical results that illustrate the

performance gains offered by joint binning and channel prefixing, and randomized scheduling were reported. Our

theoretical analysis revealed the ability of the proposedrandomizationapproach to achieve relatively highsecure

transmission rates under mild conditions on the eavesdropper location. Our theoretical claims were further validated

by extensive experimental results using IEEE 802.15.4-enabled sensor boards in near field communication scenarios.
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APPENDIX A

PROOF OFTHEOREM 1

First, we fix p(q), then generate a sequenceq, where the entries are i.i.d., and each entry is randomly chosen

according top(q). The sequenceq is then given to all nodes before the communication takes place.

Codebook Generation:

Consider userk ∈ {1, 2} that has a secret messagewk ∈ Wk = {1, 2, ...,Mk}, and a private keywk
k ∈ Wk

k =

{1, 2, ...,Mk
k }. For a given distributionp(uk|q) and the sequenceq, generateMu

k i.i.d. sequencesun′

k (wu
k ), where

wu
k ∈ [1, · · · ,Mu

k = 2n
′Ru

k ]. For each codewordun′

k (wu
k ), generateM s

kM
k
kM

o
kM

x
k = 2n

′(Rs

k
+Rk

k
+Ro

k
+Rx

k
−ǫ0) i.i.d.

sequencescn
′

k , whereMk = M s
kM

o
kM

u
k , and p(cn

′

k |un′

k ) =
∏n′

i=1 p(ck(i)|uk(i)). Randomly distribute these into

double indexed bins, where each bin hasMo
kM

x
k = 2n

′(Ro

k
+Rx

k
−ǫ0) codewords, and is indexed by the tuple(ws

k, w
k
k),

ws
k ∈ {1, · · · ,M s

k = 2n
′Rs

k}, wo
k ∈ {1, · · · ,Mo

k = 2n
′Ro

k}, andwx
k ∈ {1, · · · ,Mx

k = 2n
′Rx

k}. These codewords are

represented bycn
′

k (wu
k , w

s
k, w

k
k , w

o
k, w

x
k).

Encoding: We use a block encoding scheme, where the full message is transmitted over B blocks, each of length

n′, andn = n′B. In the rest of the proof, we use bold face letters to represent vectors of block lengthn′. In each

block, each user will transmit a private key in addition to its message, and the other user will use this private key

in the next block to secure its message fully or in part. We omit the block indices for readability. In any given

block, user1 will send the corresponding block messages ofw1 ∈ W1 and the randomly selectedwk
1 ∈ Wk

1 . The

message index (w1) is used to select a tuple(ws
1, w̃

u
1 , w̃

o
1), wherew̃u

1 (w̃o
1) is encrypted intowu

1 (respectively,wo
1)

using the private keȳwk
2 = [w̄k1

2 , w̄k2
2 ] received from the other user in the previous block. In other words, letb̃u

1 ,

b̃o
1, bu

1
, bo

1
, b̄k1

2 , and b̄k2
2 be the binary representations of̃wu

1 , w̃o
1 , wu

1 , wo
1 , w̄k1

2 , and w̄k2
2 respectively. Then,

bu
1 = b̃u

1 ⊕ b̄k1
2 , andbo

1 = b̃o
1⊕ b̄k2

2 . Here,wu
1 is used to select the cloud center of the super position coding (see,

e.g., [19]),(ws
1, w

k
1 ) is used to select the bin index, and the codeword index withinthe bin is given by(wo

1 , w
x
1 ),

wherewx
1 is randomly selected according to a uniform distribution. (Note that, due to one time pad,wo

1 is also

uniformly distributed.) Thus the corresponding codewordcn
′

1 (wu
1 , w

s
1, w

k
1 , w

o
1, w

x
1 ) is selected. Then, the channel

input, xn′

1 , is generated using the distributionp(x1|c1). A similar encoding scheme is employed at user2. As the

messages transmitted in different blocks are independent,satisfying the reliability and security constraints for each

block guarantees their application for all messages transmitted in an arbitrarily large number of blocks.

