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Abstract—This paper aims to go beyond resilience into the combine locality and security to develop codes for secure
study of security and locality for distributed storage sysems. locally-repairable DSS.
Security and locality are both important as features of an eficient The security of communication or storage systems can be

storage system, and this paper aims to understand the tradéfs - . s . :
between resilience, security and locality in these systemsn analyzed with their resilience to active or passive attdéks

particular, this paper first investigates security in the presence [9]- Active attacks in such systems include settings weee th
of colluding eavesdroppers, where eavesdroppers are assathto adversary modifies existing packets or injects new ones into
work together in decoding stored information. Second, the pper  the system, whereas the passive attack models include-eaves
focuses on coding schemes that enable optimal local repairk droppers observing the messages being stored/transnfitied
further brings these two concepts together, to develop lodig- ; . .
repairable coding schemes for DSS that are secure againstD_SS_’ cr.yptographlc approaches are often |neffe_ct|ve, gs ke
eavesdroppers. distribution and management between all nodes in the system
The main results of this paper include: a. An improved is extremely challenging to accomplish. A coding/inforioat
bound on the secrecy capacity for minimum storage regeneratg theoretic approach to security is desired, which typicaffers
codes, b. secure coding schemes that achieve the bound forstronger security guarantees than cryptographic schefies [

some special cases, c. new minimum distance bound for locall . . . . . .
repairable codes, d. code construction for locally repairale [7] and, in this context, is logistically easier to realizean

codes that achieves the minimum distance bound, and e. repai Mechanisms that require key management. A secrecy-egablin
bandwidth-efficient locally repairable codes with and without coding scheme is designed based on a worst-case estimate

security constraints. of the information leaked to eavesdroppers, and can natural
Index Terms—Coding for distributed storage systems, locally complement other existing coding schemes being utilized in
repairable codes, repair bandwidth efficient codes, secu. distributed storage systems. In its simplest form, segurit

against an eavesdropper can be achieved using a one-time pad
scheme [[B]. For example, consider that the contents of the
two nodes are given byX; = R, and Xo = R & d, where
A. Background R is a uniformly random bit, andl is the data bit. Then,
Distributed storage systems (DSS) are of increasingly irhy contacting both nodes, one can clearly obtain the data by
portance, given the vast amounts of data being generat@iputingX,;® X,. However, one can not get any information
and accessed worldwide. OceanStoie [1], Google File Systalput the data bit by observing any one of the two nodes
(GFS) [2] and TotalRecal[ ]3] are a few examples of existings I(X;; D) = 0 for i = 1,2, i.e., the mutual information
DSS. An essential component of DSS is resilience to notletween the data and the content of one of the nodes is zero.
failures, which is why every DSS today incorporates a meclhus, information theoretic approach has clearly a sigmific
anism to protect against failures, thus preventing permian&alue in securing DSS.
loss of data stored using the system. Typically, this reside Local-repairability of DSS is an additional property, whic
is afforded by replication, and in recent years, using cgdircan be one of the primary design criteria for the system. The
approaches. corresponding performance metric associated with a coding
Node failures are one of the many design challenges facggheme is itdocality r, which is defined as the number of
by DSS. There are two other challenges, arguably of equeldes that must participate in a repair process when a partic
importance: security and locality. Due to the decentralizeilar node fails. Locality requires fewer nodes to be invdlve
nature of such systems, it is important that they be securigdthe node repair process, which makes the entire process
against a variety of possible attacks. Our focus in this pepe easier from a logistical perspective. In addition, logaig of
on passive eavesdroppers located at multiple nodes in tiSe D¥gnificant interest when a cost is associated with comgcti
that can collude in attempting to gain an understanding ef teach node in the system. Locality, in its simplest form, can
stored data. In addition to being decentralized, DSS systehe accomplished by splitting the data into groups, and each
are often widely geographically distributed, and therefogroup can be coded and stored separately. However, thie nai
locality in storage proves very useful. In this paper, wesdiey  approach requires the connection to all the groups in oaler t
a deeper understanding of locality in storage, and subsgigueretrieve the whole data, and may not be the most efficient in
terms of performance. Therefore, there is a growing inténes
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and security against eavesdropper attack go hand in hadd, for minimum bandwidth regenerating codes, the two notions
a joint design of both features can prove to be particularire different only at the minimum storage regenerating fpoin
useful, as we illustrate in this paper. With this general eavesdropper model, we extend the exist-
In DSS, encoding data before storing it provides the sarirg results on the design of secure minimum storage regenera
level of resilience against node failures as that of the coimg codes for DSS. First, we derive an upper bound on secrecy
ventional approach of uncoded replication, but with muds lecapacity, the amount of data that can be stored on the system
storage space. The advantages that can be leveraged imtiermgthout leaking information to an eavesdropper, for a DSS
storage space may result in a degradation of other perfaenarmploying bandwidth efficient node repair. Our bound is thove
metrics. Being one of such metricepair bandwidthrefers in that it can take into account the additional downloaded da
to the amount of data that needs to be transferred in the evahthe eavesdroppers, and is tighter than the availabledsoun
of single node failure in order to regenerate the data on thethe literature. Second, we present a secure, exact adgpair
failed node. This metric is highly relevant as a large fiatti coding scheme that has a higher code rate compared to that
of network bandwidth in DSS can be occupied by the datd [11]. Utilizing a special case of the obtained bound, we
being transferred during repair process. Thus, it is deldrm  show our both codes achieve the optimal secure file size for
have coding schemes with small repair bandwidth. Most of tlaay (¢1, ¢2) when /s < 2.
maximal distance separabl®DS) codes designed for DSS, Third, we shift focus to locally repairable regenerating
which encode: data blocks tor encoded blocks, store eachcodes. We derive an upper bound on the minimum distance
encoded block on different nodes. This naive approachientaf the vector codes, possibly non-linear, that satisfy aewiv
a high repair bandwidth as the entire original file needs to becality constraint. We develop this bound using the proof
reconstructed in order to regenerate the encoded datadstdeehnique used irEDZ]EDB] Fourth, based on maximal rank
at a particular storage node. [A [9], Dimakis et al. expldiie t distance (MRD) codes, we construct a coding scheme which
problem and establish a trade off between the per node storaghieves this bound on minimum distance. Here, we establish
and repair bandwidth for a code that has the MDS (“arput  a per node storage vs. resilience trade off similar[td [13],
of n”) property, i.e., entire data can be reconstructed by a datad study bandwidth efficiency in locally repairable DSS. We
collector by contacting to ank storage nodes. This new claspresent a minimum distance optimal repair bandwidth efiicie
of codes are referred to asgenerating codesand allows coding scheme. Finally, we consider the problem of progdin
for trading off repair bandwidth for storagg|[9]. Utilizing secrecy against passive eavesdropper for locally repairab
network coding approach, the notion fafnctional repairis codes and present a secure locally repairable regenecatiley
considered in[[9], where the original failed node may not Her DSS modifying the aforementioned coding scheme.
replicated exactly, but can be repaired as an encoded datta thIn all the scenarios we study in this paper, the achievabilit
is functionallyequivalent. However, it is desirable to perfornresults allow for exact repair, and we obtain secure file size
exact repairin DSS, where the data regenerated after thgper bounds from mincut analyses over the secrecy graph
repair process is an exact replica of what was stored on tiepresentation of distributed storage systems. Our main se
failed node. This is essential due to the ease of maintaneiwcecy achievability coding argument are obtained by Uiz
and other practical purposes, e.g., maintaining a codesin $ecret sharing scheme with MRD codes, similar to the claksic
systematic form. Exact repair is also advantageous cordpaveork of [15].
to the functional repair in the presence of eavesdroppsrs, aThe rest of the paper is organized as follows. In the next
the latter scheme requires updating the coding rules whistction, we provide a summary of related work to the problems
may leak additional information to eavesdroppérs [10].ilnpt studied in this paper. In Section I, we provide a general
the resilience of exact repair to eavesdropping attackslad system model together with some preliminary results iiliz
necessity of it for practical purposes, it is of significarterest throughout the text. In Section Ill, we reproduce a clagdsica
to design regenerating codes that not only enjoy an optinsstup for the problem, and provide an enhanced upper bound
trade off in repair bandwidth vs. storage, but also satisgce on secure file size as well as a new secure coding scheme
repair in addition to security and/or locality constraints for minimum storage regenerating codes. In Section IV, we
focus on locally repairable codes, providing new bounds on
minimum distance of such codes. We also present a new
coding scheme that achieves these bounds. In Section V,
In this paper, we consider secure and locally repairabiee present locally repairable codes with security constsai
regenerating codes for DSS. As a security constraint, Wnally, we conclude the paper in Section VI. To improve the
adopt the passive and colluding eavesdropper model pegbengresentation of the paper, some of the results and proofs are
in [11], where, during the entire life span of the DSS, theelegated to appendices.
eavesdropper can get access to data stored @pn mmmber of
nodes, and, in addition, it obsgrves both th(.e.stored coateht -~ Related Work
the data downloaded (for repair) on an additiofyahumber of
nodes. This attack model generalizes the eavesdropperlm
proposed in[[I0], which considers the case/pt= 0. As the
amount of information downloaded when a node repair is iNithis a150 shows that the proof technique usedin [14] basegearalized
progress is equal to the information stored on the repaioelé N hamming weights, which only works for systematic codes,dsessential.

B. Contributions and Organization

odén [Q], Dimakis et al. characterize the information thearet
trade off between repair bandwidth vs. per node storage for



DSS satisfying the MDS (“any: out of n”) property. Based downloaded during> node repairs (corresponding to distinct
on network coding results, functional repair is consideredodes), with/; 4+ ¢ < k. Shah et al. present a coding scheme
and the life span of DSS, for a given set of node failurethat achieves the bound on secrecy capacitylin [10] at the
is mapped to a multicast problem over a dynamic networklBR point based on product matrix codésl[21]. They further
Using this mapping, the authors show that network codinge product matrix codes based solution for MSR point as
based storage schemes achieve the lower bound on repal, which matches the bound in_[10] only wheés = 0.
bandwidth allowing “functional repair’[]9].[116] and_[17] Thus, the secrecy capacity for MSR codes is considered to be
present coding schemes that achieve the lower bound orr repgien when the eavesdropper is allowed to observe downloaded
bandwidth. The work in[[18]=[20] devise low rate codespformation. Moreover, the solution at the MSR point gives
which achieve the lower bound derived inl [9] when datanly low rate schemes as product matrix codes are themselves
is downloaded from all surviving nodes during exact nodew rate codes.

repair. The coding schemes [n [18] and][19].][20] are tadore There is a closely related line of work on designing coding
for £ < 3 andk < %, respectively. In[[21], Rashmi et al. schemes for DSS that are resilient against active attadksiav
design exact-repairable codes, which allow node repaireto &n adversary is allowed to modify the content stored on a
performed by contacting < n — 1 surviving nodes. These certain number of nodes through out the life span of the DSS.
codes are optimal for all parameteirs, &, d) at the minimum The goal of coding scheme is to allow successful decoding
bandwidth regeneration (MBR) point. At the minimum storagef the original data at a data collector even in the presence
regeneration (MSR) point, these codes belong in low raté erroneous data injected by the active adverdary [10], [29
regime, as their rate is upper bounded %))4— % Recently, [30].

