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Individual Secrecy for Broadcast Channels

with Receiver Side Information

Yanling Chen, O. Ozan Koyluoglu, and Aydin Sezgin

Abstract

This paper studies the problem of secure communication over the broadcast channel with receiver side

information under the lens of individual secrecy constraints. That is, the transmitter wants to send two

independent messages to two receivers which have, respectively, the desired message of the other receiver

as side information, while keeping the eavesdropper ignorant of each message (i.e., the information leakage

from each message to the eavesdropper is made vanishing). Building upon one-time pad, secrecy coding,

and broadcasting schemes, achievable rate regions are investigated, and the capacity region for special

cases of either a weak or strong eavesdropper (compared to both legitimate receivers) are characterized.

Interestingly, the capacity region for the former corresponds to a line and the latter corresponds to a square

with missing corners; a phenomenon occurring due to the coupling between user’s rates. Moreover, the

individual secrecy capacity region is also fully characterized for the case where the eavesdropper’s channel

is deterministic. In addition to discrete memoryless setup, Gaussian scenarios are studied. For the Gaussian

model, in addition to the strong and weak eavesdropper cases, the capacity region is characterized for the low

and high SNR regimes when the eavesdropper’s channel is stronger than one receiver but weaker than the

other. Remarkably, positive secure transmission rates are always guaranteed under the individual secrecy

constraint, unlike the case of the joint secrecy constraint (i.e., the information leakage from both messages

to the eavesdropper is made vanishing). Thus, this notion of secrecy serves as an appropriate candidate for

trading off secrecy level and transmission rate; making secrecy more affordable but still acceptable to the

end user.

I. Introduction

A. Background

The broadcast channel is a fundamental communication model that involves transmission of independent

messages to different users. However, the broadcast nature makes the communication very susceptible to

eavesdropping. Therefore, it is desirable to offer a reliable communication with a certain level of security

guarantee, especially for ensuring sensitive information to be protected from unauthorized parties.
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The problem of secure communication from an information theoretic point of view was first studied by

Shannon [1]. In this work, a cipher system was introduced under the assumption that the transmitter and the

intended receiver share a secret random key which is out of the eavesdropper’s knowledge. For the purpose

of a secure communication, the message is first encrypted into a ciphertext before being transmitted, and it

is assumed that the eavesdropper has full access to the ciphertext as the intended receiver. A cipher system

with perfect secrecy demands that knowing the ciphertext, however, gives no clue about the message. Such a

perfect cipher system is shown to be possible via the so-called one-time pad scheme [1] (previously porposed

by Vernam [2]), provided that the secret key is sufficient to randomize the message.

Wyner, in his seminal paper [3], introduced the wiretap channel, where he addressed the problem of secret

message transmission from a transmitter to a legitimate receiver (without sharing keys beforehand) over a

degraded broadcast channel in the presence of an eavesdropper. It is shown that the secure communication

is still possible when the eavesdropper observes a degraded version of the legitimate receiver’s observation.

The fundamental limit of secure communication, i.e., secrecy capacity, is defined to be the maximum rate

under a weak secrecy constraint, where the rate of information leaked to the eavesdropper is made vanishing.

Later on, Csiszár and Körner [4] extended Wyner’s work by considering a setup of transmitting secret and

common message over a general broadcast channel, and provided a single-letter characterization of the

secrecy capacity. Notably, the secrecy capacity results hold also under a strong secrecy constraint, where the

total amount of information leaked to the eavesdropper is made vanishing, as demonstrated in [5].

For those wiretap channels where the legitimate receiver does not have any advantage over the eaves-

dropper, interestingly, Maurer [6] demonstrated that it is still possible to achieve a positive secret rate if a

public feedback channel is made available. In parallel, Csiszár and Ahlswede [7] recognized that correlated

source observations could be explored for generating secret key that could be used further for secret message

transmission via one-time pad. These offer alternative solutions to achieve information theoretic secrecy,

which are especially interesting in cases that the legitimate users have no advantage against the eavesdropper

on the communication channels.