Decoding:

Consider a messageyn′

1 received at the receiver of user1. Let An′

1,ǫ be the set of typical(qn′

,un′

2 (wu
2 ),

cn
′

2 (wu
2 , w

s
2, w

k
2 , w

o
2, w

x
2 ),y

n′

1 ) sequences. Asn′ → ∞, the decoder will select(wu
2 , w

s
2, w

k
2 , w

o
2, w

x
2 ) such that,

(qn′

,un′

2 (wu
2 ), c

n′

2 (wu
2 , w

s
2, w

k
2 , w

o
2, w

x
2 ),y

n′

1 ,xn′

1 ) ∈ An′

1,ǫ
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if such a tuple exists and is unique. Otherwise, the decoder declares an error. Note that the decoder’s estimateŵ2

is determined by(ws
2, w

u
2 , w

o
2, w̄

k
1 ), wherew̄k

1 is the private key sent by user1 in the previous block. Decoding at

receiver2 is symmetric and can be described by reversing the indices1 and2 above.

Probability of Error Analysis:

For any givenǫ > 0, receiver1 can decode the corresponding messages withPe,2 < ǫ for sufficiently largen′, if

Rs
2 +Rk

2 +Ro
2 +Rx

2 ≤ I(C2;Y1|X1, U2, Q) (71)

Ru
2 +Rs

2 +Rk
2 +Ro

2 +Rx
2 ≤ I(U2, C2;Y1|X1, Q) (72)

By symmetry, a similar condition applies to receiver2 to havePe,1 < ǫ, i.e.,

Rs
1 +Rk

1 +Ro
1 +Rx

1 ≤ I(C1;Y2|X2, U1, Q) (73)

Ru
1 +Rs

1 +Rk
1 +Ro

1 +Rx
1 ≤ I(U1, C1;Y2|X2, Q) (74)

Equivocation Computation: Consider the following argument.

H(W k
1 ,W

s
1 ,W

k
2 ,W

s
2 |Z)

(a)

≥ H(W k
1 ,W

s
1 ,W

k
2 ,W

s
2 |Z,U1,U2,Q)

= H(W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,Z|U1,U2,Q)−H(Z|U1,U2,Q)

= H(W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,C1,C2,Z|U1,U2,Q)−H(Z|U1,U2,Q)

−H(C1,C2|W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,Z,U1,U2,Q)

= H(Z|C1,C2,W
k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,U1,U2,Q)

+H(W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,C1,C2|U1,U2,Q)

−H(Z|U1,U2,Q)−H(C1,C2|W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,Z,U1,U2,Q)

(b)
= [H(Z|C1,C2,U1,U2,Q)−H(Z|U1,U2,Q)] +H(C1,C2|U1,U2,Q)

−H(C1,C2|W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,Z,U1,U2,Q)

(c)

≥ −n′I(C1, C2;Z|U1, U2, Q)− n′ǫ1 +H(C1,C2|U1,U2,Q)

−H(C1,C2|W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,Z,U1,U2,Q), (75)

where (a) follows from the fact that conditioning does not increase the entropy, (b) follows from the fact that, given

U1,U2,Q, (W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ) → (C1,C2) → (Z) is a Markov Chain, and (c) follows fromI(C1,C2;Z|U1,U2,Q)

≤ n′I(C1, C2;Z|U1, U2, Q)+n′ǫ1 with ǫ1 → 0 asn′ → ∞ for a discrete memoryless channel (see, e.g., [2, Lemma

8]).

Here,

H(C1,C2|U1,U2,Q) = n′(Rk
1 +Rs

1 +Ro
1 +Rx

1 +Rk
2 +Rs

2 +Ro
2 +Rx

2 − 2ǫ0), (76)

as, given(U1,U2,Q) = (u1,u2,q), the tuple(C1,C2) has2n
′(Rk

1
+Rs

1
+Ro

1
+Rx

1
+Rk

2
+Rs

2
+Ro

2
+Rx

2
−2ǫ0) possible values
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each with equal probability, and,

H(C1,C2|W k
1 = wk

1 ,W
s
1 = ws

1,W
k
2 = wk

2 ,W
s
2 = ws

2,Z,U1 = u1,U2 = u2,Q = q) ≤ n′ǫ2 (77)

for ǫ2 → 0 asn′ → ∞. This follows from the Fano’s inequality, as the eavesdropper can decode the randomization

indices(wo
1 , w

x
1 , w

o
2, w

x
2 ) given (wk

1 , w
s
1, w

k
2 , w

s
2) if the following conditions are satisfied.