researchers have devised high rate exact repairable codes

for the MSR point. [[2R] presents codes for DSS with two Il. SYSTEM MODEL AND PRELIMINARIES

parity nodes, which accomplish exact regeneration whiledbe  Consider a DSS with: live nodes at a time and a file
optimal in repair bandwidth. IN_[23] and [24], permutationyf size M over F, that needs to be stored on the DSS. In
matrix based codes are designed to achieve the bound om regader to store the filef, it is divided into k& blocks of size
bandwidth for systematic node repair for &ll, k) pairs. [25] M each. Let(fy, ..., f;) denotes thesé blocks. Here, we
further generalizes the idea of [24] to get MDS array cod%s

M
. . ) avef; € F . Thesek data blocks are encoded intodata
for DSS that allow optimal exact regeneration for parity e®d blocks, (x.1. . . ., ), €ach of lengthy overF, (a > %)' The

as well. . : ; ;

Towards obtaining coding schemes with “good” localit Eancodmg process is summarized by the function
Oggier et al. present coding schemes which facilitate local G- (F%)k N (F(y)n (1)
node repair in[[26],[127]. In[[12], Gopalan et al. establish a U a

upper bound on the minimum distance of locally repairabMote that we don’t restrict ourselves to linear class of func
linear scalar codes, which is analogous to singleton bounidns. The functionG may very well be a nonlinear function.
They also show that pyramid codes, presented’in [28], aehiehet C denote the codebook associated with the encoding
this bound. Subsequently, the work by Prakash et al. exteridaction G. Given the codewords, nodein an n-node DSS
the bound to a more general definition of locally repairabkores encoded block;. In this paper, we usg;, to represent
scalar linear code$ [14]. In_[13], Papailiopoulos et al.agen both blockx; and a storage node storing this encoded block
alize the bound in[I12] to vector codes, possibly non-lineanterchangeably. Motivated by the MDS property of the codes
and establish per node storage vs. resilience trade offy Ttikat are traditionally developed for data storag in ceizeal
also present locally repairable coding schemes, whichoéshi storage systems$ [81]=[B3], the works on regenerating codes
“k out of n” property at the cost of small amount of excesfcus on storage schemes that have “argut of n” property
storage space per node. are designed and analyzed.

The problem of designing secure DSS against eavesdropGiven this setup, as the network evolves over failures and
ping has been addressed|[in][10].[In][10], Pawar et al. considepairs, we use the following notation to denote the costent
an eavesdropper, which can get access to the data storediod downloaded symbols of the nodes. The symbols stored at
¢ (< k) storage nodes of DSS, operating at the MBR poimiode: is represented by the vecter, the symbols transmitted
with “any & out of n” property. They derive an upper boundrom node: to nodej is denoted asl; ;, and the sed; is used
on the amount of data that can be stored on such a systendenote all of the downloaded symbols to ngdeDSS is
without leaking any information to the eavesdropper, ariditialized with then nodes containing encoded symbols, i.e.,
present a coding scheme in the “bandwidth limited regime; = x; fori = 1,--- ,n. In the event of failure of-th storage
that achieve this bound. Shah et al. consider the designnaide, a new node, namely the newcomer, is introduced to the
secure regenerating codes at the MSR paint [11] as welleSirgystem. This node contacts dostorage nodes and downloads
the amount of data downloaded for node repair at the MSRsymbols from each of these nodes. The newcomer nodes
point is more than what is eventually stored on the repairede thesels number of downloaded symbols to regenerate
node, the eavesdropper may obtain more information if it &ymbolsx;, and store these symbols. This exact repair process
able to access the data downloaded when a node repair ipiaserves the MDS property, i.e., data stored on/fampdes
progress. Therefore, at the MSR point, the eavesdropper(pstentially including the nodes that are repaired) alldies
modeled as accessing the data stored/pmodes and data original file f to be reconstructed.



We note that, for linear encoding schemes, the symbdihis bound can be achieved by employing linear codes, linear

of nodei can be written ass; = {fTg!,---,fTg®}. In network code in particular. The codes that attain the bound
such a case, we refer t§;, as the subspace spanned bin (@) are known as regenerating codés [9]. Given a file
the vectors{g!,---,g®}. For node repairs, using a similarsize M, a trade off between storage per nadeand repair
notation, we consider nodé to transmit symbolsd; ; = bandwidthy £ dj3 can be established frorfil(2). Two classes
{f7gl ;- ,ngfj} to nodej, whereg; ; € S;. We also refer of codes that achieve two extreme points of this trade off
to D;; as the subspace spanned by vectas,, - 7gf’j}_ are known asninimum storage regenerating (MS&jdes and

D; then will be referred to as the subspace downloaded fnimum bandwidth regenerating (MBB9des. The former is
node, which will have a certain dimension in this subspacgbtained by first choosing a minimum storage per node (i.e.,
representation. For a given set of nodds we use the @ = M/k), and then minimizingy satisfying [2), whereas the
notations4 2 {s;,;i € A}. A similar notation is adopted latter is obtained by first finding the minimum possiblend

for the downloaded symbols, and the subspace representatiBen finding the minimunav in (2). For MSR codes, we have:

Throughout the text, we usually stick to the notation of havi M M
vectors denoted by lower-case bold letters; and, sets and (Ctmsrs Bmsr) = <7, m) : )
subspaces being denoted with calligraphic fofit$.denotes )
the set{1,2,...,n}. On the other hand, MBR codes are characterized by
. B 2Md 2M
A. Information flow graph (Qumbr;s Brmbr) = (k:(2d— FE1) R2d—k T 1)) )

In their seminal work [[9], Dimakis et al. models the _ _ _ _
Joragiven DSS withl < n—1, it can be observed that having

= n — 1 reduces the repair bandwidth at both MSR and
MBR points. Though the bound ihl(2) is derived fanctional
repair, the bound and the achievability of MSR and MBR
points are shown to be tight faxact repairas well.

operation DSS using a multicasting problem over infornrati
flow graph (see Figl]1). Information flow graph consists
three types of nodes:
« Source node): Source node containgt symbols long
original file f. The source node is connectedrtanodes.
. Storage nodes(¢i", z¢"t)): Each storage node is repre-
sented by a pair of nodes, input nadé and output node B. MRD codes

zt. Here,;fi“ denotes the data downloaded by nade \ost of the encoding schemes presented in this paper use
whereasz7"" denotes thex symbols actually stored on gptimal rank-metric codes. ARV x m, o, <] rank-metric code
nodei. An edge of capacity: is introduced between;” ¢ is a linear code, whose codewords afex m matrices over
and z¢"* to enforce the storage constraint @fsymbols F,; they form a linear subspace with dimensiprof FYx™

. ) ’ q y
per node. For a newcomer node;’ is connected t0 and for each two distinct codewordsand B, dp (A, B) > <,

z;"* node of d live nodes with links of capacity? \heredy(-,-) denotes the rank distance defined by
symbols each, representing the data downloaded during
node repair. dr(A4, B)défrank(A —B).

« Data collector noded)C;): Each data collector contacts
z°" node ofk live nodes by the edges of capacity
each. :

With the aforementioned values of capacities of vari0|.'h§1

edges in the information flow graph, the DSS is said to empl
an(n, k,d, «, 3) code. For a given grapfi and data collectors
DC;, the file size that can be stored in such a DSS can Bs?a
bounded using the max flow-min cut theorem for multicastin([g}v
using network coding [34].

For an [N x m,p,<] rank-metric codeC we havep <

min{N(m — ¢ + 1),m(N — ¢ + 1)} [35]-[37]. This bound
called Singleton bound for rank metric, and the codes
at achieve this bound are calledaximum rank distance
?MIRD) codes. A construction of MRD codes was given by
bidulin [36]. These codes can be seen as the analogs
Reed-Solomon codes for rank metric. A codeword in an
X m,o,¢] rank-metric codeC, for m < N, can be

represented by a vectar = [c1,ca,...,¢p) Over Fon. In
Lemma 1 (Max flow-min cut theorem for multicasting/[9], the similar way as Reed-Solomon codes, Gabidulin codes
[34)). can be obtained by evaluation of polynomials, however, for
M < rIlginIII)l(ijnmaXﬂow(S — DGy, G), Gabidulin codes the special family of polynomials, called

linearized polynomialsis used. A linearized polynomigl(y)

whereflow (S — DC;, G) represents the flow from the SOUIC&ar F ~ of g-degreen has the formf(y) = S" a_yqi

nodesS to data collectorDC; over the graphg. wherew. €F,v, anda, £ 0 =0T
K3 q' n .

Therefore, e.g., for the graph in Figl M symbol long A codeword in Gabidulin codeC.is defined_ asc =
file can be delivered to a data collectC, only if the min  (f(y1), f(y2),- .-, f(ym)), wheref(y) is the linearized poly-
cut is at leastM. In [9], Dimakis et al. considek successive nomial of g-degreem — ¢ with coefficients given by the

node failures and evaluate the min-cut over possible grapiigormation message, ang,...,y,, € F,v are linearly

and obtain the bound given by independent points over, [36]. Note that evaluation of a
b1 linearized polynomial is afff ,-linear transformation fronfr ,~

M < me{(d_i)ﬁ’a}. ) to itself, i.e., for anya,b € F, andy;,y» € F,~, we have

i=0 flayr +by2) = af(y1) +bf(y2) [38].
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Fig. 1: Information flow graph of DSS. Assuming that fails first the newcomer;; contacts{zs, x3, x4} during node repair.
In the event of second node failure;, data is downloaded frorizs, x4, 25} by the newcomer.