Inspired by these pioneering works, there has been a body of growing literature studying the problem of

secret message transmission and/or secret key generation by exploring the resources available in different

settings. Extensive types of resources have been taken into account in order to establish secret commu-

nications without much sacrifice, or turn the disadvantages into advantages so as to make the impossible

possible or even improve the overall performance. Such resources include channel state information [8]–[12],

side information [13], feedback [14]–[18], correlated sources [19]–[21] or shared keys [22]–[24], and so on. In

the meantime, the channel, still serves as one of the most significant resource for secure communication.

Several communication channels of particular practical interest have received intense research attention.

Instances include but not limited to the broadcast channels [25]–[28], multiple access channels [29], two-way

channel [30], [31], the interference channels [32], [33], and compound channels [34].
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B. Contributions

In this paper, we consider the problem of secure communication over the broadcast channel with receiver

side information (BC-RSI). The model is different from the wiretap channel with side information due to the

broadcast nature of the communication channel. That is, in this model, the transmitter wants to send two

independent messages to two receivers which have, respectively, the desired message of the other receiver

(already available in their possession, e.g., due to previous communications) as side information. (See Fig.

1.) This is a simple setup of a general scenario, which consists of more than two legitimate receivers, each

having a piece of partial information about the transmitted message. In the following, we summarize the

main contributions of the paper:

• The linear deterministic model is studied and corresponding individual secrecy capacity region is char-

acterized. Due to its relevance to the corresponding Gaussian case, study of this specific model provides

insight into the individual secrecy capacity region of Gaussian case especially in the high SNR regime.

• To investigate the fundamental limits of communication under individual secrecy constraints, con-

structions building upon one-time pad, wiretap coding, superposition coding, and Marton’s coding are

proposed.

– First construction, referred to as secret key approach, utilizes side information at receivers as secret

keys of one-time pad signals, which further is encoded as cloud centers in broadcast coding schemes.

This approach is shown to be capacity achieving for a strong eavesdropper (compared to both

legitimate receivers).

– Secret key approach is extended with secrecy coding, where the one-time pad signal is utilized as a

part of the randomization to confuse the eavesdropper (i.e., to limit her ability to obtain information

regarding each message). This approach is shown to be capacity achieving for a weak eavesdropper

(compared to both legitimate receivers).

– The proposed superposition coding can be considered as an extension of secret key approach and

combined secret key and secrecy coding approach. It takes advantage of the rate splitting of one-

time pad signals such that they serve for two distinct purposes: 1) as a cloud center; and 2) as a

part of randomization within the satellite codewords to confuse the eavesdropper. Also, it is shown

that the suggested rate splitting is sufficient within superpostion coding since further rate splitting

does not improve the established region. Remarkably, superposition coding is shown to be optimal

for special cases of either a strong or weak eavesdropper (compared to both legitimate receivers),

and in case that the eavesdropper has a deterministic channel.

– The proposed Marton’s coding approach is built on the superposition coding but with one additional

coding layer that employs Marton’s coding. The idea is to further explore the advantage of rate

splitting at the encoding phase (with introduction of joint distributed satellite codewords which

carry independent message pieces intended for each legitimate receiver); and at the decoding phase
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only the individual satellite codewords will be decoded. As a result, a general achievable individual

secrecy rate region is established, which not only includes but further improves the region obtained

by superposition coding approach. The improvement is demonstrated for the mixed case where the

eavesdropper’s channel is weaker than one of the legitimate receivers channels but stronger than

the other.

– As a by-product, two achievable joint secrecy rate regions are also obtained by the proposed

superposition coding approach and Marton’s coding approach, respectively; in which the former is

included and potentially improved by the latter, i.e., Marton’s coding approach.

• Gaussian model is studied. And, in addition to strong and weak eavesdropper scenarios, the capacity

region for low and high SNR regimes are characterized for the mixed case when the eavesdropper is

stronger than one legitimate receiver but weaker than the other.

C. Related Work

Our model can be thought of as a broadcast phase of a relay network after a multiple access phase

where the nodes transmit their messages to the relay in the first phase. Remarkably, this two-way relay

setting simply illustrates how the information are shared in today’s networked world. To maximize the

broadcasting throughput, the technique employed at the relay node is very relevant to network coding. As

demonstrated in [35], the relay node (i.e., the transmitter in our model) can broadcast the XORed messages.

