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Abstract

This work presents a polar coding scheme for fading channels, focusing primarily on fading binary

symmetric and additive exponential noise channels. For fading binary symmetric channels, a hierarchical

coding scheme is presented, utilizing polar coding both over channel uses and over fading blocks. The

receiver uses its channel state information (CSI) to distinguish states, thus constructing an overlay

erasure channel over the underlying fading channels. By using this scheme, the capacity of a fading

binary symmetric channel is achieved without CSI at the transmitter. Noting that a fading AWGN

channel with BPSK modulation and demodulation correspondsto a fading binary symmetric channel,

this result covers a fairly large set of practically relevant channel settings.

For fading additive exponential noise channels, expansioncoding is used in conjunction to polar

codes. Expansion coding transforms the continuous-valuedchannel to multiple (independent) discrete-

valued ones. For each level after expansion, the approach described previously for fading binary sym-

metric channels is used. Both theoretical analysis and numerical results are presented, showing that

the proposed coding scheme approaches the capacity in the high SNR regime. Overall, utilizing polar

codes in this (hierarchical) fashion enables coding without CSI at the transmitter, while approaching

the capacity with low complexity.
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I. INTRODUCTION

Polar codes are the first family of provably capacity achieving codes for symmetric binary-

input discrete memoryless channels (B-DMC) with low encoding and decoding complexity [1]

[2]. These codes polarize the underlying channel in the sense that, via channel combining and

channel splitting stages, multiple uses of the given channel are transformed into equivalent

polarized ones: either purely noisy (referred to as “bad” channel instances) or noiseless (referred

to as “good” channel instances). Then, information symbolsare mapped to the good instances

of polarized channels, whereas channel inputs corresponding to the bad instances are fixed and

shared between the transmitter and receiver. It is shown in [1] that the fraction of the good channel

instances approaches the symmetric capacity of the channel, which is equal to the capacity of

the underlying channel if the channel is symmetric. That is,polar codes achieve the capacity

of symmetric B-DMCs. This phenomenon of channel polarization has then been generalized to

arbitrary discrete memoryless channels with a construction complexity to the same order and a

similar error probability behavior [3]. Moreover, polar codes are proved to be optimal for lossy

compression with respect to binary symmetric source [4][5], and then further extended to coding

for larger source alphabets [6].

Recently, polar codes have been adapted to channels with non-discrete inputs as well. In [7],

using polarization results for multiple access channels [8], a polar coding scheme for additive

white Gaussian noise (AWGN) channels is presented. It is shown that the approach of using

multiple access channel coding with a large number of binary-input users possesses much better

complexity attributes compared to that of using single-user channels with large input cardinality.

In a separate work [9], by adopting discrete polar codes as embedded codes, an expansion coding

approach is presented, and the capacity of additive exponential noise channel is shown to be

achievable in the high SNR regime.

The analysis of polar coding for fading channels, with either discrete-valued or continuous-

valued noises, is still limited. Recent work [10] investigates binary input real number output

AWGN fading channel, where the fading coefficient is assumedto be one of the two states

with equal probabilities. These fading coefficients are assumed to follow arbitrary distributions

with the requirement of satisfying some tail probability constraints. For this setup, the authors

proposed polar coding schemes where symbols are multiplexed in a specific fashion at the
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encoder. In particular, the paper analyzes diagonal, horizontal, and uniform multiplexers; and,

the corresponding diversity and outage analysis have been performed. Another recent work

[11] focuses on polar coding schemes for Rayleigh fading channel under two scenarios: block

fading with known channel state information (CSI) at the transmitter and fast fading with fading

distribution known at the transmitter. For the latter case,the channel is shown to be symmetric,

and through quantization of the channel output, the polar coding scheme is shown to achieve a

constant gap to the capacity.

In this work, we focus on a block fading model without the CSI at the transmitter, and

propose a hierarchical polar coding scheme for such channels. First, we focus on fading binary

symmetric channel (BSC), which is an important model as it isclosely related to an AWGN block

fading channel with BPSK modulation and demodulation. Suchbinary input AWGN models

are previously analyzed in [12][13] to evaluate the performance of polar codes over AWGN

channels. Here, we focus on communication channel models that involve fading, where the

channel coefficients vary according to a block fading model.This scenario of fading AWGN

with BPSK modulation resembles a fading binary symmetric channel model, where each fading

block has a cross-over probability depending on the corresponding channel state realization.

Specifically, AWGN channel states with higher SNRs map to binary symmetric channels with

lower crossover probabilities. For this binary symmetric fading model, we propose a novel

polar coding approach that utilizes polarization in ahierarchical mannerwithout channel state

information (CSI) at the transmitter (with channel state statistics assumed to be known at the

transmitter). The key factor enabling our coding scheme is the hierarchical utilization of polar

coding. More precisely, polar codes are not only designed over channel uses for each fading state,

but also utilized over fading blocks. By taking advantage ofthe degradedness property of channel

polarization between different BSCs, an erasure model (over fading blocks) is constructed for

every channel instance that polarizes differently depending on the channel states. It is shown that

this proposed coding scheme, without instantaneous CSI at the transmitter, achieves the capacity

of the fading binary symmetric channel.

As an additional analog fading model (in addition to the AWGNfading scenario with BPSK

modulation), we consider additive exponential noise channels. In analog channels, the additive

exponential noise (AEN) channel is of particular interest as it models worst-case noise given

mean and non-negativity constraints [14]. In addition, theAEN model naturally arises in non-
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coherent communication settings, and in optical communication scenarios [15][16]. In [9], an

expansion scheme is proposed to achieve the capacity of AEN channels. Here, we adopt a similar

approach for the fading AEN channels. In particular, due to the decomposition property of the

exponential distribution, we show that a fading AEN channelcan be transformed into a set of

fading BSCs. Then, by employing the aforementioned polar coding scheme for fading BSCs

at each level, we show that the proposed method approaches tothe capacity of fading AEN

channels in the high SNR regime.

In both cases considered in this paper, utilizing polar codes in such a novel (hierarchical)

way enables coding without CSI at the transmitter, a practically important scenario in wireless

systems. In addition, the low encoding and decoding complexity of polar codes are inherited

in the proposed schemes. (The scaling of complexity with respect to the system parameters are

detailed in the later parts of the sequel.) Therefore, the proposed approach, by having both low

complexity and realistic CSI assumption properties, is suitable for practical utilization of polar

codes over fading channels (especially for those channels with long fading coherence intervals).

The rest of paper is organized as follows. After a brief introduction of the preliminary results

on polar codes in Section II, the polar coding scheme for fading binary symmetric channels is

detailed in Section III. Section IV is devoted to the study offading additive exponential noise

channels. Finally, concluding remarks are provided in Section V.