C. Eavesdropper model systematic nodes. Hence in the following we consider the

In this paper, we consider the eavesdropper model defirfedfles with optimal exact repair of systematic nodes, and we
in [11], which generalizes the eavesdropper model consitie@SSume also tha is contained in the set of systematic nodes.
in [10]. In [10], Pawar et al. consider a passive eavesdmgppe e remark that,_ as it WI|| be. clear fro_m the following
who can access the data stored i< k) storage nodes. S€ctions, when a filé of size M is stored in DSS and the
The eavesdropper is assumed to know the coding schepgéure file size achieved i81°, the remainingM — M?
employed by the DSS. At the MBR point, a newcomefymbols can be utilized as public data, which does not have
downloadsaumy: = Ymbr = dBmp: @amount of data. Thus, anSEcurity constraints. Yet, noting the |_0055|b|llt)_/ of stgyithe
eavesdropper does not gain any additional informationi it Public data, we will refer to this uniformly distributed par
allowed to access the data downloaded during repair. Hawe\®® the random data, which is utilized to achieve security.
at the MSR point repair bandwidth is strictly greater thafhroughout the text, we use the following lemma to show
the per node storagems;, and an eavesdropper potentiall)lhat the proposed codes satisfy the secrecy constraints.

gains more information if it is has access to data downloadgdmma 3. Consider a system with information bits random
during node repair as well. Motivated by this, we considgjits r (independent oft), and an eavesdropper with observa-

an ({1, (z) eavesdropper, which can access the stored d@ighs given bye. If H(e) < H(r) and H(r|u,e) = 0, then
of nodes in the sef;, and additionally can access both the(y;e)=0.

stored and downloaded data at the nodes in the€satith

(1 = |&1| and /sy = |&|. Hence, the eavesdropper has access Proof: See AppendiXA. u

to zg’“t,a:ijn,a:;?“t for i € £ andj € &. We summarize the .

eavesdropper model together with the definition of achilityab D- Locally repairable codes

of a secure file size in the following. First we present a general definition of the minimum dis-

— . . tance of a code, and then we give an equivalent formulation of
Definition 2 (Security against ar(y, () eavesdroppenA it, which will be used in the following sections in the sequel

distributed storage system is said to achieve a secure file si
of M* against an(¢;, /) eavesdropper, if, for any set§ Definition 4 (Minimum distance of a code)Let £ denotes
and & of sizel; and /5, respectivelyI(f®;e) = 0. Heref* a set of nodes that get erased. For a code associated with
is the secure file of siz&1®, which is first encoded to fil2of encoding functiorz, as defined in[{1), its minimum distance
size M, and e is the eavesdropper observation vector gived,,;, is defined to be the cardinality of the smallest £gt,

by e £ {a"t, it 29" i € £, € &}, for which we have
Note that, this definition coincides with th/, ¢’} secure H (xp\xc,,) = H (Xiy, .- %i,_ ., ) <M. (5)
distributed storage system in [11], whefe= ¢; + ¢, and

Vi = 0. Here{l’l,...,l’n_lg‘} = [n]\ﬁm

In MSR coding schemes with high rate the number of According to an alternate definition fat,,;,, as given in
parity-check nodes is negligible relatively to the numbér ¢12] for scalar linear codes and later extended [13] for



general codes, In this section, we answer both questions affirmatively. We
first derive a generic upper bound on the amount of data

dmin =1 — ACI] H ()< M Al ®)  that can be securely stored on DSS for bandwidth efficient
) _ repairable codes at the MSR point, which also applies to
whereA = {i1, ... ija} € [n] andxa = (xi,, ., Xi 4 ) It pandwidth efficient exact repairable code. Next, we prove a

follows from r:he d,ef'n'tl'%” Ofdynin Lhat a data collector Ca? result specific to exact repairable code fbe= n — 1, which
reconstruct the original data, 1.€, by contacting any set of 5,ys ys to provide an upper bound on the file size that can

n — dmin + 1 storage nodes in the DSS,' We are interested B securely stored on a DSS against{&n ¢ )-eavesdropper.
ensuring this property of the DSS during its entire life Spagy;s yound is tighter than a bound that can be obtained from
despite of its dynamic nature due to node repairs. Besides Uy, qeneric hound we provide. We subsequently combine the
n locally repairable DS_S’ we are |nt.erested in coding S&#®EM o2 ssical secret sharing scheme duel[td [15] with an existing
e.,C, that h_ave following property: class of exact repairable MSR codes to securely store data in
_(T’ 8) locality: For egch St‘?fed block; (of lengtha), there o presence of af¢y,¢2) eavesdropper. We show that this
exists a set of nodeB(i) of size at most +§ — 1 such that approach gives a higher rate coding scheme compared to that

all elements off’(i) have following two properties: of [11] and achieves the secrecy capacity wker: 2 for any
« Any set ofr nodes inl'(i) are independent, i.e., for anyy,

{j1,---,Jr} CT(i), we have
H(sj,,....s5.)=ra @) A. Improved bound on secrecy capacity at the MSR point

. . _ i In order to get desired bound, we rely on the standard
- Each elemeny < I'(7) can be written as a function of gn55ach of computing a cut in information flow graph

any set ofr elements inl’(i) (not containingj). In other  ,qqqciated with DSS. We consider a particular pattern of

words, minimum distance df|r;), the code obtained by gayesdropped nodes, where eavesdropper observes casttent p
puncturingC overI'(i), is at least. on /, initial nodes and data downloaded during fifstnode
Codes that satisfy this property are calleédd,«) locally failures that do not involve already eavesdropgechodes.

repairable codes. Using the min cut-max flow theorem, this case translates into

an upper bound on the secrecy capacity for any MDS encoding

I1l. SECRECY IN REPAIR BANDWIDTH EFFICIENTDSS scheme that operates on MSR point (e (3)), one extreme of

Considering that the eavesdropped nodes may not Caﬁ? repair bandwidth vs. per node storage trade off defined in

secure information to the data collectors in the bound givefV:

by (2), [10] establishes the following upper bound on th&heorem 5. For a bandwidth efficient repairablén, k) MDS
secure file size when the eavesdropper observes the conggyife, we have

of ¢ nodes. k—ty s
k s i
. ) M* < a — dim Din+j (9)
M < 3" min{(d—i+1)8,a}. (8) i:;H J:Zl '

i=0+1

" ] o ] ) Proof: Consider Fig.[R, which describes a particular
Pawar et al. show that this bound is tight in thendwidth .5¢e that may arise during the lifespan of a DSS. Here
limited regime¢ v < I' = (n — la with d = n —1, by . . . represent the original storage nodes in DSS
presenting a coding scheme that is secure against the @assW yefined in Se€lIl. Assume that nodes ,, 1 2, fail

. . . . . 2 PR
eavesdropper observirigstorage nodes. This point essentiallypsequently in the order specified by their indices. THese
corresponds to MBR point (se€l (4)) when a data coIIect%{”ures are repaired by introducing nodes. 1, ..., zn.e,

contacts all the remaining nodes. [11] proposes produatxnatiy the system following a node repair process associated

based secure coding schemes achieving this bound for anyih the coding scheme employed by the DSS. Consider

at the MBR point. However, the coding scheme proposed g} = {a1,..., 20} as the set of; nodes, where eavesdropper
observes the stored content, afdl = {xn11,..., Tnte,}

[11] can only store a secure file size @ — ¢, — {3)(a— l203)

at the MSR point. At the MSR point, the bound i0 (8) reducq$, the set of nodes which are exposed to the eavesdropper

to . during their node repair, allowing eavesdropper to havessc
M? < (k= b = Lr)a. to all the data downloaded during node repair of &et

From these, it is concluded ifi [11] that the proposed scherht = denote the set ok — (¢, + () remaining original
achieves secrecy capacity only whén= 0. This corresponds N0d€s{z¢, 1, ., x—¢,}, Which are not observed by the
to the scenario for which the eavesdroppers are not allow@@vesdropper directly, and information stored on thesesiod

to observe downloaded packets. This leaves the followifigey l€ak to eavesdroppers only when these nodes participate
questions open: in node repair. Assume that a data collector contacts a set of

« Can bound[(8) be further tightened for MSR point? k _nqdes given by :_Elsu €2 UR in order to reconstruct the
: . .0{|g|nal data. For a fil€® to be securely stored on the DSS,
o Is it possible to get a secure code at the MSR poin

that outperforms the performance of the code propos\év have

in [11]? H(f%) = H(f’|sg,,dg,) (10)



[17] is optimal foréy = 1.

The following lemma is specific to exact repairable linear
codes at the MSR point that employ interference alignment
for node repair withd = n — 1. It is shown in [39] that
interference alignment is a necessary component of an exact
repairable linear scala3(= 1) MSR code. The necessity of
interference alignment holds fgr > 1 as well. Therefore, the
following bound is fairly general and apply to all known ekac
repairable codes at the MSR point. Following the standard
terminology in DSS literature, each nodehas x a repair
matrices,{V; ;}, associated with remaining nodgs# 7. In
the event of failure of nodg, a newcomer downloads; ;x;
from every nodei, i # j. In rest of the section, we usg ;
to denote both a matrix and row-space of the matrix.

Lemma 7. Consider an(n, k)-DSS storing data in a sys-
tematic form with(n — k) linear parity nodes. Assume that
d =n—1, i.e., all the remaining nodes are contacted to repair
a failed node. Lel; ; be the repair matrices associated with
nodei, which is used to perform interference alignment based
node repair for nodeg. Then for each € [k], i.e., systematic
nodes, we have

. (0%
B dim 794 ‘/’Lj = rank Jrel ‘/Z,] S m, (14)
Fig. 2: Node repair in the presence (f, ¢2) passive eaves- '
dropper. where A C [E]\{i}.
Proof: See AppendikB. [
- H(fs|sg“dg2) _H(f5|551’sg2’SR) (1)t follows from the well-known dimension formula for
< H(f%[se,, de,) — H(£%[se,, de,, s7) vector spaces that

I(fs; S7z|Sg1 5 dgz)

dim (D; n+1 + Diny2)
H(SR|SS1 ) d52)
H

= dim (Di,n-i—l) + dim (Di,n+2) — dim (Di,n+1 M Di,n+2)

IN A

sr|d .
kE;;| ) =B+ B — dim (Dipt1 N Dijn2)
(0%
= Z H(S’L’|Sfl+1a"'asi717d52) 22/8_W7 (15)
i=01+1 (n - )
k—0s where [15) follows from Lemm@l 7. Now combinirig{15) with
< Z H(si|dint1s- - dintey) Theoren{h, we get the following corollary:
=htt Corollary 8. Given a bandwidth efficient repairablg, k)
k—to . b2 MDS code withd = n— 1 that employs interference alignment
= Z a — dim ZDMH' (12) o perform node repair, fof, < 2 we have
i=0+1 j=1
. M < (k-4 —1¢ — , 8,0 16
Here [10) follows from the fact that coding scheme em- = ( 1= f2) (e —rlaf,6)) (16)
ployed in DSS is secure against éf, ¢>) eavesdropper, i.e., where
I(fs;s&adfz) = H(fs) - H(fs|5515d52) = 0. M) is a B, if 0o =1
consequence of MDS property of the code, i.e., the original Rl B,62) =3 95 o _ jfg =9 17)
data can be recovered from data stored on any sktrafdes. (n=F)
[ | .
In Theorem[b,dim Zﬁil D;ﬂ-) can be trivially lower B. Corllstrucuon 9f secure MSR codes b+ " 1 o
bounded bys to obtain the following corollary. In this subsection we present a construction which is based

_ on concatenation of MRD cod€s [35]=[37] and optimal repair
Corollary 6. For a DSS employing aitn, k,d, o, ) MSR MDS array codes, called zigzag codés![24].1[25]. The con-
regenerating code, we have: struction of(n, k) zigzag code is given in [25]. Let = n—k.
s Then, this construction providespd x n array with ap* x k
<(k—0,—1¢ — ). 13
M7= ( 1= f)(e=p) (13) systematic part. The repair of a systematic node (colujrig)
This shows that the secure code construction proposedpierformed by accessing row§ = {z € [0,p* — 1] : v - e; =



0}, wheree; is an element of the standard basis Eﬁ' and of the encoding polynomial. Then, we choose the remaining
x is represented with an element &f. pF(k—01—£5)(1—1)% coefficients of the polynomial using the

We first state the following property of this repair processymbols of the secure file. The result of this MRD encoding
ill be encoded by using & + p, k) zigzag code. Note that

Lemma 9. Assume that an eavesdropper gains access to tf{ fice the evaluation of () is a Fy-linear function, all the

data stored inf, nodes and the data stored as well as ths mbols in the parity-check nodes of the final code are given
data downloaded during node repair ify systematic nodes y party- 9

. . the evaluation off () in the linear combinations of the
?bze(rl\i(: p: k) zigzag code. Then the eavesdropper can OnFe%aluation elements of the systematic nodes. This propédrty

1)z2 the constructed code will be calledlinearized property

kp* — pF(k — 6 — 0) (1 -5 This code achieves the following secure file size.