Ro
1 +Rx

1 ≤ I(C1;Z|C2, U1, U2, Q) (78)

Ro
2 +Rx

2 ≤ I(C2;Z|C1, U1, U2, Q) (79)

Ro
1 +Rx

1 +Ro
2 +Rx

2 ≤ I(C1, C2;Z|U1, U2, Q) (80)

By averaging overW k
1 , W s

1 , W k
2 , W s

2 , U1, U2, andQ, we obtain

H(C1,C2|W k
1 ,W

s
1 ,W

k
2 ,W

s
2 ,Z,U1,U2,Q) ≤ n′ǫ2, (81)

Now, once we set,

Ro
1 +Rx

1 +Ro
2 +Rx

2 = I(C1, C2;Z|U1, U2, Q), (82)

and combine (75), (76), (81), and (82), we obtain

1

n′H(W k
1 ,W

s
1 ,W

k
2 ,W

s
2 |Z) ≥ Rk

1 +Rs
1 +Rk

2 +Rs
2 − (ǫ1 + ǫ2 + 2ǫ0) (83)

and (ǫ1 + ǫ2 + 2ǫ0) → 0 asn′ → ∞.

Sincew̄k
2 (w̄k

1 ) is used as a private key to secure the part of the message carried inwu
1 , w

o
1 (wu

2 , w
o
2, respectively)

with the one time pad scheme, the secrecy constraint

1

n′H(W1,W2|Z) ≥ R1 +R2 − ǫ (84)

is satisfied ( [1]) if

Ru
1 +Ro

1 ≤ Rk
2 (85)

Ru
2 +Ro

2 ≤ Rk
1 (86)

where we setR1 = Ru
1 +Ro

1 +Rs
1 andR2 = Ru

1 +Ro
2 +Rs

2.

Finally, we note thatRu
1 = Ru

2 = Ro
1 = Ro

2 = 0 for the first block. However, the impact of this condition on the

achievable rate diminishes as the number of blocksB → ∞. The region achieved by the proposed scheme is given

by (71), (72), (73), (74), (78), (79), (80), (85), and (86).
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APPENDIX B

PROOF OFTHEOREM 2

For a given distributionp ∈ PF , let

I6 , I(C1;Y2|X2, Q)− I(C1;Z|Q),

I7 , I(C2;Y1|X1, Q)− I(C2;Z|Q),

and

I8 , I(C1;Y2|X2, Q) + I(C2;Y1|X1, Q)− I(C1, C2;Z|Q).

If I8 < 0, we setR1 = R2 = 0. Hence, we only focus on cases for whichI8 ≥ 0. This implies thatI6 ≥ 0

and/orI7 ≥ 0. (As I6 < 0 andI7 < 0 implies thatI8 < 0.) We detail the proof for the following cases.

Case 1: I6 ≥ 0 andI7 ≥ 0 for the givenp ∈ PF .

We setU1, U2 as deterministic andRu
1 = Ru

2 = 0 in Theorem 1, and obtain that

Rs
1 +Rk

1 +Ro
1 +Rx

1 ≤ I(C1;Y2|X2, Q) , I1 (87)

Rs
2 +Rk

2 +Ro
2 +Rx

2 ≤ I(C2;Y1|X1, Q) , I2 (88)

Ro
1 +Rx

1 ≤ I(C1;Z|C2, Q) , I3 (89)

Ro
2 +Rx

2 ≤ I(C2;Z|C1, Q) , I4 (90)

Ro
1 +Rx

1 +Ro
2 +Rx

2 = I(C1, C2;Z|Q) , I5 (91)

Ro
1 ≤ Rk

2 (92)

Ro
2 ≤ Rk

1 (93)

As I6 ≥ 0, I7 ≥ 0, andI8 ≥ 0, we can choose the rates as follows:

• If I(C2;Y1|X1, Q) ≥ I(C2;Z|C1, Q), then we choose

Rk
1 = 0, Ro

1 = Rk
2 , Rx

1 = [I(C1, C2;Z|Q)− I(C2;Y1|X1, Q)]
+,

Rs
1 = I(C1;Y2|X2, Q)−Rk

2 − [I(C1, C2;Z|Q)− I(C2;Y1|X1, Q)]+,

Rk
2 = I(C1;Z|Q)− [I(C1, C2;Z|Q)− I(C2;Y1|X1, Q)]

+, Ro
2 = 0, Rx

2 = I(C1, C2;Z|Q)−Rk
2 −Rx

1 ,

Rs
2 = [I(C2;Y1|X1, Q)− I(C1, C2;Z|Q)]+.