II. I NTRODUCTION TO POLAR CODES

The construction of polar code is based on the observation ofchannel polarization. Consider

a binary-input discrete memoryless channelW : X → Y , whereX = {0, 1}. Define

F =





1 0

1 1



 .

Let BN be the bit-reversal operator defined in [1], whereN = 2n. By applying the transform

GN = BNF
⊗n (F⊗n denotes thenth Kronecker power ofF ) to the messageu1:N , the encoded

x1:N = u1:NGN is transmitted throughN independent copies of channelW . Then, considerN

binary-input coordinate channelsW (i)
N : X → YN × X i−1, where for eachi ∈ {1, . . . , N} the

transition probability is given by

W
(i)
N (y1:N , u1:i−1|ui) ,

∑

ui+1:N

1

2N−1
WN(y1:N |u1:NGN).
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Here, asN tends to infinity, the channels{W (i)
N }1:N polarize to either noiseless or purely noisy

ones, and the fraction of noiseless channels is close toI(W ), the symmetric capacity of the

channelW [1].

To this end, polar codes can be considered asGN -coset codes with parameter(N,K,A, uAc),

whereuAc ∈ XN−K is the frozen vector (can be set to all-zeros for symmetric channels [1],

which is the focus of this paper), and the information setA is chosen as aK-element subset

of {1, . . . , N} such that the Bhattacharyya parameters satisfyZ(W
(i)
N ) ≤ Z(W

(j)
N ) for all i ∈ A

andj ∈ Ac. (The indices inA are “good” channel indices, whereas those inAc corresponds to

“bad” channel indices.)

The decoder in the polar coding scheme is a successive cancellation (SC) decoder, which

gives an estimatêu1:N of u1:N given the knowledge ofA, uAc, andy1:N by computing

ûi ,







0, if i ∈ Ac,

di(y1:N , û1:i−1), if i ∈ A,

in the orderi from 1 to N , where

di(y1:N , û1:i−1) ,







0, if W
(i)
N

(y1:N ,û1:i−1|0)

W
(i)
N

(y1:N ,û1:i−1|1)
≥ 1,

1, otherwise.

[1] proved that by adopting an SC decoder, polar coding achieves any rateR < I(W ) with an

error scaling asO(2−Nβ

), whereβ < 1/2. Moreover, the encoding and decoding complexity of

polar coding are bothO(N logN), whereN is the length of codeword.

To summarize, polar codes have excellent rate and complexity, but the code design is sensitive

to the channel state information at the transmitter. For example, the choices of “good” indices

depend on the crossover probabilityp of a BSC, i.e., the setA(p) is a function of the value

of p. Thus, it is not straight-forward to design capacity-achieving polar coding schemes if

there is uncertainty in the channel parameters. In particular, for a block fading scenario, if

the channel states are not known a priori at the transmitter,one may not know which indices

should correspond to “good” channel instances. As detailedin the next section, the proposed

scheme solves this problem via a hierarchical code design.
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III. POLAR CODING FOR FADING BINARY SYMMETRIC CHANNEL

A. System Model

Fading channels characterize the wireless communication channels, where the channel states

vary over channel uses. Fading coefficients typically vary much slower than transmission symbol

duration in practice. For such cases, a block fading model isconsidered, wherein the channel

state is assumed to be a constant over each coherence time interval, and follows a stationary

ergodic process across fading blocks. For such a block fading model, we consider the practical

scenario where the channel state information is available only at the decoder (CSI-D) [17, pages

186-187], while the transmitter is assumed to know only the statistics of the channel states.

Binary symmetric channel (BSC) is a channel with binary input X, binary noiseZ, and a

binary outputY = X⊕Z. Here, for the fading BSC, the channel noise is a Bernoulli distributed

random variable, where its statistics depend on the channelstates. For the block fading BSC

considered in this work, the channel is modeled as follows.

Yb,i = Xb,i ⊕ Zb,i, b = 1, . . . , B, i = 1, . . . , N, (1)

whereN is the block length, andB is the number of fading blocks. Here,Zb,i are assumed to

be identically distributed within a block and follow an i.i.d. fading process over blocks. That is,

if we consider fading BSC withS states, with probabilityqs the parameterps is chosen for the

fading blockb, where the channel noiseZb,i is sampled from a Bernoulli random variable with

parameterps for all i ∈ {1, . . . , N}. Here,1 ≤ s ≤ S and
S
∑

s=1

qs = 1.

In wireless communications, the fading binary symmetric channel is utilized to model a fading

AWGN channel with BPSK modulation and demodulation. In particular, for a fading AWGN

channel with input power constraintPX , the channel noise is distributed as i.i.d. Gaussian with

variancePZ, and the channel gain (the factorh in the AWGN channelY = hX + Z) remains

the same statistic within a fading block, and follows an ergodic process over different blocks.

After utilizing the BPSK modulation and demodulation at theencoder and decoder, respectively,

the equivalent channel is a binary input and binary output channel, with transition probability

relating to AWGN channel state. More precisely, if the channel gain for a particular fading block

b, hb,i ∀ i, is equal tohs with probability qs for somes ∈ {1, 2, . . . , S}, then the corresponding

binary noise in the equivalent fading BSC has the statisticsof

ps , Pr{Zb,i = 1} = 1− Φ(hs

√
SNR), (2)
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whereΦ(·) is the CDF of normal distribution and SNR is the signal-to-noise ratio, i.e. SNR=

PX/PZ . In other words, the channel at each fading block can be modeled asWs ,BSC(ps) with

probability qs.

The ergodic capacity of a fading binary symmetric channel isgiven by [18, pages 584-586]

CCSI-D =
S
∑

s=1

qs[1−H(ps)], (3)

whereH(·) is the binary entropy function, and CSI-D refers to channel state information at the

decoder. Note that, the ergodic capacity of fading BSC is an average over the capacities of all

possible channels corresponding to different channel states. In this section, we propose a polar

coding scheme that achieves the capacity of this fading BSC with low encoding and decoding

complexity, without having instantaneous channel state information at the transmitter. Towards

this end, we first focus on a fading BSC with two channel states, and then generalize our results

to arbitrary finite number of channel states.

B. Intuition

In polar coding for a BSC, we see that the channel can be polarized by transforming a set

of independent copies of given channels into a new set of channels whose symmetric capacities

tend to0 or 1 (for all but a vanishing fraction of indices). Towards applying such a polarization

phenomenon to fading BSC, we first focus on how two binary symmetric channels polarize

at the same time. We summarize a result given in [19] regarding the polarization of degraded

channels.