Theorem 10. The secure code obtained by MRD secrecy
precoding of a zigzag code at the MSR point with= p*
Proof: First note that achieves a secure file size given by

Y| =p"!
YiNY;| =p*2, fori # 4,

systematic symbols.

L2
M = (k — 0y — Ly)pF <1— %) ,

wherep = n — k, for d = n — 1. In addition, for any(¢y, ¢5)
such that/; < 2, this code attains the upper bound on the
[V, NY,,...NY;, | =p"t, foriy #io # - #iy. secure file size given in Corollafy 8, and achieves the sgcrec
capacity at the MSR point with = n — 1.

and in general

Let & C [k] be the set of size/s of systematic nodes
(columns) where an eavesdropper has access to the stoeed dat Proof: The repair and data reconstruction properties of
and to the downloaded during node repair data. Then by usiii¢ proposed code follow from the construction of zigzag

inclusion-exclusion principle, we have codes[[24],[[25]. The proof of security follows by Lemink 9,
’ Yy Lemmal3B, and the linearized property of the code. (We note
| Ujee, Yy = Lo - p" 1 — < 2> pF? 4 ( 2) T that a similar proof of security when utilizing polynomidits
2 3 encoding is provided in the seminal paper of A. Shamir on
‘2 AN secret sharing [15].)
- Z(_l) (i)p Substitutingls = 1 (or 2), a = p¥ and3 = % =pFLin
=t (18) shows that the proposed code construction achieves the
_ _pk_gz ( 2)p@2 i upper bound on secure file size, specified in Corolldry 8, for
1 62 S 2. |
= (—ph*) < (52 ple— ) IV. NEwW BOUNDS AND CONSTRUCTIONS FORLOCALLY
! REPAIRABLE CODES
= (") ((p -1 —p") In this section, we study the notion of local repairability
=pF —pF Tl (p— 1) for DSS. As opposed to the line of work on scalar locally

repairable coded [12][[14][[28], where each node stores a
scalar over a field from a codeword, we consider vector lgcall
PP+ L) + (k — 01 — £3)| Ujeg, Y| repairable codes, Which have_ _previously been consi_dered in
k(0 0 k-t — 0) (" — g (p— 1)) [13], [27]. Furthermore, in addition to the vector constioig,

Pt )+ (k= b= b) " —p 2 (p the (r, 6, o) codes we consider, as defined in Seckion 1, allow
— b — bk — 6 — ) <1 B l)b for the possibility ofa > M /k, and non-trivial locality, i.e.,

P the possibility of§ > 2. Thus, these codes are generalizations

of vector locally repairable codes given in_[13], which con-
sidered only the) = 2 case. We note that we are particularly

We now detail the achievability scheme of this section. Létterested in vector locally repairable code with multifdeal

[N x ko, Nka, 1] be a Gabidulin MRD codeN > ka, with ~ parities. Among other advantages, codes having multiplal lo
ka—1 ; parities exhibits a stronger resilience to eavesdropping.

o = p" [B6]. Let f(y) = ;0 cyt, ¢ € Fyv, be the particular, as detailed in Sec] V, both scalar locally regise
corresponding linearized polynomial, i.e., the coeffitienf codes and vector locally repairable codes with single local
this polynomial are chosen as the information symbols, andharity have poor secrecy rate in the presence of a passive
codeword of lengtlka (overF,~) is obtained by its evaluation eavesdropper.
in ka linearly independent (over,) elements off ~. We first derive an upper bound on the minimum distance
Secrecy achieving encoding of the data will be performed a$ (r, J, o) codes, which also applies to non-linear codes. We
follows. First, we choosgp” —p* (k—¢1—¢2)(1~+)" random follow the proof technique of [12],[]13], which is given for
symbols oveif ~ and consider them as the largest coefficientbe single local parity case, and modify it for multiple lbca

Then, the eavesdropper can observe

systematic symbols. |



parity nodes. The bound derived in this section gives theaou

presented in[[14] as a special case without the assumption &f SeFAo =( andi = 1.
having a systematic code. As noted In][13], the bound or?: While H(sa, ,) < M do

dmin establishes a resilience vs. per node storage trade of;
where per node storagecan be increased ovér!/k to obtain
higherd,,.;,. This is of particular interest in the design of codes4:
having both locality and strong resilience to node failures  5:
Next, we propose a general code construction whiclé:
achieves the derived bound af),;,. We use MRD codes
along with MDS array codes to obtain this construction. s th 7:
section, we further introduce the notion @&pair bandwidth  8:
for locally repairable codes and obtain an upper bound on the
amount of data that can be stored in the DSS while supporting
a given repair bandwidth. We note that the idea and analysis

Pick a coded blocls;, ¢ A;—1 s.t. [T'(ji)\Ai—1| >
0— 1.
if H(SAi717SF(j7',)) < M then
setAl- = Aifl U F(_]l)
else if H(s4,_,,sr(,)) > M and3B C I'(j;) s.t
H(sa, ,,s8) < M then
setA;, =A;,_,UB
else
1 =1+ 1, end while
end if
t=1+1

of repair bandwidth is similar to the classical work in thear 12: end while

of repair bandwidth efficient codél[9]. Here, the presence @B: Output: A = A;
multiple local parity nodes can be utilized to repair a locad
node efficiently by contacting more thannodes from the Fig. 3: Construction of a se#l with H(
same group. The notion of bandwidth efficient node repaif 5 «) code.

within a local group becomes important in SEg. V, where we

study the locally repairable codes under secrecy congdrain

sa) < M for an

A. Upper bound ond,,;, for an (r,d,a) locally repairable Consider two cases depending on the way the algorithm in
code Fig.[3 terminates:

We state a generic upper bound on the minimum distanceCase 1:Assume that the algorithm terminates with the final
dmin OF an (r, 8, o) codeC. (The definition ofd,;, is provided Set assigned at stef i.e., after addind’(j) to A,—.. Now

in Section[1).) This will establish a trade off between nod#€ have from(r, 4, ) property of the code that

failure resilience (i.e.dmin) and per node storage)

hi = H(sa,)—H(sa, ,)
Theorem 11. Let C be an(r,d,«) locally repairable code = H(sa,_,uand,_) — H(sa, ])
overF¢. Then, it follows that
! = H(sa_,)+H(sana,_,[s4,_,) — H(sa,_,)
duin(C) <m0 — {Mw +1- UM} - 1) (6—1). (18) = H(sana;, ,lsa,)
@ ro < (ai— 6+ Do (24)

Proof: In order to get the aforementioned upper bound on
minimum distance of arfr, J, o) locally repairable code, we The last inequality follows from the fact that any blockKiigy; )
utilize the dual definition of minimum distance of a code asan be written as a function of any setreblocks inI'(j;) and
given in [8). Similar to the proof iri[12] an@[13], we consttu the fact that we pick in step3 only if |T'(j;)\Ai—1]| > J — 1.

a setA C [n] such that Since at the end of'” iteration, we have all the elements of
H(sa) < M I'(j;) added toA;, out of whicha,; blocks are added at the
' i*" iteration. These newly added packets can not contribute
This along with [6) give us an upper bound @R;,(C). more than(a; — (6 — 1))« to the entropy of se#; asé — 1 of
The construction of a setl is given in Fig.[B. Next, we these packets are deterministic function of other newlyeddd
show a lower bound on the size of the sét output of the blocks ofI'(j;) and blocks of'(j;) that were already present
algorithm described in Fid.3. Note that at each iteration @f 4, ;. From [23), we have that
the while loop in Fig[B, the algorithm increases the size of

(19)

the setA;_; by at mostr 4+ — 1 to get.A;. For eachi, define a; > E +6—1. (25)
(0%
a; = Al = |Aial. 0 Now using [22)
and )
h; = H(S-Ai) - H(SAi—l)' (21) |.A| _ |Al| _ Zai
Assume that the algorithm terminates(at- 1)*" iteration, i—1
i.e., A= A,. Then it follows from [20) and(21) that s
) > > <E +o- 1)
Al = A = Zai7 (22) =
= é Z h; + (6 —
H(sa) = H(s,) Z hi. (23) i=1

(26)
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Similar to the proof of Papailiopoulos et al. [13], we have B. Construction ofl,,;,-optimal locally repairable codes

14
Z h; = ({M-‘ a— a) , (27) In this subsection we present a construction of(am, «)
i @ locally repairable code which attains the bound given in
and TheorenIll. Consider a fil§ to be stored on DSS, of size
M M > ra. We encode the file in two steps before storing it
t= {E-‘ -1 (28)  on DsS. First, the file is encoded using an MRD code. The

codeword (ovei,~) of the MRD code is then divided into
local groups and each local group is then encoded using an
M M MDS array code oveif',. This construction can be viewed
[Ae| = [;W -1+ qaw - 1> (0 —1). (29) a5 a generalization of the construction proposed_in [30]. In
. . o articular, 1etCMRP pe an[N x m, NM,¢c = m — M + 1]
Case 2:The proof of this case is exactly similar to tha@;abidulin MRD code,N > m, where each codeword is
in [12] except a few minor modification. Consider that thgnsidered as a vector of length. over F,v. We take
algorithm terminates with the final set assigned at stép ,,, _ gra, whereg denotes the number of Ioc%l groups in the