• If I(C2;Y1|X1, Q) < I(C2;Z|C1, Q), then we choose

Rs
1 = I(C1;Y2|X2, Q)−I(C1, C2;Z|Q)+I(C2;Y1|X1, Q), Rx

1 = I(C1, C2;Z|Q)−Rx
2 , Rx

2 = I(C2;Y1|X1, Q),

and the remaining rates equal to zero.

These choice ofnon-negativerates satisfy conditions in (87)-(93), and hence we can achieve the rate pair

(R1 = I1 − [I5 − I2]
+, R2 = [I2 − I5]

+).

Similarly, by reversing the indices above, the rate pair

(R1 = [I1 − I5]
+, R2 = I2 − [I5 − I1]

+)
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is achievable. Now, combining these two achievable points we obtain the following achievable region: The set of

non-negative (R1, R2) pairs satisfying

R1 ≤ I1 (94)

R2 ≤ I2 (95)

R1 +R2 ≤ I1 + I2 − I5 (96)

are achievable.

Case 2: I6 ≥ 0 andI7 < 0 for the givenp ∈ PF .

We setU1 andC2 as deterministic and choose the following rates in Theorem 1(other rates are chosen to be0).

Rk
1 = I(C1;Y2|X2, Q)− I(C1;Z|U2, Q)−Rs

1 (97)

Rs
1 ≤ I(C1;Y2|X2, Q)− I(C1;Z|U2, Q) (98)

Rx
1 = I(C1;Z|U2, Q) (99)

Ru
2 = min{I(U2;Y1|X1, Q), Rk

1} (100)

We renameU2 above asC2. Then, for the givenp ∈ PF with I6 ≥ 0 andI7 < 0, the following region is achievable.

R1 ≤ I(C1;Y2|X2, Q) (101)

R2 ≤ I(C2;Y1|X1, Q) (102)

R1 +R2 ≤ I(C1;Y2|X2, Q)− I(C1;Z|C2, Q) (103)

Case 3: I6 < 0 andI7 ≥ 0 for the givenp ∈ PF .

Reversing the indices everywhere in case 2 above, we obtain the following achievable region

R1 ≤ I(C1;Y2|X2, Q) (104)

R2 ≤ I(C2;Y1|X1, Q) (105)

R1 +R2 ≤ I(C2;Y1|X1, Q)− I(C2;Z|C1, Q) (106)

Combining the above cases completes the proof.

Remark 2:The above scheme either uses the one time padded private key as one of the two selectors for the

randomization index (Case 1), or does not employ the random binning coding scheme and only uses the private

key at one of the user (User 2 in Case 2, and User 1 in Case 3). Hence, no superposition coding is present. We

should also note that the achievable rates proved above in Cases 2 and 3, can be higher than that of the statement.

However, as already mentioned, we only use this Theorem as a simple special case of Theorem 1.
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APPENDIX C

PROOF OFCOROLLARY 1

We set|Q| = 1 in Theorem 2 and take the convex hull of the achievable rates.We compute the following terms.

I(C1;Y2|X2, Q) = H(Y2|X2)−H(Y2|C1, X2)

≤ 1−H(ǫ̂2) (107)

I(C2;Y1|X1, Q) = H(Y1|X1)−H(Y1|C2, X1)

≤ 1−H(ǫ̂1) (108)

I(C1;Y2|X2, Q) + I(C2;Y1|X1, Q)− I(C1, C2;Z|Q) = (H(Y1|X1) +H(Y2|X2)−H(Z))

+ (H(Z|C1, C2)−H(Y1|C2, X1)−H(Y2|C1, X2))

By noting that,

H(Y1|X1) +H(Y2|X2)−H(Z) = (H(X2 ⊕N1) +H(X1 ⊕N2)−H(X1 ⊕X2 ⊕Ne))

(a)
= H(X2 ⊕N1) +H(X1 ⊕N2)−H(X2 ⊕N1 ⊕X1 ⊕N2 ⊕ N̂e)

(b)