Lemma 1 ([19]). For two binary symmetric channelsW1 , BSC(p1) and W2 , BSC(p2), if

W1 is degraded with respect toW2, i.e. p1 ≥ p2, then for any channel indexi ∈ {1, . . . , N},

the reconstructed channels after polarization have the relationship thatW (i)
1,N is degraded with

respect toW (i)
2,N , and henceI(W (i)

1,N) ≤ I(W
(i)
2,N).

That is, when polarizing two binary symmetric channels, thereconstructed channels of the

degraded channel have lower symmetric rate compared to thatof the other channel. This statement

also implies that

A1 ⊆ A2,
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I(W
(π(i))
N

)

M BG

p1 p2

π(i)1

0

1

N

Fig. 1: Illustration of polarizations for two binary symmetric channels. The blue-solid line

represents the degraded channel with transition probability p1, and the red-dashed one represents

the superior channel withp2 (p1 ≥ p2). Values ofI(W (π(i))
N ), the reordered symmetric mutual

information, are shown for both channels.

whereA1 andA2 denote the information sets of the degraded and superior channels, respectively.

This relationship is illustrated in Fig. 1. Based on this observation, when polarizing two BSCs,

the channel indices after reordering permutationπ can be divided into three categories (we

assume that channel1 is degraded, i.e.,p1 ≥ p2):

1) SetG: both channels are good, i.e.,

I(W
(π(i))
1,N ) → 1, I(W

(π(i))
2,N ) → 1.

2) SetM: only channel2 is good, while channel1 is bad, i.e.,

I(W
(π(i))
1,N ) → 0, I(W

(π(i))
2,N ) → 1.

3) SetB: both channels are bad, i.e.,

I(W
(π(i))
1,N ) → 0, I(W

(π(i))
2,N ) → 0.

We have the following relationships between these sets. First, information sets for two channels
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are given byA1 = G, andA2 = G ∪M. Moreover, considering the sizes of these sets, we have:

|G| = |A1| = N [1−H(p1)− ǫ], (4)

|M| = |A2| − |A1| = N [H(p1)−H(p2)], (5)

|B| = N − |A2| = N [H(p2) + ǫ], (6)

whereǫ is an arbitrarily small positive number (that vanishes asN → ∞).

For a fading binary symmetric channel, we again utilize Fig.1 to illustrate our coding scheme.

Here, consider a fading BSC with only two fading states, the degraded state and the superior one

(denoted as state1 and2, respectively). If channel is in state1, which happens with probability

q1, the fading channel polarizes to the blue-solid curve, and otherwise the channel is in state

2, which happens with the probabilityq2 = 1 − q1, and the fading channel polarizes to the

red-dashed curve. Hence, the reconstructed channel with index in setG always polarizes to a

good one, i.e., its symmetric mutual information is close to1 no matter what the fading state

is. And, the reconstructed channel with index in setB always polarizes to a bad one, i.e., its

symmetric mutual information is close to0 no matter what the fading state is. Therefore, one

can reliably transmit information for channel instances belonging to G, whereas one may not

transmit any information for channel instances belonging to B. The novel part of the proposed

coding scheme is for the middle region, i.e., coding over thesetM, where reconstructed channels

polarize differently depending on the channel states. Since we consider the transmitter has no

prior knowledge of channel states before transmitting, coding over channels with indices inM is

challenging. At this point, we observe that for these channels, with probabilityq2 they are nearly

noiseless, and with probabilityq1 they are purely noisy. Thus, each channel can be modeled as

a binary erasure channel (BEC) from the viewpoint of blocks,where the erasure probability is

equal toq1. Here, we denote this channel as

W̃ , BEC(q1).

This observation motivates our design of hierarchical encoder and decoder for fading BSCs.

C. Encoder

The encoding process has two phases, hierarchically using polar codes to generateNB-length

codewords, whereN is blocklength andB is the number of blocks.
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1) Phase 1 (BEC Encoding):In this phase, we generate|M| number of BEC polar codes,

each with lengthB. Consider a set of blockwise messagesv(k) with k ∈ {1, . . . , |M|}. For

everyv(k), construct polar codeword̃u(k), which is formed by theGB-coset code with parameter

(B, |Ã|, Ã, 0), whereÃ is the information set forW̃ = BEC(q1), and we choose the rate to be

optimal, i.e.

|Ã| = (1− q1 − ǫ)B. (7)

In other words, we construct a set of polar codes, where each code corresponds to an index in

setM, with the same rate1− q1 − ǫ, the same information set̃A, and the same frozen values,

0. More precisely, if we denote the reordering permutation for W̃ as π̃, then

π̃(v(k)) = [v
(k)
1 , . . . , v

(k)

|Ã|
, 0, . . . , 0], (8)

ũ(k) = v(k)GB. (9)

2) Phase 2 (BSC Encoding):In this phase, we generateB number of BSC polar codes, each

with lengthN . Consider a set of messagesu(b) with b ∈ {1, . . . , B}. For everyu(b), construct

polar codewordx(b), which isGN -coset code with parameter(N, |G|,G, u(b)
Gc ), whereG is BSC

information set with size given by (4). Remarkably, we do notset all non-information bits to

be 0, but transpose the blockwise codewords generated from Phase 1 and embed them into the

messages of this phase. More precisely, if denote the reordering permutation operator of BSC

asπ, then

π(u(b)) = [u
(b)
1 , . . . , u

(b)
|G|, ũ

(1)
b , . . . , ũ

(|M|)
b , 0, . . . , 0], (10)

x(b) = u(b)GN . (11)

By collecting all {x(b)}1:B together, the encoder outputs a codeword with lengthNB. We

equivalently express these codewords by aB × N matrix. The proposed encoder for fading

binary symmetric channel is illustrated in Fig. 2.

D. Decoder

After receiving the sequencey1:NB from the channel, the decoder’s task is to make estimates

{v̂(k)}1:|M| and {û(b)}1:B, such that the information bits in both sets of messages match the

ones at the transmitter with high probability. Rewrite channel outputy1:NB as aB ×N matrix,
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|Ã|

=× GN

|G| |B||M|
N

π−1 B

=× GB |M|π̃−1

B

Phase 2: BSC Encoding

Phase 1: BEC Encoding

transpose

Fig. 2: Illustration of proposed polar encoder for a fading binary symmetric channel

with two states. Bits in blue are information bits, and those in white are frozen as zeros. The

codewords generated from Phase 1 are transposed and embedded into the messages of Phase 2

to generate the final codeword of lengthNB. π̃ andπ are column reordering permutations with

respect to BEC and BSC, correspondingly.

with row vectors{y(b)}1:B. As that of the encoding process, the decoding process also works in

phases:

1) Phase 1 (BSC Decoding I):In this phase, we decode part of the output blocks using the

BSC SC decoder with respect to the superior channel state. More precisely, since the receiver

knows channel states, it can adopt the correct SC decoder (BSC(p2) SC decoder in this case)

to obtainû(b) from y(b) for everyb corresponding to the superior channel state. To this end, the

“BSC Decoder I” (for block b with the superior fading state) in this phase is described asfollow:

û
(b)
i ,







0, if i ∈ B,
d2,i(y

(b)
1:N , û

(b)
1:i−1), if i ∈ G ∪M,

in the orderi from 1 to N , where

d2,i(y
(b)
1:N , û

(b)
1:i−1) ,







0, if
W

(i)
2,N (y

(b)
1:N ,û

(b)
1:i−1|0)

W
(i)
2,N (y

(b)
1:N ,û

(b)
1:i−1|1)

≥ 1,

1, otherwise.