It follows from (28), [2T), and[(28) that

(" iteration. Since it reaches the stgépwe have system, which is a system parameter. A codeworlCMRP
H(sa, urgy) > M. (30) is partitioned mtqg groups, each of sizea, and each group
is stored on a different set of nodes,a symbols per node.
As the increment in the entropy is at mest at each iteration, In other words, the output of the first encoding step generate
we have the encoded data stored op nodes, each one containing
/> [MW (31) symbols of a (folded) MRD codeword. In the second stage of
| ra encoding process, we generate- 1 parity nodes per group
Fori < (— 1, from (28) by applying an(r+d§—1,r) MDS array code ove]Fq_on each
local group ofr nodes, treating these nodes as input data
> hi 51 (32) blocks for the MDS array code. At the end of second round of
T ' encoding, we have = (r+ 4§ —1)g = 2 + 2 (5 — 1) nodes,
Fori = ¢, each storinga symbols overF ~, partitioned intog local
< he 33 groups, each of size—d+1. We denote the concatenated code
=" (33) by C'°¢. Next, we prove that the proposed locally repairable
Next, it follows from [22), [BL),[[32), and (83) that cpde Q“’C indeed has the maximum minimum distance as
given in [I8).
4
|Ae| = Zai Theorem 12. The proposedr, d, «) locally repairable code
i=1 C'° attains the bound[{18), i.e., its minimum distance
-1 loc iofi
h; hy dmin(C"°°) satisfies
> — -1 —
> ; (a +6 1) + =
‘
1 loc M M
- = . _ _ dmin =n—|— 1-(|—|-1 —1). (37
S SRR @) =n— | 2] +1- (2] 1) @-1. @0
(e (] )
o @ re Proof: Recall that a codeword of a Gabidulin MRD code
— [MW — 14 ([MW _ 1) (6—1) (35) can be considered as an evaluation of a linearized polynomia
o ro fy) € Fyn[y] on m linearly independent points ovéf,,

where [3%) follows from[(31) and(27). Now combinirig (6){¥1:- - -»¥m}, Wherey; € Fyv, 1 < < m. The polynomial
@9), and [(3b), we get f(-) has original data symbols that need to be encoded as

its coefficients. Note that for reconstruction of the orain
dmin(C) <1 — {M-‘ 1 ({M-‘ _ 1) (5-1). (36) plata it is sufficient to have evaluations 6f-) on M points
@ ro in Fov, {f(p1),...,f(pm)}, such that{pi,...,pp} are
m linearly independent points ové?,. (See, e.g.,[[26],[[35]-
Usinga = (1+¢)%2 for the bound given in the above theo{371)

rem, we obtainl,i, < n— 1L+J+1_( ﬁ —1)(6-1). Utilizing ]Fq—linearity property off(y),_ MDS property of

For the special case af = 1, this bound matches with the Y code used in the second encoding stage, and the fact
bound in [9]. For the case af = M/k, i.e., the minimum that M > ra, we have that any nodes in any group contain
storage point for locally repairable codes, the bound reguc@valuation off(y) atra linearly independent ovef, points.

t0 din <n—k+14([k/r] —1)(§ —1), which is coincident  Let7 andj be two integers such tha! = m—ra(i+1)+7,

with the bound presented ih [14]. 0<i< = —1,and0 < j < ra — 1. Now it follows from



41__8) that | 1 a1 Gz az a4 | | 6 b1 by b3 by | |11 C1 C €3¢y
m

m
dmin(cloc) -1 S — 4+ (6— 1) |2 as g ay ag | |7 bs bg b7 bs | |12 C5 Cg C7 C8 |
(6% T
_ M . M _1 (5 o 1) | 3 Qg ayp a1y a1 | | 8 by big b1 b1z | |13 Cy C1p C11 C12 |
04 ra A @ 0 bbb b C C C o C
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m M
a |a 5 PpEpE P | |10 3 g ¥ | |15 P5 16 1% P |

Fig. 4: Example of arfr = 3,5 = 3, « = 4) locally repairable

code withn = 15 and M = 26. The code has minimum
Next, we treatj = 0 andj > 0 cases separately and shovwistances.

that C'°° has optimal minimum distance in both these cases.
Casel (j = 0): In this case[£4] = 2 — p(i 4+ 1) and
[24] = 2 — (i 4+ 1). From [38) we have,

e

+ mo_ M —1 (5 _ 1) local group 1 local group 2 local group 3
ro Tt
3

oin =1 <r(@+1)+ (@G +1)(6—1)+(0—1) Therefore, the original data can be recovered even when
=i+ D) +5—1)+ (5 —1). (39) 1)(r+d—1)— [Z] nodes fail.
This establishes the optimality 6f°¢ in terms of minimum

Now, we show that anyi + 1)(r + 3§ — 1) + (6 — 1) node dist .
erasures can be tolerated b§°°. In other words, even after ¢'>1a"¢€- _ . _
(i4+1)(r+6—1)+(d—1) erasures, we have evaluationsfdj) Next, we illustrate the construction 6f°¢ with help of an
at M linearly independent points ovéY,. Here, we point out example.

that the worst case erasure pattern is when the erasurearappe
. . X
in the smallest possible number of groups and the numbgr

e ) . r=9g =3, a =4, m = rga = 36. Thenn = 15 and
of erasures inside a local group is maximal. Therefore, we as).d <5 Let(a g b bro. c c12)
WWUmin > 9J- 1y---,08012,01,...,012,C1,...,C12

consider the case \_/vhen all the _symboISz i 1 groups are be a codeword of afV x 36, N - 26, 11] MRD code, which
erased, and there is a group wiih— 1 erased nodes. Due. s .
is obtained by encodingl = 26 symbols overF,~ of

to application of MDS array co_de in each local group, less I original file. Here we assume thaf > 36. The MRD
equal tod — 1 erasures in a particular group does not affect the

number of evaluations of (y) on linearly independent pointsCOdeWOrd is then divided into three grougss,.. ., a12),

that particular group has to offer, i.exx. So in this case, the (b1,...,b12), @nd (cy, ..., c12). Encoded symbols in each
number of the remaining symbols of an MRD codeword whic roup are stored on three storage nodes as shown inJFig. 4. In

. . S . ~the second stage of encoding, an MDS array code is applied
(/:\(jlrrespond to linearly independent pointsris- (ra(i+1)) = on each local group to obtaiti— 1 = 2 parity nodes per local
Case2 (j > 0): In this case[%] —m (i 1)+ {ﬂ group. The coding scheme is !Ilustrated in Aig. 4. _
and [Mw =m (i +1)+ (Lw — m _; |t follows from Note that, any three nodes in a local group provide evalu-

(38) that e re ations of the linearized polynomidl(y) associated with data
. symbols atl2 linearly independent points ovéf,; and, the
dmin —1=7(G +1) — FW +G+1)(6—1) polynomial f(y) can be recovered from its evaluations 2t
@ _ linearly independent points ovéf,. Here, we illustrate that
— i+ D) 4+6-1)— [lw ' (40) any four node erasures can be tolerated by the coding scheme

employed in this example. If there are at most two erasures in

As in the previous case, we show that original data can Bedroup, then we can obtain evaluation pfy) at 12 linearly
reconstructed even after the failure of afiy-1)(r+6—1)— independent points from each local group, thiés> 26 = M

[4] nodes. We again establish this by showing that we c&@ints from all three local groups. If there is a group with
find evaluations of (y) at. M linearly independent points from three node erasures, then_ this group can provide evaluation
the remaining nodes in the DSS. As previously, we consid@f /(y) at only 8 linearly independent points. However, the
the worst case erasure pattern, where the erasures applear i@ther two groups can give evaluation ffy) at 24 additional
smallest possible number of groups and the number of easufearly independent points, which makes the total numeber
inside a group is maximal. Assume that all the symbols indesirable evaluation to b82 > 26. Finally we consider the
local groups are erased, and there is a local group with Worst case mentioned in the proof of Theorem 12. Suppose
§ —1—[L] erased nodes. In this case the available numgBgre is a group with four erased nodes, then this local group

ample 13. Let us consider a DSS witt = 26, § =

of evaluation off(x) at linearly independent points is provides evaluation of (y) at 4 linearly independent points,
_ which taking into account the contribution from other two
m—rai + ((r +6—1)— (r +5—-1— FD) «a local groups (additional24 points), gives the evaluation of
. a fly) at 28 > 26 = M linearly independent points. Therefore,
—m — rai + {iw a>M (41) ]tcgﬁ original file can be reconstructed even after four nodes
« .
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C. File size upper bound for repair bandwidth efficient ldgal
repairable codes

h—1
M < min {ra, Z min{max{(d — )5, 0}, a}} (42)

=0
In this subsection, we introduce the notion of repair band- T ro2
width for locally repairable codes. In a naive repair pssclor ~ + Z min {Taa Z min{max{(d — i)$3, 0}, Oé}}
a locally repairable code, a newcomer contactseodes in its j=1 =0

local group and download all the data stored on these nodes.

The newcomer then regenerates the data stored on the faWd€resr = n — dmin +1— (r+0 —1) {%J
node and stores it for future operations. Following the bife ] . .
work of bandwidth efficient repair in DSS due fd [9], we allow Pro’gf. Consider aidata collector )/CVIW& = G1ke =
a newcomer to contact more thamodes in its local group in G2, -5 | 2oomintt | T g["}?giﬂﬁlj’ | 2oteintl | 4o
order to repair the failed node. The motivation behind thi®i ... = £, = 0, and IC[nfdmmHJH C gLn—dnLi7l+1J+l s.t.
lower the repair bandwidth of a locally repairable code.i§Th et et
also improves the secrecy capacity of such codes as deta

in SectionV.)

1 = h. Now, the bound in[{42) follows by
) WJ"'I
i

nding various cuts in information flow graph (Figl 5). For
each group, we consider cuts similar to the ones givenlin [9].

In the rest of this section, we restrict ourselves to Ioca”Mere the data collector connects/taodes for the first term

repairable codes that have the maximum possible minim _ ;
distance as described in_{18). Since the upper bound on m&?—m) andr + 0 — 1 nodes for each of the terms in the

. ) . X mmation of the second term [n{42). Now, considerittte
mum distance for locally repa|rablle.cpdeslﬁl(18) Is acfbiva node out oft nodes that data collector connects in a particular
by only those codes that have disjoint local group, we foc

Youp. (Herek = h, ork = r + 6 — 1 as described above.) A
only on such codes. Here, we assume thatt 6 __1)|”' cut betweenri" andz9u® for each node gives a cut-value @f
Let Gi,...,G, denoteg = 35— disjoint sets of indices of 7

: d h of si 5_ 1) Each set ; On the other hand, far=0,--- , k — 1, if the cut is such that
storage nodes, each of sige+ 5 —1). Each set represen Syin belongs to the data collector side, we consider tHat i)

a Iogal group, and a failed n(?d_e in a particglgr local group I'ﬁe nodes are connected together withodes that have been
repaired by contacting remaining nodes within that group, reviously repaired. In our setup, for such a cut, the clitieva

wherer < Cég r|+ fj_ 2 Dburlln% the nodhe rfetphalgéprozess ivaluates tanax{(d —)3,0}, as fori > d the repair node is
newcomer downloads symbols from each of thesénodes. considered to contact only the previously repaired nodes, a

Next, we perform the standard min-cut max-flow basedfnce does not contribute to the maximum flow. ~  m
analysis for locally repairable DSS by mapping it to a multi- Note that the codes that are under consideration have
casting problem on a dynamic information flow graph. (Theroperty that each local group has entropyref and any
information flow graph representing a locally repairablesiis Set ofr nodes has« independent symbols. (See definition of
a modification of the information flow graph for classical DS$'»9)— locality in Sectior(l.) Therefore, node repairs within
analyzed in[[9] and is first introduced in [13] for naive rigpa each local group have to ensure thl_s property. This implies
where the newcomer contastsiodes.) We assume a sequendd@t €ach local group and its repair can be related to an
of node failures and node repairs as shown in Eig. 5. W& +9 — 1,7,d, @, 3) MSR regenerating code with a file of
consider that each local group encounter the same sequenc@i@s - Hence, when a collector connects to anyodes in &
node failures and the node repairs that are performed al re8fPUP. it can get all the information that particular grougsh
of these failures. Each data collector contagts du, + 1 L0 Offer. Therefore, similar to the analysis givenin [9] tbe
storage nodes for data reconstruction. A data collector G&sSsical setup, the parameters need to satisfy
associated with the nodes it contacts for data reconsbructi e
(K1,Ko,...,Ky). Here ; C G, is the set of indices of Ta:Zmin{(d—i)ﬁ,a}, (43)
nodes that a data collector contactsiifi local group and =

?_IKil = n — dmin + 1. Next we derive an upper bound
on the amount of data that can be stored on the DSS whiich leads to the requirement 6f — i) > « for eachi =
ensuringn — duin + 1 property, i.e., each set of — di, +1  0,---,7 — 1. Then, minimumg3 is obtained as}* = =7+
nodes allows a data collector to recover the original fildsThWhen node repairs are performed by downloadifhgymbols
upper bound is used to derive a repair bandwidth vs. per ndiem d nodes for each failed node, the boundlinl (42) reduces
storage trade off for minimum distance optimal codes witt®
(r, 0, ) locality. In what follows, we add two more parameters n—do 41
in the representation of locally repairable codes and @enot M < {$
them by the tupldr, 6, a, d, 3). r+d6-1

J ra+ min{h,r}a (44)

where h is as defined in Theore 114. This establishes the
Theorem 14. For an (n, k) DSS employing af,d, «,d, ) file size bound for bandwidth efficient,,;,-optimal locally
locally repairable code, we have repairable codes.