≤ H(X2 ⊕N1) +H(X1 ⊕N2)−H(X2 ⊕N1 ⊕X1 ⊕N2)

= H(X2 ⊕N1) +H((X2 ⊕N1 ⊕X1 ⊕N2)|(X2 ⊕N1))

−H(X2 ⊕N1 ⊕X1 ⊕N2)

= H((X2 ⊕N1), (X2 ⊕N1 ⊕X1 ⊕N2))−H(X2 ⊕N1 ⊕X1 ⊕N2)

= H((X2 ⊕N1)|(X2 ⊕N1 ⊕X1 ⊕N2))

≤ 1 (109)

where (a) follows by settinĝNe = N1 ⊕ N2 ⊕ Ne, (b) follows from the fact that conditioning does not increase

entropy, we conclude that,

I(C1;Y2|X2, Q) + I(C2;Y1|X1, Q)− I(C1, C2;Z|Q) ≤ 1 +H(ǫ̂e)−H(ǫ̂1)−H(ǫ̂2), (110)

The proof is complete by combining the terms in (107), (108),and (110) with Theorem 2. We note that

equality applies in the three mentioned terms when the variablesC1, C2 are drawn from the uniform distribution

over {0, 1}.

APPENDIX D

THE REGIONRFG INCLUDES THAT OF [11]

We utilize the time sharing parameter as follows. LetQ = {1, 2}, whereq = 1 with prob. (1 − α) and q = 2

with prob.α. The remaining distributions are as follows.
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• For q=1, we setC1 as deterministic andX1 = N̄1 for channel prefixing.C2 and N̄1 are generated with full

powersP2 andP1, respectively.

• For q=2, we setC2 as deterministic andX2 = N̄2 for channel prefixing.C1 and N̄2 are generated with full

powersP1 andP2, respectively.

With this choice the region in Theorem 2 reduces to the following:

R1 ≤ I(C1;Y2|X2, Q) = αγ(P1) (111)

R2 ≤ I(C2;Y1|X1, Q) = (1 − α)γ(P2) (112)

R1 +R2 ≤ I(C1;Y2|X2, Q) + I(C2;Y1|X1, Q)− I(C1, C2;Z|Q) (113)

= αγ(P1) + (1− α)γ(P2)− αγ

(

ge1P1

1 + ge2P2

)

− (1− α)γ

(

ge2P2

1 + ge1P1

)

(114)

Let

RK , γ(P2)− γ

(

ge2P2

1 + ge1P1

)

, (115)

and

R1(α) ,

[

αγ(P1)−
[

αγ

(

ge1P1

1 + ge2P2

)

− (1− α)RK

]+
]+

. (116)

If RK ≤ 0, thenR∗
1 = γ(ρ1)− γ( ge1ρ1

1+ge2ρ2

) is achieved by settingα = 1 in the above region. IfRK > 0, then the

rateR1(α) is achievable. AsR∗
1 = max

α∈[0,1]
R1(α) for RK > 0, the point[R∗

1, 0] is achievable. The achievability of

[0, R∗
2] can be obtained similarly, and hence, the region of Theorem 2includes that of [11].

APPENDIX E

SKETCH OF THEPROOF OFCOROLLARY 4

The channelp∗(y1, y2, z|x1, x2) with states4 given to users reduces to the following equivalent channel.

p∗∗(y1, y2, z|x1, x2) =































p(y2, z|x1)I(y1, ∅), for state1

p(y1, z|x2)I(y2, ∅), for state2

p(z|x1, x2)I(y1, ∅)I(y2, ∅), for state3

I(y1, ∅)I(y2, ∅)I(z, ∅), for state4,

(117)

Note thatp∗∗(y1, y2, z|x1, x2) is not equivalent top∗(y1, y2, z|x1, x2). We describe coding scheme for the channel

p∗∗. The channelp∗∗ will be equivalent top∗, if the nodes can classify the state4 of the channel.