In this phase, one can reliably decode the information bits in blocks with respective to the

superior channel states (with the knowledge of frozen symbols corresponding toB indices).



12

For the blocks with the degraded channel states, information bits cannot be decoded reliably

because frozen bits corresponding to setM is not known at the decoder. At this point, we use

the next phase to decode these bits using a BEC SC decoder. Forthat, aB × |M| matrix, ˆ̃U,

is constructed by choosing each row asû(b) with respective to bits in setM for the superior

channel states. The other elements in this matrix, i.e., thesymbols corresponding to the degraded

channel states, are set to erasures.

2) Phase 2 (BEC Decoding):In this phase, we decode the frozen bits with respect to the

degraded states using BEC SC decoders. More precisely, eachcolumn of matrix ˆ̃
U, denoted

by ˆ̃u(k) for k ∈ {1, . . . , |M|}, is considered as the input to the decoder, and the receiver aims

to decodev̂(k) from ˆ̃u(k) using the SC decoder with respect to channelW̃ = BEC(q1). More

formally, the “BEC Decoder” in this phase is expressed by the following:

v̂
(k)
j ,







0, if j ∈ Ãc,

d̃j(ˆ̃u
(k)
1:|M|, v̂

(k)
1:j−1), if j ∈ Ã,

for j from 1 to B, where

d̃j(ˆ̃u
(k)
1:|M|, v̂

(k)
1:j−1) ,











0, if
W̃

(j)
N

(ˆ̃u
(k)
1:|M|

,v̂
(k)
1:j−1|0)

W̃
(j)
N

(ˆ̃u
(k)
1:|M|

,v̂
(k)
1:j−1|1)

≥ 1,

1, otherwise.

After Phase 2, the decoder outputs an|M| × B matrix V̂ with rows {v̂(k)}1:|M|. Moreover,

the decoder can reconstruct all bits erased in matrixˆ̃
U, which is denoted as̃u(b) for eachb

corresponding to the degraded channel state. Using this information, we are able to decode the

information bits in blocks with the degraded channel state in the next phase.

3) Phase 3 (BSC Decoding II):In this phase, we decode the remaining blocks from Phase

1, using BSC SC decoders with respect to the degraded channelstates. In particular, for each

block b in the degraded channel state, the receiver could decodeû(b) from y(b) using BSC(p1)

SC decoder by setting frozen bit asũ(b)
i for eachi ∈ M and0 for eachi ∈ B. More formally,

we have the “BSC Decoder II” (for block b with a degraded fading state) described as:

û
(b)
i ,



















0, if i ∈ B,
ũ
(b)
i , if i ∈ M,

d1,i(y
(b)
1:N , û

(b)
1:i−1), if i ∈ G,
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Phase 3: BSC Decoding II

|B||M|
N

B
π
−1

BSC Decoder I

|G| |B||M|

|M|

B

π̃
−1

transpose

|Ã|

transpose
N

B
π
−1

BSC Decoder II

BEC Decoder

Phase 2: BEC Decoding

Phase 1: BSC Decoding I

|G|

Fig. 3: Illustration of proposed polar decoder for a fading binary symmetric channel with

two states. In Phase 1, decoder outputs all estimates using BSC SC decoders corresponding

to the superior channel state. Selected columns are transposed and delivered as inputs to next

phase, by adding all-erasures rows for blocks with the degraded channel state. In Phase 2, the

decoder continues to use BEC SC decoders to decode all the blockwise information bits, and to

recover all erased bits in shade. In Phase 3, the BSC SC decoders corresponding to the degraded

channel state are utilized to decode the remaining information bits, by taking values of frozen

bits in setM as the decoded results from the previous phase.π̃ andπ are column reordering

permutations with respect to BEC and BSC, correspondingly.

in the orderi from 1 to N , where

d1,i(y
(b)
1:N , û

(b)
1:i−1) ,







0, if
W

(i)
1,N (y

(b)
1:N ,û

(b)
1:i−1|0)

W
(i)
1,N (y

(b)
1:N ,û

(b)
1:i−1|1)

≥ 1,

1, otherwise.

The whole decoding process for fading binary symmetric channel is illustrated in Fig. 3.
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E. Performance

Here, we summarize the performance of the proposed polar coding scheme. Intuitively, by

using BSC SC decoders corresponding to the superior channelstate, the output from Phase 1

successfully recovers all information bits, because the size of information set is equal to the size

of G. Then, for decoding at Phase 2, the input vectorˆ̃u(k) can be considered as aq1-fraction

erased polar codeword, hence, BEC SC decoder can decode all information bits inv(k) correctly

for all k ∈ {1, . . . , |M|}, and recover the erased entries correctly as well. Finally,in Phase 3

of decoding, the bits inM have the correct frozen values, and by adopting BSC SC decoders

corresponding to the degraded channel state, all the remaining information bits can be decoded

correctly.

Therefore, as long as the designed rates of polar codes do notexceed the corresponding channel

capacities, all information bits in our proposed polar coding scheme are reliably decodable.

Hence, we have the following theorem.

Theorem 2. The proposed polar coding scheme achieves any rateR < CCSI-D, for sufficiently

largeN andB, and the decoding error probability scales asmax{O(B2−Nβ

), O(N2−Bβ

)} with

β < 1/2. Moreover, the complexity of the encoding and decoding processes are both given by

O(NB log(NB)), whereN is the block length andB is the number of blocks.

Proof: The achievable rate (corresponding to the transmission of information bits inv(k)

andu(b)) is given by

R =
1

NB

{

|M||Ã|+B|G|
}

= [H(p1)−H(p2)][1− q1 − ǫ] + [1−H(p1)− ǫ]

= q1[1−H(p1)] + q2[1−H(p2)]− δ(ǫ),

where we have used (4), (5), (7), and

δ(ǫ) , ǫ[1 +H(p1)−H(p2)] → 0, as ǫ → 0.