Then, the legitimate receivers, utilizing the side information they have, can decode their intended message.

The broadcasting capacity region (Fig. 1 without an eavesdropper) is characterized in [35].

In addition to the broadcasting to share information in the most efficient way, the secrecy aspect of

the communication has been a growing concern. Considering the existence of an external eavesdropper in

the model of the broadcast channel with receiver side information (BC-RSI), the authors in [36] proposed

achievable rate regions and outer bounds subject to a joint secrecy constraint, whereby the information

leakage from both messages to the eavesdropper is made vanishing. Differently from [36], we focus on the

problem under individual secrecy constraints that aims to minimize the information leakage from each

message to the eavesdropper. Other relevant works include [37]–[40]. The work [37] considered transmitting

common and private messages to each user for the BC with side information model in addition to transmitting

a confidential message to one of the users while treating the other as an eavesdropper. The same setting

without common messages was considered in [38] and the secrecy capacity was characterized. Recently, in

a parallel work [39], [40], Mansour et al. considered discrete memoryless broadcast channels with degraded

message sets and message cognition. The model in [40], when the common messages are removed and

individual secrecy constraint is imposed, reduces to the model considered in this paper. In particular, the

scenarios of weak and stronger eavesdroppers (as characterized in Theorem 4 and Theorem 6 here) overlaps

with the corresponding propositions in [40], in which the authors consider more capable/less noisy scenarios

as well. Our initial results on this topic are presented in [41], [42], and, in addition to stronger/weaker
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eavesdropper cases, we focus on other DMC models, deterministic channels, and Gaussian scenarios for

BC-RSI with individual secrecy constraints in this paper.

Although the individual secrecy constraint is by definition weaker than the joint one, this notion never-

theless provides a security level that keeps each legitimate receiver away from non-negligible information

leakage on its intended message, therefore acceptable to the end user. In addition, a joint secrecy constraint

can be difficult or even impossible to fulfill in certain cases. For instance, when the eavesdropper has the

same or a better channel observation than at least one of the legitimate receivers, imposing joint secrecy

constraints result in a vanishing communication rate to the respective receiver. In this paper, we devote

a particular attention to these mixed scenarios, where the eavesdropper can be stronger than one receiver

but weaker than the other. In such cases, individual secrecy serves as a practical security solution that is

attainable. In fact, such a weaker security constraint is shown to be preferable in large-scale networks. For

instance, this notion has the same spirit as the concept of weak security as defined in [43] to guarantee

that the eavesdropper is unable to get any meaningful information about the source in a multicast network

scenario. In addition, a similar security criterion is considered to be sufficient for distributed storage systems.

For instance, one can find its application in the design of secure cloud storage systems as proposed in [44],

[45].

II. System model

Consider a discrete memoryless broadcast channel given by p(y1, y2, z|x) with two legitimate receivers

and one passive eavesdropper, as shown in Fig. 1. The transmitter aims to send messages m1, m2 to the

legitimate receiver 1, 2, respectively. Suppose xn is the channel input to convey m1, m2 in n channel uses,

whilst yn
1 (at receiver 1), yn

2 (at receiver 2) and zn (at eavesdropper), are the channel outputs. Besides, m2

(available at receiver 1) and m1 (available at receiver 2) serve as side information that help to decode the

desired message. (Unless otherwise specified, we use capital letters for random variables, the corresponding

calligraphic letters for their alphabets and small cases for their realizations.)

TransmitterTransmitter

Receiver 1

Receiver 2

Eavesdropper

p(y1, y2, z|x)

m2

m1

xn

yn
1

yn
2

zn

m1

m2

m̂1

m̂2

?

Fig. 1: BC-RSI with an external eavesdropper.