13

N — dpin + 1 I @
nodes

Fig. 5: Flow graph for(r, ) locally repairable code. In this graph, node pdir§", I'yut}¢_, with edge of capacity« enforce
the requirement that each local group lasentropy. Heren = r 4+ § — 1.

D. Construction of repair bandwidth efficient,;,-optimal and

locally repairable codes
yIep h—n—dmm-l-l—(r—i—(?—l){wJ
Now it is clear that node repair within a local group is per- r+o-1
formed by treating each local group as(@r-6—1, 7, d, a, %) =(r+0-1g-(G+1)(r+d-1)—-(5-1)
MSR regenerating code. Using a random linear network ) 0—1
coding (RLNC) over large enough field, the bound [nl(44) - (r+d-1) (g —(+1) - L T 1-‘)
is achievable[]9],[40]. Since we don't get any reduction in - (45)
repair bandwidth(3) by settinga greater than/‘—/‘ we focus
on the case whemw = 4 for the Construcuon presentedFor = r, the right hand side of[{44) becomes

here. Remarkably, the code presented in Se¢tion]IV-B, wh MJ ra+ra=ar(g—(i+1)—1+1) =ar(g —
an MSR code is employed for the second encoding stage., 1)) = M, the size of file that is encoded usiig°°.

achieves the bound (#4), when we have\. We establish ~ now we consider the second case considered in the proof of
this claim in the following theorem. Theorent IR withj = ab, whereM = m —ra(i+1) +ba =

Theorem 15. Let C'°¢ be a code obtained from the con-9 — % — 1)ra +ba, for some intege) < b < —1. Here,
struction described in SeE_TV-B with = 24 and an MSR We have used the fact that = gra. In this cased, —
regenerating code employed in the second encoding stageltcr i+1)(r+d—1)—bandh = (r+d—1)g—(i+

generate local parities. If] M, thenC'°¢ attains the bound 1)(" + 0 — 1) +b—(r+0d — 1)(9 —i—1)=b<r, since

[@3), i.e., the size of a file that can be stored by using th %J =g—i—1+ |5 | = g—i—1. Therefore the
code satisfies upper bound on the file size 0 {44) becorr& W"“ ra+
ned. . 41 ha = (g—i—Dra+ba =gra—(i+1 ra—i—ba—
M = {$J ra + min{h, r}a This establishes that'*, when MSR code used to generate
r+o—1 its local parities, attains the bound given [inl(44). |
In the following example, we illustrate the aforementioned
whereh =n —dmin +1—(r+6—1) {%J construction for repair bandwidth efficient locally redite

codes for a particular choice for system parameters.
Proof: Similar to the proof of Theorem 12, we consider

two cases depending on the difference between the lengthE¥@mple 16. Consider the following system parameters.
I\_/IRD_ codeword (Qutput of_flrst stage of encoding)and the (M, n, a7, 8,m, N) = (24,15, 4,3, 3, 36, 36). (46)
file size M. We first consider the case when|(m — M).

(This corresponds to Cask in the proof of Theoreni12). First M = 24 symbols oveif s are encoded to a codeword
Recall that in this case, we have = m—ra(i+1) = ra(g— represented byas, ..., a12,b1,...,b12,c1,...,c12) Using the
i—1),n=r+6—1)g,dnin—1=(G+1)(r+5—1)+(0—1), [36 x 36,36 - 24,13] MRD code. Here36 encoded symbols
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| 1 @mayazay | | 6 by by b by | |11 130y | (41, ¢2)—eavesdropper, we have
2 as ag ay ag 7 bs bg br bs 12 C5 C C7 C8 . g
| | | | | | M?® < ) Imin ZH(S)Q Sg'li,dgéi).
| 3 ag ay ap ai | | 8 by b1g b1 b1o | |13 Cy C1o €11 C12 | ({gf}fzp{gﬁ}?:] AR, )GX i—=1
: 47)
|4 P P 15 i | | 9 piphpiph | |14 Pi PS5 15 P | , _
Proof: Without loss of generality we can focus on sets
5 PR DE s pe | |10 V5 16 P PR | 15 p5 PG p7ps | of indices{&}}/_, and{&}7 ;| such that|€} U &| < r for
the purpose of getting upper bound on secrecy capacity as
local group 1 local group 2 local group 3 . - .
eavesdropping nodes in a group gives eavesdropper all the
Fig. 6: Example of repair bandwidth efficiett = 3,5 = information that particular group has to offer. As introddc
3)—locally repairable code witbM = 24 andn = 15. The in Section(]), we represent stored and downloaded content at
code hasly, = 8. nodei (set A) ass; andd; (repectively,s4 and d_). We

assume thatki, ..., K,) s.t. & UEL C K; or K; = (. Note
that we still need that&,| + |€2| = ¢1 + ¢2 < k in order to
over F s are evaluation of a linearized polynomial di6 have a non-zero secure file size.
linearly independent oveF, points. The encoded symbols are
part|t|onedl |nt93 groups each of siz€2 and stored or9 nodes H(£%) = H(f*|se,, dg,) (48)
as shown in Figl 6. We further adilnodes,2 nodes for each

local group, using a(5,3) exact repairable MSR code with = H(f%se,, de,) — H(E[se,, de,, ) (49)
o =14 (e.g., (5,3)-zigzag code). = I(f*;sclse,, de,)

From (I8), the minimum distance of this code is at 3ot < H(sxls¢,,de,)
fact, it is exactly8 as we have evaluation of data polynomial = H(sk,,.-- ,s,cg|sg% yooesSgader, deg)
over 24 lineally independent oveF, points even when any g
7 nodes fail. Moreover, each failed node can be repaired < ZH(SKJSgudgiL (50)
bandwidth efficiently as an exact repairable MSR code is used i—1 b

within each local group. where [48) follows from the secrecy constraint, afhd] (49)

follows by the data collector’'s ability to obtain the whole
data. Since we get one such upper bound for each choice of

V. SECRECY INLOCALLY REPAIRABLE DSS (& {8 {Ki}_,), we have
g9
In this section, we analyze locally repairable DSS in the H(f*) < min ZH(SKJsgli,dgé),
presence of secrecy constraints. The eavesdropping medel i (e 8y Ak, )ex
as defined in Sectidnlll. We first derive a generic upper boupghere & consists of all choices for
on the secrecy capacity of dn,d, a, d, 3) locally repairable (fgivs  (eiy9  (K,}9_ ) which satisfy the requirements
code, which we later specialize for specific cases of systgfentioned above. - m

parameters. While addressing specific cases, we also presefow we consider two cases depending on the number of
secure coding (_:onstruction that achieve the respectiverupp,ca| parities per local group. The analysis of the first céme
bound for certain parameters. single parity node per local group, shows that the perfomaan
Consider a data collector, which contaets— dnin + 1  of such coding schemes degrade substantially in the presenc
nodes. LetC; denote the indices of nodes that are contacted an eavesdropper that can observe the data downloaded
by the data collector in-th local group andC = U?_,K; during node repairs. The second case, multiple parity nodes
with || = n — dmin + 1. Similar to Section1I=A, we per local group, allows the node repair to be performed with
classify eavesdropped nodes into two class@s:contains smaller repair bandwidth which results in lower leakage to
storage-eavesdropped nodésrfodes in total) and, contains such eavesdroppers observing downloaded data. In both,case
download-eavesdropped nodes (odes in total). Consid- we use the vectork = (I},...,1{) andly = (13,...,13) to
ering the local groupi, we denote the set of indices ofrepresent a pattern of eavesdropped nodes.
storage-eavesdropped nodegaand download-eavesdropped
nodes asfs. Here, we havef; = UL &, & = UL,E5, A case 146 — 2

and Y7 18 = £y, Y9 15 = {4y, whereli = |& _ _ .
and %:1::1 Tgé-l. W(la derzlg%eQX to r;present slet of lugles Consider locally repairable codes prese.ntedIrl [13], whlch
({E1Y0_, (€4}, {K: L) satisfying these requirements.correSpond t® = 2. For such codes, during node repair a
n tlhé:flc’)lloiviﬁ:ghwel 6r:<)1vide our generic upper bound off€Wcomer node downloads all the data stored on other nodes

the secrecy capacity df- 6, a, d, 3) locally repairable codes in the local group it belongs to. Since the data on each node in
- SN a local group is a function of data stored on any set nbdes
against an/y, () eavesdropper. _ . o :
in a local group, all the information in that group is revehle
Theorem 17. For an (n, k) DSS employing afr,d, o, d, 3) to an eavesdropper that observe the data downloaded during a
locally repairable code that is secure against arsingle node repair. In other words, we ha¥esg, |d¢;) = 0 =
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H(sk,|dg;) = 0, when &L # 0. Accordingly, consider the wheref(a, 3*,14) is the amount of information that an eaves-
eavesdropping patteda = (1,1,...,1,0,...,0) with ones at dropper receives from one intact node (a node not eaves-
first £, positions and; = (0,...,0,1¢2"! ... 19) with zeros dropped) during the repair of€i| nodes in thei’" local

in first /5 positions. Moreover, consider a data collector whicgroup. Next, we consider data collector associated with the
accesses set of nodes as used in the proof of Thebrém fattern(K,,...,K,) used in the proof of Theorefn 114, and
These eavesdropping pattern and node access pattern by thetdollowing eavesdropping pattern associated With

collector along with[{5D) give us the following upper bountd o

the amount of information that can be stored securely on the h=...=ll=s+1,
DSS that employ afin, k,r, 6 = 2) locally repairable code: g o ZV ﬁj:gin1+lj .
n — dmin + 1 + ’
Hf) < || ————— h— (¢ 14 51 nodmintl| 4o
( )_[L 1 JT-l- (27"—!— 1)} a, (51) ZQL R J+ _ :lg:O,
e . _ n—=dmin+1 n—dpmintl
whereh =n — dmin +1— (r + [ =32 < andll e (54)
In order to see that the above bound is tight, we

present a coding scheme which allows file of size

_ n—dmin+1
Qbifﬁﬂ r+h— (lar + él)) a symbols to be securely Here we assume thaj = s ( r+o-1 D +p+v, for some