The proof for error exponent is obtained by utilizing error bound from polar coding. In Phase

1 and 3 of decoding, the error probability of recoveringu(b) correctly for eachb ∈ {1, . . . , B}
is given byP (b)

1,e = O(2−Nβ

). Similarly, in decoding Phase 2, the error probability of recovering



15

v(k) correctly for eachk ∈ {1, . . . , |M|} is given byP (k)
2,e = O(2−Bβ

). Hence, by union bound,

the total decoding error probability is upper bounded by

Pe ≤
B
∑

b=1

P
(b)
1,e +

|M|
∑

k=1

P
(k)
2,e = O(B2−Nβ

) +O(N2−Bβ

),

asN andB tend to infinity. Therefore,Pe vanishes ifB = o(2N
β

) andN = o(2B
β

).

Finally, since we have|M| number ofB-length polar codes as well asB number ofN-length

polar codes utilized, the overall complexity of the coding scheme for both encoding and decoding

is given by

|M| · O(B logB) +B · O(N logN) = O(NB log(NB)).

This theorem shows that our proposed polar coding scheme achieves the capacity of fading

BSC with low encoding and decoding complexity. In addition,the error scaling performance,

which is inherited from polar codes, implies that long coherence intervals as well as large number

of blocks are required for this coding scheme to make the error probability arbitrarily small.

F. Generalization

Here, we generalize the polar coding scheme to fading binarysymmetric channel with arbitrary

finite number of states. ConsiderS number of BSCs, each with a different transition probability.

Without loss of generality, considerW1 , BSC(p1), . . . ,WS , BSC(pS), with p1 ≥ p2 ≥ · · · ≥
pS. Then, a fading BSC withS fading states is modeled as the channel beingWs with probability

qs for a given fading block, where
S
∑

s=1

qs = 1. The polarization of a fading BSC withS fading

states is illustrated in Fig. 4, where the reconstructed channel indices are divided intoS+1 sets

after permutationπ. In addition toG andB, there existS − 1 middle setsM1, . . . , MS−1 in

this case. For each channel index in setMs, channels having statistics being one ofW1, . . . ,Ws

are polarized to be purely noisy and the remaining ones are noiseless. Therefore, for channel

indices belonging toMs, we consider modeling them as BECs with erasure probabilitygiven

by

es ,
s

∑

t=1

qt, 1 ≤ s ≤ S − 1.
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Fig. 4: Illustration of polarization for a fading binary symmetric channel with S channel

states. BesidesG andB, there areS − 1 middle sets, denoted asM1, . . . ,MS−1.

Based on this, we have

|G| = |A1| = N [1 −H(p1)− ǫ],

|Ms| = N [H(ps)−H(ps+1)] , 1 ≤ s ≤ S − 1,

|B| = N − |AS| = N [H(pS) + ǫ].

Here, the polarization result is similar to the case of two fading states, and we utilize a

similar hierarchical coding scheme. In Phase 1 of encoding,transmitter generatesS − 1 sets of

polar codes, where each one is aGB-coset code with parameter(B, |Ãs|, Ãs, 0) with respect

to BEC(es), and all the encoded codewords are embedded into messages ofPhase 2 in order.

Then, in Phase 2 of encoding, we use BSC polar encoders with information setG to generate

the final codeword with lengthNB. At the receiver end, we need2S − 1 number of phases.

Phase 1 utilizes the BSC(pS) SC decoders to decode blocks with respective to the best channel

state (stateS in this case). Consider all decoded bits inMS−1, as well as adding erasures to

undecoded blocks, we could decode all erased bits by using BEC(eS−1) SC decoders in Phase

2. Then, using the decoded information as frozen values for blocks with respective to state

S − 1, BSC(pS−1) SC decoders are adopted in Phase 3 to decode information bitsin the blocks
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corresponding to channel stateS − 1. Recursively, all information bits for both BSC encoding

and BEC encoding could be reliably decoded, as long as the designed rates of polar codes do

not exceed corresponding channel capacities. Hence, by adopting this hierarchical polar coding

scheme, the achievable rate is given by

R =
1

NB

{

B|G|+
S−1
∑

s=1

|Ms||Ãs|
}

= [1−H(p1)− ǫ] +
S−1
∑

s=1

[H(ps)−H(ps+1)](1− es − ǫ)

=
S
∑

s=1

qs[1−H(ps)]− δ′(ǫ),

whereδ′(ǫ) , ǫ[1 +H(p1)−H(pS)] tends to0 as ǫ → 0. Thus, to this end, the proposed polar

coding scheme achieves the capacity of channel, and the encoding and decoding complexities

are both given by
S−1
∑

s=1

|Ms| · O(B logB) +B · O(N logN) = O(NB log(NB)),

which is independent to the value ofS as
S−1
∑

s=1

|Ms| ≤ N . For the same reason, the decoding

error bound also remains the same as the case of only two fading states. Thus, our proposed

polar coding scheme achieves the capacity of fading binary symmetric channel with arbitrary

finite number of fading states, and the encoding and decodingcomplexity are both guaranteed

to be tractable in practice.

Noting again the relevancy of this scenario to the fading AWGN channels, we consider another

fading channel model with analog noise statistics in the next section, where the polar coding

scheme proposed above is utilized.

IV. POLAR CODING FOR FADING ADDITIVE EXPONENTIAL NOISE CHANNEL

A. System Model

We consider the fading additive exponential noise (AEN) channel given by

Yb,i = Xb,i + Zb,i, b = 1, . . . , B, i = 1, . . . , N, (12)

whereXb,i is channel input and restricted to be positive and with meanEX ; N is block length;

and B is the number of blocks. In this model,Zb,i are assumed to be identically distributed
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within a block and follow an ergodic i.i.d. fading process over blocks. That is, if we consider a

fading AEN channel withS states, then, with probabilityqs channel noiseZb,i is distributed as

an exponential random variable with parameterEZs
for a givenb and all i ∈ {1, . . . , N}, i.e.,

fZb,i
(z) =

1

EZs

e
− z

EZs , z ≥ 0, (13)

where1 ≤ s ≤ S and
S
∑

s=1

qs = 1.

We first state the following upper bound on the ergodic channel capacity in the high SNR

regime.

Lemma 3. The ergodic capacity of a fading AEN channel, with channel state information known

at the decoder, is upper bounded as follows.

lim
EX→∞

CCSI-D ≤
S
∑

s=1

qs

[

log

(

1 +
EX

EZs

)]

(14)

Proof: Denote the channel state as a random variableG, which is discrete on set{1, 2, . . . , S}.