February 26, 2015 DRAFT



6

Encoder employed by the transmitter is a mapping f : M1 × M2 → X n, where m1 ∈ M1, m2 ∈ M2,

and xn ∈ X n. (Here, the channel input alphabet is X ). Decoder employed at receiver i is a mapping

gi : Yn
i × Mj → Mi, where j 6= i, and yn

i ∈ Yn
i for i = 1, 2. (Here, the channel output alphabet at receiver

i is Yi.) Denote the average probability of decoding error at receiver i as Pe,i = Pr{mi 6= gi(y
n
i , mj)} with

j 6= i. The rate pair (R1, R2) is said to be achievable, if for any ǫ > 0, there exists an encoder-decoder tuple

(f, g1, g2) such that

1

n
H(Mi) ≥Ri − ǫ (1)

Pe,i ≤ǫ (2)

1

n
I(Mi; Zn) ≤ǫ, (3)

for i = 1, 2 (and, for sufficiently large n). Note that (1) corresponds to the targeted transmission rate; (2)

corresponds to the reliability constraint at the legitimate receivers; while (3) corresponds to the individual

secrecy constraints against the eavesdropper. If the coding scheme fulfils a stronger condition that

1

n
I(M1, M2; Zn) ≤ ǫ, (4)

then it is said to satisfy the joint secrecy constraint. Clearly, the joint secrecy constraint implies the individual

secrecy constraints.

III. An illustrative example

Transmitteruk

Receiver 1

Receiver 2

Receiver k

u1

u2

uk

uk\{u1}

uk\{u2}

uk\{uk}

Eavesdropper ?

...
...

xn

Fig. 2: Secure communication over 1-to-k broadcast channel with receiver side information.

In this section, we motivate the individual secrecy constraint by using the scenario of 1-to-k broadcasting as

shown in Fig. 2. The model consists of one transmitter, k legitimate receivers, and one passive eavesdropper.
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The transmitter aims to broadcast k information bits Uk = (U1, U2, · · · , Uk) to k legitimate receivers with

Ui ∼ Bern(1/2); whilst each receiver i holds already one piece of information Ui as side information. Suppose

that Uk is encoded into Xn = (X1, X2, · · · , Xn) and consider that this channel input is transmitted over

noiseless channels. Then, for the purpose of broadcasting, each legitimate receiver i (which holds Ui and

receives Xn) shall be able to recover the k − 1 information bits Uk\{Ui}, i.e.,

H(Uk|Xn, Ui) = 0. (5)

Thus, we have

H(Uk|Xn) = H(Uk, Ui|X
n) = H(Ui|X

n) + H(Uk|Xn, Ui)

(5)
= H(Ui|X

n). (6)

Let us now consider the secrecy aspect of broadcasting by imposing the joint and individual secrecy

constraints, respectively. We note that the eavesdropper also receives a perfect copy of Xn.

1) For the joint secrecy constraint, we have that

H(Uk|Xn) = H(Uk). (7)

Recall (6). We obtain

H(Uk|Xn) = H(Ui|X
n) ≤ H(Ui) < H(Uk),

where the last strict inequality follows since Ui ∼ Bern(1/2). Thus, equality in (7) is not possible. That is,

for this example, no broadcasting scheme could fulfill the joint secrecy constraint.

2) For the individual secrecy constraint, we have that

H(Ui|X
n) = H(Ui), for 1 ≤ i ≤ k. (8)

Suppose there is a coding scheme that fulfills both purposes of broadcasting, i.e., (5), and the individual

secrecy, i.e., (8). Then, we have

H(Uk, Xn) = H(Ui, Xn) + H(U i−1
1 , Un

i+1|Ui, Xn)

(a)
= H(Xn) + H(Ui|X

n)

(b)
= H(Xn) + H(Ui), (9)

where (a) is due to (5); and (b) is due to (8). Using H(Uk, Xn) ≥ H(Uk) in (9), we obtain that

H(Xn) ≥ H(Uk) − H(Ui) = k − 1.