. . isfyi < <h).
stored against ar{¢y, ¢2)-eavesdropper. Take a secure fil 50 V) §apsfymgO <ptv<sandy<h)
) et Combining [58) and{34) we get
of size QTJ r+h— (bar + El)) a and (bar + {1)a
random symbolsr = (71,...,7¢,r10,)a). We construct a

p
linearized polynomialf(y) with the q% reh)a HE)S Z;(T —(+st 1) (a—6a,f s+ 1)
i -

symbols (including both the secure file and random symbols) | 2tpint |

as its coefficients, and evaluate the polynomial. et = Tt _

({7”*fgﬂrif+1j 7+ h) a linearly independent points ovég,. T Z (r— (i +9)) (@ — 6 57, 5))
These M symbols (evaluations off (y)) are subsequently ?:’JH ,

encoded with a minimum distance optimal § = 2, a,d = + (min{r,h} — (If +v)) (@ = 0(a, 5",v)) . (55)

r,f = «) locally repairable code for ain,k) DSS, e.g., . -
coding scheme proposed i [13]. It follows from Lemita ? If we furth_er assume that the encoding process w_|tr_1|_n each
that the file is secured against &, ¢2)-eavesdropper if (i) ocal group is a linear array code (MDS by the definition of
H(e) < H(r) (which is trivially true as the eavesdropper obl:9) locality) andd = r + ¢ — 2 within each local group
serves at mostor + /1) linearly independent symbols) and®©" npde repair (!.e., all the live Ioca_ll nodes are contadted

(i) H(r|u,e) = 0. It remains to show the latter requiremenfEPai"): tl_hen similar to Corollary] 8, it follows from Lemr 7
also holds. We first note that as the outer code is essentiaﬂ.l')"?‘t fori; <2,

an MRD code, it can be viewed as an MDS code. Thus, . B* i =1

given u, original data symbols, eavesdropper can remove the O(a, B, 15) > { 28* — " o if l% —9 (56)
contribution of monomials associated with secure data ysnb (o-1 2

from the evaluation of(y_),.and it can thgn recover the randony;oy (58) and [[5B) can be combined to obtain a bound on
symbols from the remaining polynomial at hand. (Note thaH(fs)'

givenu, the eavesdropper h&&r+ (1)« linearly independent
evaluations of the reduced polynomial to solve fogr +¢1 )«
random symbols.) Thus, we obtain thd{r|u, e) = 0, which

establishes the secrecy claim of the proposed scheme. andl; < 2. We take a file with its sizeM®, equal to
the right hand side expression in155), andvé — M* =

2o ) loclly rapatale cocs, the secresy capaciy againc 7125 | o+ mindh. o — M i uniform rando
4 @ yrep ' y capacily ag ote thatM is equal to the upper bound ib—(44).

an ({1, ) eavesdropper is given by symbols.
’ Now we encode thes@1 symbols, secure data symbols and

random symbols, using the two step encoding scheme pre-
sented in Section IV-D. In particular, we emplay+6 —1,r)
zigzag code within each local group in the second stage of
B. Case 2§ >2 anda = % encoding process. The secrecy and optimality claim of the
In this case, we assume that each node repair within a lo ﬁ)po_sed scheme under given assumptlonf_pfu)llows from
group is performed in a bandwidth efficient manner. Theesfo mean;ed property of the MRD coo!es (used in the first stdge o
encoding) and the analysis given in Secfion 1lI-B. We présen

[ h ly th It of Th 5t t
in each group we can apply the result of Theotdm 5 to ge this in the following.

Next, we present a code construction for securely storing
data against an eavesdropper wligr< 2 ({%J) +2

_dmin+1 +
J\/lszuanJr—i-h—(fzr—i—él)] a.  (52)

min(|K;],r) =11 +13) )
H (s, |sgi,de: ) < a—0(a, B 1 Corollary 19. For an (n,k) DSS employing an(r, >
( e 52) Z ( ( 2)) 2, a,d, 3*) locally repairable bandwidth efficient code, the
(53) secrecy capacity against aff;, ¢2) eavesdropper withfy <

Jj=1
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2 [%W and ¢, + ¢> < k is given by precoding, which requires extended field sizes. Designing
codes that achieve the stated bounds with lower field sizes is
. PR . i an interesting problem. 3) One can also consider cooperativ
M= Z(T = (1 +12)) (o = 0(a, 57, 15)) (or, multiple simultaneous node failure) repdir |[41]2[48]
=1 I a DSS. Secure code design in such a scenario is recently
[" e J considered in[[44]. Codes having both cooperative and lipcal
+ Z (r— (1 + 1)) (o —0(c, B%,15)) repairable features can be studied. As distributed systems
i=p+1 storage problem may exhibit simultaneous node failures tha
. J o 1d * 7i need to be recovered with local connections. According to ou
+ (min(r, h) = (i3 +13)) (a — 0l ’12)) ’ best knowledge, this setting has not been studied (eveouith

p

(57) security constraints). Our ongoing efforts are on the desig
where 08 = ¢4, i + 14 < r, 15 < 2 is given by(54) coding schemes for DSS satisfying these properties.
j= {7”;‘%21*% +1, andf(a, B*,13) is given by(58). APPENDIXA
PROOF OFLEMMA 3
VI. CONCLUSION Proof: The proof follows from the classical techniques

eqsiven by [7], where instead of-leakage,c-leakage rate is

Distributed storage systems store data in multiple nod considered. (The application of this technique in DSS ig firs

These systems not only require resilience against nodeési . .

but also, due to their distributed nature, they may have ?8n5|dered in[[11].) We have

satisfy security and locality constraints. Regeneratindes I(u;e) = H(e)— H(elu) (58)
proposed for DSS address the node failure resilience while

—
s}
=

efficiently trading off storage vs. repair bandwidth. Insthi < H(e)— H(elu)+ H(elu,r)  (59)
paper, we considered security and locality aspects of godin (b)

schemes for DSS. The eavesdropper model analyzed in this < H(r) - I(erfu) (60)
paper belongs to the class of passive attack models, where th © H(r|u,e) (61)
eavesdroppers observe the content of the nodes in the system @ | (62)

Accordingly, we considered at¥;, ¢;)-eavesdropper, where

the content of any; nodes, and the downloaded im‘orr.natiorq\,here (a) follows by non-negativity off (e|u,r), (b) is the
for any ¢ nodes are leaked to the eavesdropper. With SUEBnditionH(e) < H(r), (c) is due toH(r|u) = H(r) asr

an eavesdropper model, we first focused on the classig@lyy are independent, (d) is the conditiéh(r|u,e) = 0. m
setup, which is resilient against single node failure atnzeti

(without locality constraints). Noting that the secrecyaeity

of this setting is open at the minimum storage regenerating
point, we provided upper bounds on the secure file size and )
established the secrecy capacity for dny, £5) with £, < 2. Proof: We prove the Lemma fon — k = 2, i.e., (k+
Our coding scheme achieving this result also provides @ibet?: ©)—DSS. The proof extends to higher number of parities
rate compared to the existing schemes. Then, we Shifﬂ@dst_ralghtforward manner. Consider the following encadin
focus on locality constraint, and studied the general sienaMatrix of the(k + 2, k) linear code employed by the DSS

APPENDIXB
PROOF OFLEMMA [7]

of having multiple parity nodes per local group. For this r'7 0o ... 0

setting, we derived a new minimum distance bound for locally o I ... 0

repairable codes, and present,g,-optimal coding scheme. i . i

Similar to the trade off analysis for the classical setup, we G= 5 : I I (63)
then studied the bandwidth efficient locally repairableesd o 0 ... I

where we proposed a new bound and a coding scheme which A Ay o A

is both dmi,-optimal and repair bandwidth efficient. This | B1 By ... By |

bandwidth efficient locally repairable setting is also gmall aAssume that a newcomer node downloaslg;x;,1 and
u_nder security constraints, for Whlgh we presented a sditere Sy jxx+2 from the first and the second parity nodes during the
size upper bound and codes achieving the bound, and hepggair process ofi-th systematic node. Heré ; = Vii1,
established the secrecy capacity, under special cases. and Sa; = Vii2,; are 2 x a matrices. In ‘order to be

We list some avenues for further research here. 1) We figgile to perform bandwidth efficient repair using interferen
note that the novel bound that we establish for the minimuglgnment {5, j};?:l and {5, j}§:1 satisfy

storage point allows for counting part of the data downlahde

as additional leakage, and hence provide a tighter bound tha rank( S1,54i ) 9% e G (64)
the existing ones. Yet, we have not established the tightnes So,jBi 2

of the bound for’; > 3. Thus, new codes or improved bounds,,q

are of definite interest for secure MSR codes. 2) For locally rank( S1,;4; ) .

repairable codes, we utilized MRD coding as the secrecy (65)

2,027
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Note that data downloaded froirth systematic nodé: # Moreover, it follows from [(6B) and the fullrankness df,,
j) for node repair isV; ;y; = V; ;f;. Since the repair matrix and B,,, that
of node associated to node repair gfth node isV; ;, we

have . .
dim Sii | An = dim Sa.i | Bm
Vij = 51,4 = S2,;B;. (66) an] ! jQT] '

Note that the above relationship is among subspaces. As s & (71)

pointed out earlier in the text, we use uppercase letters to 2m
:ﬁgtrr?:eegt Sgir matrices and row spaces associated wita thos]-hus’ we have two subspace(sﬂje[m] Sl,j) A, and
. g the method of induction, we now show th
main claim of Lemmdl7. Note that this proof is modification| (e Sz,j) By, of dimension strictly greater thagf: (see
of the proof of Lemma 10 in[45]. )), which are contained in the subqufque[mﬂ Vi,; of
Base case(|A| = 1): The statement of Lemmal 7 isdimension at most;2— (see [6P) and(70)). Therefore,
true for this case as we perform a bandwidth efficient node
repair, where each remaining node contribu§emdependent
symbols for a single node repair. _ _
Inductive step: Now we assume that the statement of 7971] S1g | Am ﬂ 7971] S2 | B | 710}
LemmalT is true for all setsl C [k]\{i} with | 4] <m —1
and prove it for all sets of indices of siza. With out loss = SlvammSZmBm # {0}

of generality, we prove this ford = [m]. We know from \yhich is in contradiction with[{85). This implies that
inductive hypothesis that