If the channel state information is known at the decoder, then we have

lim
EX→∞

CCSI-D

(a)

≤ lim
EX→∞

CCSI-ED

(b)
= lim

EX→∞
max

E[X]≤EX

I(X ; Y |G)

= lim
EX→∞

max
E[X]≤EX

h(Y |G)− h(Y |G,X)

= lim
EX→∞

max
Xs:

∑

s

qsE[Xs]≤EX

S
∑

s=1

qs[h(Xs + Zs)− h(Zs)]

(c)
= lim

EX→∞
max

EXs :
∑

s

qsEXs≤EX

S
∑

s=1

qs

[

log

(

1 +
EXs

EZs

)]

(d)
=

S
∑

s=1

qs

[

log

(

1 +
EX

EZs

)]

,

where(a) is due to upper bounding the channel capacity with the case where encoder also has

CSI and adapts its coding according to the channel states;(b) is the ergodic capacity of the

channel where both encoder and decoder has CSI (see, e.g., [17, pages 203-209]); and(c) holds

as exponential distribution maximizes the differential entropy on positive support with a mean
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constraint [14] [20, page 412]. Here, we chooseXs to be a weighted sum of an exponential

distribution with meanEXs
+EZs

and a delta function in order to make the outputXs + Zs to

be exponentially distributed random variable. That is, thepdf of Xs is given by

fXs
(x) =

EXs

EXs
+ EZs

e−x/(EXs+EZs)

EXs
+ EZs

u(x) +
EZs

EXs
+ EZs

δ(x), (15)

whereδ(x) = 1 if x = 0, and δ(x) = 0 if x 6= 0; u(x) = 1 if x ≥ 0, andu(x) = 0 if x < 0.

Finally, (d) follows by taking the limit.

In the following, we show that our proposed polar coding scheme achieves the upper bound

above in the high SNR regime.

Remark 4. Note that the capacity of the fading AEN channel with CSI-D approaches to the

bound above in the high SNR regime. (For example, our coding scheme, as shown below, provides

one such achievable rate.) This observation is similar to the Gaussian counterpart [17, pages

203-209], where in the high SNR regime, the performance obtained from a waterfilling strategy

- the optimal solution for the case where encoder can adapt its power based on the channel

state, i.e., CSI-ED - approaches to the performance of utilizing the same power allocation for

each fading channel.

Remark 5. The model above assumes a mean constraint on the channel input where the average

is over channel blocks and channel states. If the mean constraint is per block (abbreviated as

MPB - Mean Per fading Block - in the following), i.e.,E[Xb,i] ≤ EX for each fading blockb,

then by following steps similar to the ones above, we have

CCSI-D, MPB≤ CCSI-ED, MPB=

S
∑

s=1

qs

[

log

(

1 +
EX

EZs

)]

.

B. Binary Expansion of Exponential Distribution

In [9], expansion coding scheme is proposed for a static AEN channel, where the channel is

expanded by the decomposition property of exponential random variable. Here, a similar scheme

is adopted for the fading AEN channel. We first start with the following lemma, providing the

theoretical basis for expansion coding.
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Lemma 6. Let Al’s be independent Bernoulli random variables with parameters given byal,

i.e., Pr{Al = 1} , al, and consider the random variable defined by

A ,

∞
∑

l=−∞

2lAl. (16)

Then, the random variableA is exponentially distributed with meanλ−1, i.e., its pdf is given by

fA(a) = λe−λa, a ≥ 0, (17)

if and only if the choice ofal is given by

al =
1

1 + eλ2l
. (18)

This lemma reveals that one can reconstruct an exponential random variable from a set of

independent Bernoulli random variables perfectly. The proof is given in [9], and a set of typical

numerical values ofals forλ = 1 is shown in Fig. 5. It is evident thatal approaches0 for what we

refer to as the “higher” levels and approaches0.5 for the “lower” levels. Hence, the primary non-

trivial levels meaningful for coding are the “middle” ones.This observation provides the basis

for truncating the number of levels to a finite value without asignificant loss in performance.

C. Expansion Coding

We consider the binary expansion of channel noise

Ẑb,i ,

L2
∑

l=−L1

2lZb,i,l, (19)

whereZb,i,l is a discrete random variable taking value in{0, 1}. However, the distribution of

Zb,i,l depends on the fading state. More precisely, if the noise fora fading blockb is exponential

with parameterEZs
, thenZb,i,l is a Bernoulli random variable with parameter

p̃l,s , Pr{Zb,i,l = 1} =
1

1 + e2l/EZs

. (20)

Then, by Lemma 6,̂Zb,i
d.→ Zb,i asL1 andL2 tend to infinity. In this sense, we approximate the

original exponential noise perfectly by a set of discrete noises.

Similarly, we also expand channel input and output as follows,

Ŷb,i ,

L2
∑

l=−L1

2lYb,i,l =

L2
∑

l=−L1

2l(Xb,i,l + Zb,i,l), (21)
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Fig. 5: Numerical result. A set of als, the parameters from expanded levels, are shown, where

the target random variable expanded from is exponentially distributed withλ = 1.

whereXb,i,l is also a Bernoulli random variable with parameterpl , Pr{Xb,i,l = 1}. At this

point, we model the expanded channels as

Yb,i,l = Xb,i,l + Zb,i,l, l = −L1, . . . , L2. (22)

Note that the summation is a real sum here, and hence, the channel is not a fading BSC for a

given block. If we replace the real sum by modulo-2 sum, then, at levell, any capacity achieving

code for fading BSC, for example the one constructed in Section III, can be utilized over this

channel with optimal input probability distribution. In addition, instead of directly using the

capacity achieving code, one can consider its combination with the method of Gallager [21,

pages 74-76] [19] to achieve a rate corresponding to the one obtained by the mutual information

I(Xb,l; Yb,l) evaluated with a desired input distribution onXb,l. Hence, a desired rate (evaluation

of I(Xb,l; Yb,l) with some distribution onXb,l) at level l and fading blockb can be achieved.

However, due to the real sum in the original channel above, carries exist between neighboring
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Fig. 6: Illustration of expansion channel coding scheme. An analog channel is expanded into

a set of binary symmetric channels, where carries are considered between neighboring levels.

levels (see Fig. 6), which further implies that coding over levels are not independent. Hence, we

do not have independent parallel channels to start with. Every level, except for the lowest one,

is impacted by carries accumulated from lower levels. [9] proposed a scheme to get rid of this

issue, where carries are decoded from the lowest level to thehighest one. In this way, channels

over levels are transformed to behave independently (assuming reliable decoding of each carry

w.h.p.), and the total achievable rate is the summation of individual achievable rates over all

levels.

Using this technique (to essentially remove carries) as suggested in [9], each level could be

modeled as a fading BSC. Thus, expansion coding reduces the problem of coding over a fading

exponential noise channel into a set of simpler subproblems, coding over fading BSCs. By

adopting capacity achieving polar coding scheme proposed in Section III, we have the following

achievable rate result for these channels.