So to say, the optimal encoding scheme (with respect to the overall transmission rate k/n) from Uk to Xn

is such that H(Xn) = k − 1. Thus, to obtain the optimal rate, one shall take n = k − 1. This is feasible. In

fact, there are many coding schemes that could achieve this. One of the options is to take

xi = u1 ⊕ ui+1, for 1 ≤ i ≤ k − 1.
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The decoding at each receiver i is straightforward. Since ui is available at receiver i as side information, it

could first help to recover u1 by u1 , xi−1 ⊕ ui if i > 1; and then sequentially recover uj by uj , xj−1 ⊕ u1

for j 6= 1, i. And, the transmission rate Ri to each receiver i, for 1 ≤ i ≤ k, is equal to 1, since k − 1 bits

are received in n = k − 1 channel uses. Noting that the capacity for a binary noiseless channel is one, we

conclude that the above scheme actually achieves the individual secrecy capacity for all receivers.

The following insights immediately follow from this example:

• Joint secrecy might be impossible to achieve.

• Individual secrecy could be the highest secrecy level to offer (as shown in (6) on the equivocation at

the eavesdropper).

• Individual secrecy could be achieved without any rate degradation (as compared to the capacity region

without security constraints)!

In fact, joint secrecy could be impossible for a more general set-up as demonstrated in the following

proposition.

Proposition 1. For the communication model as shown in Fig. 1 under the joint secrecy constraint, any

rate pair (R1, R2) ∈ R
+

is infeasible if the channel to at least one of the receivers is more noisy than the

channel to the eavesdropper.

Proof: Assume that receiver 2 receives Y n
2 as a more noisy version of Zn, the channel output at the

eavesdropper. From the following analysis, we show that R2 > 0 is not possible.

nR2 = H(M2) = I(M2; M1, Y n
2 ) + H(M2|M1, Y n

2 )

(a)

≤ I(M2; Y n
2 |M1) + nǫ′ ≤ I(M1, M2; Y n

2 ) + nǫ′

(b)

≤ I(M1, M2; Zn) + nǫ′

(c)

≤ n(ǫ + ǫ′),

where (a) is due to Fano’s inequality (implying that H(M2|M1, Y n
2 ) ≤ nǫ′ for some ǫ′ → 0 as n → ∞) and

the fact that I(M2; M1, Y n
2 ) = I(M2; M1) + I(M2; Y n

2 |M1) = I(M2; Y n
2 |M1) as M1 and M2 are independent;

(b) is due to I(M1, M2; Y n
2 ) ≤ I(M1, M2; Zn) which follows from the fact that receiver 2 has a more noisy

observation Y n
2 than the eavesdropper’s observation Zn; and (c) is due to the joint secrecy constraint (4).

This implies that R2 ≤ ǫ + ǫ′, which is arbitrarily small for an arbitrarily small Pe,2 (i.e., ǫ′) and an

arbitrarily small information leakage rate ǫ to the eavesdropper.

Nevertheless, an achievable rate region was established in [36] for the BC-RSI under joint secrecy con-

straint. In the following sections, we will focus on deriving the individual secrecy capacity or achievable

rate regions for different BC-RSI models. In particular, we will start with a specific linear deterministic

case, where we establish the individual secrecy capacity region. Then, we will address the general discrete

memoryless model, where we obtain achievable rate regions with characterization of the capacity region in
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special cases. Finally, we look into the Gaussian case and obtain inner and upper bounds for the individual

secrecy capacity region.

IV. Linear Deterministic BC-RSI

Motivated by the success of the linear deterministic approach [12], [46] in approximating the (secrecy)

capacity region within constant bits regardless of the received signal-to-noise ratio and its relevance par-

ticularly in the high SNR regime, we first take a look at the linear deterministic broadcast channel [46]

with receiver side information. In this specific model, the received signals at the legitimate receivers and the

eavesdropper are given by

Y1 = Dq−n1 X,

Y2 = Dq−n2 X,

Z = Dq−ne X,

(10)

where X is the binary input vector of length q = max{n1, n2, ne}; D is the q × q down-shift matrix; n1, n2

and ne are the integer channel gains of the channels from the transmitter to receiver 1, receiver 2, and the

eavesdropper, respectively. Note that

1) as q = n1 ≥ n2 ≥ ne, the channel is degraded in the manner that X → Y1 → Y2 → Z forms a Markov

chain;

2) as q = n1 ≥ ne ≥ n2, the channel is degraded in the manner that X → Y1 → Z → Y2 forms a Markov

chain;

3) as q = ne ≥ n1 ≥ n2, the channel is degraded in the manner that X → Z → Y1 → Y2 forms a Markov

chain.