We first consider the channel betweenx1 andy2 over a block ofn′ channel uses. There areP1(1−P2)n
′ symbols

for which the channel is in state 1 (law of large numbers). Thesymbols for state 2 havey2 = ∅ are deleted. (These

correspond to symbols that havex1 = ∅.) The symbols corresponding to state3 of the channel can be modeled

as random erasures. (There areP1P2n
′ such symbols with high probability asn′ gets large.) Finally, the channel

outputs corresponding to state 4 will be erased (as there is no transmission from user 1). Therefore we consider

coding over[P1(1 − P2) + P1P2]n
′ symbols betweenx1 and y2, for which P1P2n

′ symbols are erasures (asn′

gets large).
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We first define the followings.

n1 = P1(1− P2)n
′ (118)

n2 = (1− P1)P2n
′ (119)

n3 = P1P2n
′ (120)

n4 = (1− P1)(1 − P2)n
′ (121)

In the codebook design, we generate2n
′(Rk

1
+Rs

1
+Ro

1
+Rx

1
) codewords denoted bycn1+n3

1 of lengthn1 + n3. For

each symbol time, with probability(1 − P1) we input x1 = ∅ (no transmission event); and with probabilityP1

we generate the channel inputx1 according top(x1|c1) using the next symbol incn1+n3

1 . If there is no remaining

symbols in cn1+n3

1 , we input x1 = ∅ (the effect of this diminishes asn′ gets large). Similarly, we generate

2n
′(Rk

2
+Rs

2
+Ro

2
+Rx

2
) codewords denoted bycn2+n3

2 of lengthn2 + n3, and map it toxn′

2 .

For the decodability, the typical set decoding is employed.For example, the decoder2 will select(wk
1 , w

s
1, w

o
1, w

x
1 )

such that,

(qn′

, cn1+n3

1 (wk
1 , w

s
1, w

o
1, w

x
1 ),y

n1+n3

2 ) ∈ An1+n3

1,ǫ (state 1).

Here, the remaining symbols inyn′

2 are deleted as they are equal to∅. The equivalent channel is the random

mapping ofcn1+n3

1 to xn1+n3

1 , from whichn3 symbols are randomly erased and the remaining ones generateyn1

2 .

Here the error probability (averaged over the ensemble) canbe made small, if

Rk
1 +Rs

1 +Ro
1 +Rx

1 ≤ n1

n′ I(C1;Y2|X2, Q, state 1) (122)

Rk
2 +Rs

2 +Ro
2 +Rx

2 ≤ n2

n′ I(C2;Y1|X1, Q, state 2) (123)

To show that the secrecy constraint is satisfied, we follow the steps similar to that of Appendix A. Due to key

sharing it suffices to show

1

n′H(W k
1 ,W

s
1 ,W

k
2 ,W

s
2 |Zn′

) ≥ Rk
1 +Rs

1 +Rk
2 +Rs

2 − ǫ, (124)

for sufficiently largen′, together with

Ro
1 ≤ Rk

2 , and (125)

Ro
2 ≤ Rk

1 . (126)

Here, the latter is used to ensure that there are sufficient number of key bits (from the previous block) to secure

messages that are carried in the open part (of the current block), and the former is satisfied (from the equivocation

computation provided in Appendix A) if the rates satisfy thefollowings.

Ro
1 +Rx

1 ≤ n1 + n2

n′ I(C1;Z|C2, state 1 or 2) +
n3

n′ I(C1;Z|C2, state 3) (127)

Ro
2 +Rx

2 ≤ n1 + n2

n′ I(C2;Z|C1, state 1 or 2) +
n3

n′ I(C2;Z|C1, state 3) (128)

Ro
1 +Rx

1 +Ro
2 +Rx

2 =
n1 + n2

n′ I(C1, C2;Z|state 1 or 2) +
n3

n′ I(C1, C2;Z|state 3), (129)
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Then the region obtained by equations (122), (123), (125), (126), (127), (128), and (129) can be simplified (using

the same steps given in Appendix B) to obtain the stated result.

APPENDIX F

PROOF OFPROPOSITION1

The proof follows by Corollary 4, where we set|Q| = 1 and compute the followings.

I(C1;Y2|X2, Q, state 1) = H(µ̂2)−H(ǫ̂2) (130)

I(C2;Y1|X1, Q, state 2) = H(µ̂1)−H(ǫ̂1) (131)

and the eavesdropper’s observed information is given by,

I(C1, C2;Z|state 3) = H(µ̂e)−H(ǫ̂e) (132)

I(C1, C2;Z|state 1 or 2) =
(

H(µe1d1 + µe2d2)− 0.5H(d1ǫe1 + d2ǫe2)− 0.5H(d1(1− ǫe1) + d2ǫe2)
)

,

where the last equality is a direct results of the following computation.