Theorem 7. By decoding carries in expansion coding, and adopting hierarchical polar coding

scheme for fading BSC in each expanded level, the proposed scheme achieves the rate given by

R =

L2
∑

l=−L1

S
∑

s=1

qs[H(pl ⊗ p̃l,s)−H(p̃l,s)], (23)
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for anyL1, L2 > 0, wherepl ∈ [0, 0.5] is chosen to satisfy

L2
∑

l=−L1

2lpl ≤ EX . (24)

We note the followings. First, the achievable scheme we utilize satisfies the mean constraint

on the channel input for each block, i.e., averaged over channel uses, lim
N→∞

1
N

N
∑

i=1

Xi,b ≤ EX

for each blockb. (This implies satisfying power constraint averaged over the blocks as well.)

Secondly, the maximum rate from our coding scheme could be considered as an optimization

problem over finite number of parameterspl, −L1 ≤ l ≤ L2. However, it is not clear how to

solve this non-convex problem. Here, instead of searching for an optimal solution, we shift our

focus to finding a sub-optimal choice ofpl such that the achievable rate is close the optimal

one in the high SNR regime. From (15), we observe that the optimal input distribution for the

case with the CSI at the transmitter could be approximated with an exponential with parameter

EXs
as SNR= EXs

/EZs
gets large. As we do not have CSI at the transmitter in our model,

we consider choosing the same energy level,EX , for each fading block. Noting again that the

optimal input distribution is unknown for our fading model,the high SNR observation inspires

us to choosepl as

pl =
1

1 + e2l/EX
. (25)

The following theorem gives the main result of our polar coding scheme over fading AEN

channel. (We accompany the proof of this theorem with Fig. 7 in order to provide not only the

details of the proof but also the intuition on how expansion approach is helpful.)

Theorem 8. For any positive constantǫ < 1, if

• L1 ≥ − log ǫ−min
s

logEZs
;

• L2 ≥ − log ǫ+ logEX ;

• min
s

SNRs ≥ 1/ǫ, where SNRs , EX/EZs
,

then by decoding carries and adopting hierarchical polar codes at each fading BSC after

expansion, the achievable rateR given by(23), with a choice ofpl as (25), satisfies

R ≥
S
∑

s=1

qs

[

log

(

1 +
EX

EZs

)]

− 5 log e · ǫ.
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Proof: We first state a bound for the entropy of channel noise with mean EZs
at level l

H(p̃l,s) ≤ 3 log e · 2−l+ηs for l > ηs, (26)

H(p̃l,s) ≥ 1− log e · 2l−ηs for l ≤ ηs, (27)

whereηs , logEZs
. The proofs of these bounds for the case ofEZs

= 1 are detailed in Lemma 4

of [9]. Here, we obtain these bounds by following the same steps given there. (Details are omitted

for brevity.)

Now, if we denoteξ , logEX , then comparing the definitions ofpl and p̃l,s, we get

pl =
1

1 + e2l/EX
= p̃l+ηs−ξ,s. (28)

Based on these observations, we have
L2
∑

l=−L1

[H(pl ⊗ p̃l,s)−H(p̃l,s)]

(a)

≥
L2
∑

l=−L1

[H(pl)−H(p̃l,s)]

(b)
=

L2
∑

l=−L1

[H(p̃l+ηs−ξ,s)−H(p̃l,s)]

=

L2+ηs−ξ
∑

l=−L1+ηs−ξ

H(p̃l,s)−
L2
∑

l=−L1

H(p̃l,s)

=

−L1−1
∑

l=−L1+ηs−ξ

H(p̃l,s)−
L2
∑

l=L2+ηs−ξ+1

H(p̃l,s)

(c)

≥
−L1−1
∑

l=−L1+ηs−ξ

[

1− log e · 2l−ηs
]

−
L2
∑

l=L2+ηs−ξ+1

3 log e · 2−l+ηs

(d)

≥ξ − ηs − log e · 2−L1−ηs − 3 log e · 2−L2+ξ

(e)

≥ log

(

EX

EZs

)

− log e · ǫ− 3 log e · ǫ

(f)

≥ log

(

1 +
EX

EZs

)

− log e · EZs

EX
− log e · ǫ− 3 log e · ǫ

(g)

≥ log

(

1 +
EX

EZs

)

− 5 log e · ǫ, (29)

where
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(a) is due topl ⊗ p̃l,s , pl(1 − p̃l,s) + p̃l,s(1 − pl) ≥ pl, and then due to the fact that entropy

function is increasing on[0, 0.5] (and, we havepl ⊗ p̃l,s ≤ 0.5);

(b) follows from equation (28);

(c) follows from bounds (26) and (27);

(d) follows as
−L1−1
∑

l=−L1+ηs−ξ

2l−ηs ≤ 2−L1−ηs ,

and
L2
∑

l=L2+ηs−ξ+1

2−l+ηs =

−L2+ξ−1
∑

l=−L2+ηs

2l ≤ 2−L2+ξ;

(e) follows from theorem assumptions thatL1 ≥ − log ǫ−min
s

ηs, andL2 ≥ − log ǫ+ ξ;

(f) is due to the fact thatlog(1+EX/EZs
)−log(EX/EZs

) = log(1+EZs
/EX) ≤ log e·EZs

/EX

(as ln(1 + x) ≤ x for any x ≥ 0);

(g) is due to the assumption in theorem thatmin
s

SNRs ≥ 1/ǫ.

Then, using (29) in (23) of Theorem 7, we have

R =

S
∑

s=1

qs

{

L2
∑

l=−L1

[H(pl ⊗ p̃l,s)−H(p̃l,s)]

}

≥
S
∑

s=1

qs

{

log

(

1 +
EX

EZs

)

− 5 log e · ǫ
}

=

S
∑

s=1

qs

[

log

(

1 +
EX

EZs

)]

− 5 log e · ǫ.

Remark 9. We note that the proposed scheme achieves a rate

S
∑

s=1

qs

[

log

(

1 +
EX

EZs

)]

= CCSI-ED, MPB,

which is an upper bound on the capacity for the CSI-D case in the high SNR regime. (See

Lemma 3.) Therefore, the proposed scheme achieves the capacity in the high SNR regime.