«

. o dim ﬂ Vii |l < 502 (72)
dim ﬂ ‘/717.7 = rank ﬂ ‘/;,7 S W, (67) je[m] 2
j€[m—1 j€[m—1
j€lm—1] jelm—1] [
Now assume that the result is false fdr=[1 : m], i.e.,
REFERENCES
dim ﬂ Vi = rank ﬂ Vi [1] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao akdikl-
j€m] j€m] atowicz, “Pond:the OceanStore Prototype,”Rmoc. USENIX File and

Storage Technologies (FAST003.
[2] S. Ghemawat, H. Gobioff and S. T. Leung, “The Google filsteyn,”
rank ﬂ S A; in Proc. of the 19th ACM Symposium on Operating Systems Plascip
_ J (SOSP’03),0ct. 2003.
j€m] [3] R. Bhagwan, K. Tati, Y. C. Cheng, S. Savage and G. M. VaelKeotal
Recall: System Support for Automated Availability Managaty’ in
Proc. NSD| 2004.
ﬂ S2,jBi [4] O. Goldreich,Foundations of Cryptography: Volume I, Basic Applica-
j€[m] tions. Cambridge University Press, 2004.
o [5] H. Delfs and H. Knebl,Introduction to Cryptography: Principles and
> (68) Applications 2nd ed. Springer, 2007.
2 [6] C. E. Shannon, “Communication theory of secrecy systeifise Bell
Since A; and B; are invertible, we have System Technical Journalol. 28, pp. 656715, 1949.

|
-
)
=]
=

[7]1 A. Wyner, “The wire-tap channel,The Bell System Technical Journal
rank( ;e pm S1.54i = rank(ﬂje[m] Sl,j) and vol. 54, no. 8, pp. 1355-1387, Oct. 1975.
. . [8] G. S. Vernam, “Cipher printing telegraph systems forreeevire and
rank ﬂje[m] S23Bi | = rank(ﬂje[m] S2,5 ). Next, consider radio telegraphic communications]: Amer. Inst. Elect. Engvol. 55,

pp. 109-115, 1926.
[9] A.G. Dimakis, P. Godfrey, M. Wainwright and K. Ramachaa, “Net-
work coding for distributed storage systefEEE Trans. on Information
() S| Am = () SiiAm Theory vol. 56, no. 9, pp. 4539-4551, Sep. 2010.
jelm [10] S. Pawar, S. El Rouayheb and K. Ramchandran, “Secugingrdic dis-
tributed storage systems against eavesdropping and adeéi@tacks,”
IEEE Trans. on Information Theory (Special Issue on FacéSaxling

] je[m]

C ﬂ Sy A Theory: from Algorithms to Networksyol. 57, no. 9, Sep. 2011.
= S [11] N. B. Shah, K. V. Rashmi and P. V. Kumar, “Informatioretiretically
j€[lm—1] secure regenerating codes for distributed storage,Prioc. of IEEE
- m Vi (69) Globecom Dec. 2011.
- Y [12] P. Gopalan, C. Huang, H. Simitchi and S. Yekhanin, “Oa tbcality
j€[m—1] of codeword symbols,JEEE Trans. on Information Theoryol. 58,

. . . . no. 11, pp. 6925-6934, Nov. 2012.
Here, the above e.Q_Uaulon desc_rlbe th? _relatlonshlp amaghg p. s. Papailiopoulos and A. G. Dimakis, “Locally Redite Codes,” in
row spaces of participating matrices. Similarly, we have th  Proc. 2012 IEEE International Symposium on Information ara(ISIT

; 2012) Jul. 2012.
foIIowmg. [14] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, tDml

linear codes with a local-error-correction property,”Hroc. 2012 IEEE

International Symposium on Information Theory (ISIT 2012). 2012.

ﬂ SQ-,J' Bm ﬂ Vij- (70) [15] A. Shamir, “How to share a secreCommunications of the ACMol.22
j€[m) jE€[m—1] n.11, p.612-613, Nov. 1979



18

[16] Y. Wu, A. G. Dimakis and K. Ramchandran, “Deterministéagenerating [41] Y. Hu, Y. Xu, X. Wang, C. Zha, and P. Li, “Cooperative reeoy of

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]
(36]

[37]

(38]

[39]

[40]

codes for distributed storage,” iroc. 45th Allerton Conf. on Control,
Computing and Communicatipisep. 2007.

Y. Wu, “Existence and construction of capacity-aciigvnetwork codes
for distributed storage [EEE J. on Selected Areas in Commural. 28,
pp. 277-288, Feb. 2010.

Y. Wu and A. G. Dimakis, “Reducing repair traffic for etme coding-
based storage via interference alignment,Pioc. 2009 IEEE Interna-
tional Symposium on Information Theory (ISIT 2Q0®)I. 2009.

N. B. Shah, K. V. Rashmi, P. V. Kumar and K. Ramchandrdxplicit
codes minimizing repair bandwidth for distributed storadge Proc.
2010 IEEE Information Theory Workshop (ITW 20104n. 2010.

C. Suh and K. Ramchandran, “Exact-repair MDS codes fstriduted
storage using interference alignmenBtoc. 2010 IEEE International
Symposium on Information Theory (ISIT 2010yne 2010.

K. V. Rashmi, N. B. Shah and P. V. Kumar, “Optimal Exaegenerating
Codes for Distributed Storage at the MSR and MBR point via a
Product-Matrix Construction,IEEE Transactions on Information The-
ory, vol. 57, no. 57, pp. 5227-5239, Aug. 2011.

D. Papailiopoulos and A. Dimakis, “Repair optimal ares codes
through hadamard designs,” iaroc. 49th Allerton Conf. on Control,
Computing and Communicatipsep. 2011.

V. Cadambe, C. Huang and J. Li, “Permutation code: Ogltiexact-
repair of a single failed node in mds code based distributecage
systems,” inProc. 2011 IEEE International Symposium on Information
Theory (ISIT 2011)Aug. 2011.

I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS arrages with
optimal rebuilding,”CoRR vol. abs/1112.0371, 2011.

Z. Wang, I. Tamo and J. Bruck, “On Codes for Optimal Ré&hog
Access,” in Proc. 49th Allerton Conf. on Control, Computing and
Communication Sep. 2011.

F. E. Oggier and A. Datta, “Homomorphic self-repairicgdes for agile
maintenance of distributed storage syster@nRR vol. abs/1107.3129,
2011.

F. E. Oggier and A. Datta, “Self-Repairing Codes fortbimited Storage

- A Projective Geometric ConstructionCoRR vol. abs/1105.0379,
2011.

C. Huang, M. Chen, and J. Li, “Pyramid code: Flexible esties to
trade space for access efficiency in relible data storagersgs' in 6th
IEEE International symposium on Network Computing and Agapions
(NCA 2007),pp.79-86, 2007.

K. V. Rashmi. N. B. Shah, K. Ramchandran and P. V. KumBedener-
ating codes for errors and erasures in distributed storagéroc. 2012
IEEE International Symposium on Information Theory (ISOL2), Jul.
2012.

N. Silberstein, A. S. Rawat and S. Vishwanath, “Errorsitence in
Distributed Storage via Rank-Metric Codes,” accepted terfdn 2012,
available inhttp://arxiv.org/abs/1202.080Q2012.

D. A. Patterson, G. A. Gibson and R. Katz, “A case for medant arrays
of inexpensive disks,” irSIGMOD: International Conference on Data
Managementpp. 109-116, Chicago, 1988.

M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: dficgent
scheme for tolerating double disk failures in RAID architees,” |[EEE
Trans. on Computersvol. 44, no. 2, pp. 192202, Feb. 1995.

M. Blaum, J. Bruck and E. Vardy, “MDS array codes with épgtndent
parity symbols,”IEEE Trans. on Information Theoryol. 42, pp. 529-
542, 1996.

R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, “Netwariorma-
tion flow,” IEEE Trans. on Information Theoryol. 46, pp. 1204-1216,
2000.

P. Delsarte, “Bilinear forms over a finite field, with digations to coding
theory,” Journal of Comb. Theory, Series ¥Yol. 25, pp. 226-241, 1978.
E. M. Gabidulin, “Theory of codes with maximum rank diste,’
Problems of Information Transmissiowol. 21, pp. 1-12, July 1985.

R. M. Roth, “Maximum-rank array codes and their apgima to
crisscross error correctionfEEE Trans. on Information Theoryol. 37,
pp. 328-336, March 1991.

F. J. MacWilliams and N. J. A. Sloan&he theory of error-correcting
codes, North-Holland, 1978.

N. B. Shah, K. Rashmi, P. V. Kumar and K. Ramchandranteftfierence
alignment in regenerating codes for distributed storagecedsity and
code constructions /[EEE Trans. on Information Theorypl. 58, no. 4,
pp. 2134-2158, Apr. 2012.

T. Ho, R. Koetter, M. Medard, M. Effros, J. Shi and D. Karg“A
Random Linear Network Coding Approach to MulticadE€EE Trans.
on Information Theoryvol. 53, no. 10, pp. 4413-4430, Oct. 2006.

[42]

[43]

[44]

distributed storage systems from multiple losses with ndtwoding,”
IEEE J. on Selected Areas in Commuwol. 28, no. 2, pp. 268-275,
Feb. 2010.

A. Kermarrec, N. Le Scouarnec and G. Straub, “Repairvigltiple
Failures with Coordinated and Adaptive Regenerating Cbde<Proc.
International Symposium on Network Coding (Netcodgijing, Jul.
2011.

K. W. Shum and Y. Hu, “Existence of minimum-repair-bandth
cooperative regenerating codes,” Btoc. International Symposium on
Network Coding (NetcodBeijing, Jul. 2011.

0. O. Koyluoglu, A. S. Rawat and S. Vishwanath, “Secu@om
erative regenerating codes for distributed storage syste@oRR
vol. abs/1210.3664, 2012.

] I. Tamo, Z. Wang and J. Bruck, “Access vs. Bandwidth ind€e

for Distributed Storage Systems,” iRroc. 2012 IEEE International
Symposium on Information Theory (ISIT 2012)l. 2012.


http://arxiv.org/abs/1202.0800

	I Introduction
	I-A Background
	I-B Contributions and Organization
	I-C Related Work

	II System Model and Preliminaries
	II-A Information flow graph
	II-B MRD codes
	II-C Eavesdropper model
	II-D Locally repairable codes

	III Secrecy in repair bandwidth efficient DSS
	III-A Improved bound on secrecy capacity at the MSR point
	III-B Construction of secure MSR codes for d=n-1

	IV New Bounds and Constructions for Locally Repairable Codes
	IV-A Upper bound on dmin for an (r, , ) locally repairable code
	IV-B Construction of dmin-optimal locally repairable codes
	IV-C File size upper bound for repair bandwidth efficient locally repairable codes
	IV-D Construction of repair bandwidth efficient dmin-optimal locally repairable codes

	V Secrecy in Locally Repairable DSS
	V-A Case 1: = 2
	V-B Case 2: > 2 and = Mk

	VI Conclusion
	Appendix A: Proof of Lemma 3
	Appendix B: Proof of Lemma 7
	References