H(Z|C1 = 0, C2 = 0) = H(d1ǫe1 + d2ǫe2)

H(Z|C1 = 1, C2 = 1) = H(Z|C1 = 0, C2 = 0)

H(Z|C1 = 1, C2 = 0) = H(d1(1− ǫe1) + d2ǫe2)

H(Z|C1 = 0, C2 = 1) = H(Z|C1 = 1, C2 = 0)

APPENDIX G

PROOF OFTHEOREM 3

Consider the time intervals when Alice is transmitting codewords to Bob. LetαM , αE denote the fraction of

symbols erased at Bob and Eve; andPe
(M), P (E)

e denote the probability of erroneously decoding a received symbol

given that it was not erased at Bob and Eve, respectively. By applying the appropriate random binning scheme [2],

the following secrecy rate is achievable ( [4], Theorem 3).

R = max
p(x)

{

[I(X ;Y )− I(X ;Z)]+
}

,

whereX denotes the input,Y andZ denote the outputs at Bob and Eve, respectively. Considering the transition

model for this channel, we see

H(Y |X) = H(αM ) + (1− αM )H(Pe
(M)).

Now, let Pr{X(i) =
√

ρ(i)} = Π and Pr{X(i) = −
√

ρ(i)} = 1−Π. Then,

H(Y ) = H(αM ) + (1− αM )H(Π(1 − Pe
(M)) + (1 −Π)Pe

(M)),

andmaxΠ H(Y ) = H(αM ) + (1− αM ) whenΠ = 0.5. This results in

max
p(x)

I(X ;Y ) = max
p(x)

(H(Y )−H(Y |X)) = (1− αM )(1 −H(Pe
(M))) (133)
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Similarly, max
p(x)

I(X ;Z) = (1− αE)(1 −H(P
(E)
e )).

Following the half duplex assumption, all data symbols transmitted during the same time interval of a feedback

transmission will be considered as erasures at the legitimate receiver’s channel. Therefore, as the frame length

T → ∞, αM = β. For the rest of the symbols, the probability of symbol errorby the hard decision detector will

be

Pe
(M)(i) = 1− φ





√

ρ(i)

dAB
α



 .

On the other hand, feedback transmissions will introduce decoding errors at Eve. Noting that1 − Pm of those

corrupted symbols will be detected by the energy classifier,we get

αE = β(1 − Pm) + (1− β)Pf

P (E)
e =

βPmPe|m
1− αE

.

Combining these results, we obtain

max
p(x)

I(X ;Y ) = (1 − β)

(

1−H

(

1

T

T
∑

i=1

Pe
(M)(i)

))

≥ (1 − β)

(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

, RM

and denotingRE , (1 − αE)(1−H(P
(E)
e )), we havemax

p(x)
I(X ;Z) = RE , and

R = max
p(x)

([I(X ;Y )− I(X ;Z)]+) ≥ [max
p(x)

I(X ;Y )−max
p(x)

I(X ;Z)]+ ≥ [RM −RE ]
+. (134)

Finally, we consider amax-minstrategy whereby the legitimate receiver assumes that the eavesdropper chooses its

position around the perimeter of the circle and the energy classifier’s mechanismC to minimize the secrecy rate

Rs. Accordingly, the legitimate receiver determines the probability of random feedback transmissionβ and both

the data and feedback signal power distributionsf1 andf2 to maximize this worst case value (note that the rate is

scaled by0.5 to account for the time division between the two nodes). We obtain

Rs = 0.5 max
β,f1,f2

{

min
θ,C

R

}

.

APPENDIX H

PROOF OFTHEOREM 4

Due to symmetry, we only consider the secrecy rate of Alice’smessage to Bob. Following the previous proof,

we have the following achievable secrecy rate,

R = [(1− αM )(1 −H(Pe
(M)))− (1 − αE)(1−H(Pe

(E)))]+,

whereαM , αE denote the fraction of symbols erased at Bob and Eve; andPe
(M), P (E)

e denote the probability

of erroneously decoding a received symbol given that it was not erased at Bob and Eve, respectively. Using half
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duplex antennas, each node will be able to decode a symbol transmitted by the other node only when its own

transmitter is idle and the other node’s transmitter is active. These two conditions are simultaneously satisfied with

probabilityPt(1− Pt) yielding αM = 1− Pt(1 − Pt). We also see that

Pe
(M)(i) = 1− φ





√

ρ(i)

dAB
α



 .