Note that, for an exponential distribution with mean1/λ, its binary expansion result can

be considered as the expansion of an exponential distribution with mean1 shifted by log(1/λ)

number of levels. We show this phenomenon in Fig. 7. To this end, Theorem 8 shows that in order
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Fig. 7: Illustration of signal, noise and rate at each level. In this numerical result, we only

concern about a single states, and chooseEX = 28, EZs
= 2−2. Note that, in this case, the

curve of pl ⊗ p̃l,s (in black) almost coincides with the one ofpl (in green), because of high

SNR. Moreover, the signalpl (in green) is a left shifted version of noisẽpl,s (in purple) by

logEX − logEZs
number of levels. Achievable rates at each level,Rl,s , H(pl⊗ p̃l,s)−H(p̃l,s),

are represented in blue.

to achieve the capacity of fading AEN channel, first, SNR should be large enough, and secondly,

the number of expanded levels should also be large enough such that the highest level exceeds

all the left shifted levels of expanded signal, and the lowest level exceeds the right shifted levels

of expanded noises. Hence, in total, basically we needlogSNRmax (SNRmax , max
s

EX/EZs
)

number of levels to cover all “non-trivial” levels for coding, as well as extra−2 log ǫ number of

levels to shoot for accuracy. At this point, the complexities of encoding and decoding are both

given by O
(

(logSNRmax − 2 log ǫ)NB log(NB)
)

, whereO(NB log(NB)) is the complexity
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scale for fading BSC derived in the previous section.

D. Numerical Results

In this section, we analyze the rate obtained from Theorem 7 with parameterpl chosen as

(25). Numerical results are illustrated in Fig. 8, where we consider the case of two fading states.

It is evident from the figure, and also from the theoretical analysis given in Theorem 8, that our

proposed polar coding scheme together with expansion coding achieves the upper bound on the

channel capacity (Lemma 3) in the high SNR regime. Therefore, the proposed coding scheme

achieves the channel capacity for sufficiently large SNR.

We also note that the coding scheme does not perform well in the low SNR regime, which

mainly results from two reasons. First, the upper bound we derived in Lemma 3, which is the

target rate in our coding scheme, is not tight in the low SNR regime. Secondly, our choice of

pl only behaves as a good approximation for sufficiently high SNR, which limits the proposed

scheme to be effective at the corresponding regime. However, as evident from the numerical

results, for a fairly large set of SNR values the proposed scheme is quite effective. In addition,

the upper bound curve is equal toCCSI-ED, MPB, the capacity when the input mean constraint is

imposed per block (instead of averaging over the blocks). Therefore, for the scenario of having

input constraint per each fading block, the upper boundCCSI-D, MPB ≤ CCSI-ED, MPB holds at any

SNR, and the only degradation in our coding scheme is due to the second point discussed above.

V. CONCLUSION

In this paper, polar coding schemes for fading binary symmetric channel (BSC) and fading

additive exponential noise (AEN) channel are proposed. First, a hierarchical polar coding scheme

is proposed for the fading BSC. This novel scheme, by exploiting an erasure decoding approach

at the receiver, utilizes the polarization results of different BSCs. (These BSCs are defined over

channel uses at a given fading block and over fading blocks ata given channel use index.) This

novel polar coding technique is shown to be capacity achieving for fading BSC. Remarkably, the

proposed scheme does not assume channel state information at the transmitter and fading BSC

models the fading additive white Gaussian noise (AWGN) channel with a BPSK modulation.

Therefore, our results are quite relevant to the practical channel models considered in wireless

communications.
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Fig. 8: Numerical results. The upper bound of ergodic capacity,CCSI-ED, MPB, which is equal to

CCSI-ED for sufficiently large SNR, is given by the red curve. The achievable rate is given by the

blue curve. In this analysis, only two fading states are concerned, and the parameters are chosen

asEZ1 = 0.5, EZ2 = 3, q1 = 0.8, andq2 = 0.2. Average SNR is defined asEX/(
S
∑

s=1

qsEZs
).

Towards utilizing the proposed techniques for encoding over another fading channel model, we

focused on fading AEN channel. For this model, expansion coding [9] is adopted to convert the

problem of coding over an analog channel into coding over discrete channels. By performing this

expansion approach and making the resulting channels independent (via decoding the underlying

carries), a fading AEN channel is decomposed into multiple independent fading BSCs (with a

reliable decoding of the carries). By utilizing the hierarchical polar coding scheme for fading

BSC, both theoretical proof and numerical results showed that the proposed approach achieves

the capacity of this fading channel in the high SNR regime.

We remark that the advantages of polar codes in rate and complexity are both inherited in the

proposed coding schemes. More precisely, as polar codes achieve channel capacity of BSC and
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BEC, our hierarchical utilization of polar codes also achieves the capacity of fading BSC, and

this result is further utilized to guarantee that expansioncoding scheme can achieve the capacity

of fading AEN channel in the high SNR regime (with low complexity in all cases).

Although the discussion in this paper focuses only on fadingBSC and fading AEN channel, the

proposed coding scheme could be generalized to more generalcases. For example, by utilizing

non-binary polar codes, our polar coding scheme can be generalized to a fading non-binary

discrete symmetric channel. This result can then be utilized for an AWGN fading channel with

more constellation points, such as QPSK. Moreover, the expansion coding scheme can also be

used for other analog channels that have noise statistics other than exponential, e.g., Gaussian.

Here, even though these distributions may not be perfectly approximated by a set of independent

discrete random variables, expansion coding scheme can still perform well, especially at high

SNR.

Finally, we note that the proposed coding scheme requires long codeword lengths to make

the error probability arbitrarily small. This requirementtranslates to requiring long coherence

intervals and large number of fading blocks as our approach utilizes coding over both channel

uses and fading blocks. (This is somewhat similar to the analyses in Shannon theory, where the

guarantee of the coding is that the error probability vanishes as the block length gets large.)

Therefore, our coding scheme fits to the fading channels withmoderate/long coherence time

and large number of fading blocks. Here, we comment on applicability of the proposed coding

scheme in typical wireless systems. As reported in [22, page219], LTE systems operating

at 1.8GHz frequency with20MHz bandwidth typically have fading durations of2.8 × 105 to

1.0 × 107 channel uses. In addition, WiFi systems operating at5GHz frequency with20MHz

bandwidth typically have fading durations of7.7 × 105 to 1.8 × 107 channel uses [23, pages

98-99]. (Here, a mobile speed of1m/s is assumed for both systems.) Polar codes, on the other

hand, typically have error rates around10−6 when the blocklength is around210, and a smaller

error probability is even possible, when the decoding is implemented with a better decoder [13].

For instance, instead of the classical SC decoder, a list decoder [13] can be utilized. Finally,

besides long coherence intervals, another requirement forthe proposed coding scheme is to have

large number of fading blocks. This requirement can be satisfied in many practical scenarios at

the expense of having large decoding delays. To summarize, for a given wireless system and a

choice of one of the encoding/decoding strategies discussed above, the resulting error rate and its
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propagation in the proposed decoding algorithm should be studied further. We leave the analysis

of such applications of the proposed techniques to a future work.
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