The symbols classified by Eve as being transmitted by Alice can belong to one of three categories. The first, which

takes place with probabilityPt (1− Pt)
(

1− P(A,Bc)→(Ac,B) − P(A,Bc)→(A,B)

)

, represents the portion successfully

detected and correctly decoded by Eve. The second corresponds to symbols transmitted by Bob and misclassified

as belonging to Alice; with probabilityPt (1− Pt)P(Ac,B)→(A,Bc). Those symbols are independent from the ones

transmitted by Alice, and hence, have a probability0.5 of being different. The third category, with probability

P 2
t P(A,B)→(A,Bc), corresponds to concurrent transmissions that are noterasedby Eve’s classifier and misclassified

as Alice’s symbols. The probability of error in these symbols is denoted byPe|(A,B)→(A,Bc). Combining these, we

get

αE = 1−DA

P (E)
e =

P
(EA)
e

1− αE

R =
[

(1− αM )(1 −H(Pe
(M)))− (1− αE)

(

1−H
(

P (E)
e

))]+

≥
[

Pt(1− Pt)

(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

−DA

(

1−H

(

P
(EA)
e

DA

))]+

And the same result applies to the secrecy rate of Bob’s message to Eve by using,

αE = 1−DB

P (E)
e =

P
(EB)
e

1− αE

Finally, in order to achieve symmetric secure communication, we set both rates to the minimum of achievable

secrecy rates for the two nodes. We follow the same min-max strategy as given in the proof of Theorem 3 to obtain

the lower bound onRs.

APPENDIX I

PROOF OFCOROLLARY 5

By ignoring the noise effect at Eve, symbols where both transmitters are active will be correctly decoded at

Eve as the symbol with the highest transmit power. Hence, with no prior information regarding the source of any

transmitted symbol, Eve will not erase any symbol, i.e.E2 ∈ {(A,Bc), (Ac, B)}. Moreover,PE1→E2
= 0.5 for all

six possible combinations ofE1 andE2, Pe|(A,B)→E2
=0.25 for the two possible values ofE2. By applying those

values, we get:

REA = REB = Pt(1− 0.5Pt)(1−H(0.25))
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These values are achieved by employing a symmetricreal-timedetector at Eve, i.e.REA = REB, and each symbol

has to be decoded as being transmitted either by Alice or Bob.However, Eve may choose to maximize the value

max(REA, REB) by either maximizing only one of those values at the cost of minimizing the other, or by allowing

its decoder tomatchthe same symbol to different sources, e.g., letPE1→(A,Bc) = 1 for all possible values ofE1,

then,

DA = 1− (1− Pt)
2,

note thatPe|(E1→(A,Bc)) remains the same. By applying the resulting probabilities in the last example, we get the

rate in (70). It is obvious that by symmetry, havingE2 = (Ac, B) for all symbols results in the same rate.
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Fig. 1. Boundaries of achievable rate regions for the modulo-2 channel, whenǫ1 = 0.2, ǫ2 = 0.3, ǫe = 0.25, andµ1 = µ2 = 0.5. The

outer bound is the capacity of the two way channel without thesecrecy constraints.
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Fig. 2. Boundaries of achievable rate regions for the Gaussian channel, wheng11 = g22 = 1, ge1 = 10, ge2 = 0.1, andρ1 = 1, ρ2 = 100.

The outer bound is the capacity of the two way channel withoutthe secrecy constraints.
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Fig. 3. Boundaries of achievable rate regions for the Gaussian channel, wheng11 = g22 = 1, ge1 = 5, ge2 = 0.1, andρ1 = ρ2 = 1. The

outer bound is the capacity of the two way channel without thesecrecy constraints.
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Fig. 4. Maximum achievable secrecy rate for different distance ratios between Eve and each of the two communicating nodes.
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Fig. 5. β vs. Rs in different configurations for the one way TDM scheme,Rs = 0.5[RM − RE ]+. We consider the case when Alice is the

transmitter and Bob is the legitimate receiver.
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Fig. 6. Pt vs. Rs in different configurations for the randomized scheduling communication scheme,Rs = [RM -max(REA,REB)]+.
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