In all cases, we have the following theorem:

Theorem 2. The individual secrecy capacity region of the linear deterministic broadcast channel with receiver

side information is the set of the rate pairs (R1, R2) defined by

R1 ≤ min{n1, [n1 − ne]+ + R2};

R2 ≤ min{n2, [n2 − ne]+ + R1},

where [a]+ = max{0, a}.

Proof: The converse follows directly from [35, Theorem 1] and Proposition 21 in Appendix A, where

the former is the capacity region of the BC-RSI without any secrecy constraints; and the latter is an upper

bound of the secrecy capacity region of BC-RSI.

The achievability follows by considering different scenarios, each is classified according to the relation

between the channel gains n1, n2, ne, and the relation between the rates R1, R2. For a given scenario, we

consider the construction of the codeword X as a function of m1, m2. Note that, at the receiver side, according
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to the system input-output relation as defined in (10), receiver 1 receives the first n1 bits of X , receiver 2

gets the first n2 bits of X , and the eavesdropper gets the first ne bits of X . This holds for all scenarios.

In order to achieve a reliable and secure communication under the individual secrecy constraint, X should

be designed in such a way that both legitimate receivers could decode the desired message with the help

of the side information (i.e., the other message); while the eavesdropper can only observe bits either in the

form of m1 ⊕ m2, or mixture of part of the messages, and/or random bits. This gives no information on m1

and m2 individually. In Appendix B, we provide a specific coding scheme for each scenario, achieving the

corresponding individual secrecy capacity region. Putting all pieces together establishes the achievability of

the stated region.

0 ne n1 − ne
n1

ne

n2 − ne

n2

R1

R
2

(a) n1 ≥ n2 ≥ ne

0 n1 − ne n1 − ne + n2

n2

R1

R
2

(b) n1 ≥ ne ≥ n2

0 n2 n1

n2

R1

R
2

R1 = R2

min{n1, n2}

(c) ne ≥ n1 ≥ n2

Fig. 3: Individual secrecy capacity region of the linear deterministic BC-RSI

The individual secrecy capacity region of the linear deterministic BC-RSI is depicted in Fig. 3. We remark

that the capacity region is

• a rectangle with two missing corners in case of n1 ≥ n2 ≥ ne;

• a parallelogram in case of n1 ≥ ne ≥ n2; and

• a line in case of ne ≥ n1 ≥ n2.

Compared to the capacity region of the BC-RSI (following from [35, Theorem 1], this region is given by

R1 ≤ n1 and R2 ≤ n2 as shown in Fig. 3), the missing parts reflect the loss in the transmission rates due to

the individual secrecy constraints. And, as the eavesdropper gets stronger, the loss increases. Nevertheless,

in the worst case, positive secrecy rate pairs are still possible under the individual secrecy constraint (as

shown in Fig. 3c), unlike the case under the joint secrecy constraint (as demonstrated in Propostion 1).

V. Discrete Memoryless BC-RSI

In this section, we consider the discrete memoryless BC-RSI with an external eavesdropper (Fig. 1). When

none of the secrecy constraints are taken into account, this model reduces to discrete memoryless BC-RSI,

for which the capacity region is given by the union of rate pairs (R1, R2) satisfying Ri ≤ I(X ; Yi) for i = 1, 2,

where the union is taken among all possible input probability distributions p(x) [35, Theorem 1]. Here, we

focus on coding schemes that can achieve not only reliability but also (individual) secrecy for this model. In
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particular, we investigate to what extend this capacity region has to be modified in order to accommodate

(individual) secrecy.

In order to investigate the fundamental limits of communication under individual secrecy constraints,

we utilize coding approaches including one-time pad, wiretap coding, superposition coding, and Marton’s

coding, which have been proposed for communication scenarios such as Shannon’s cipher system, wiretap

channel, and broadcast channel [47]. The key ingredient of our proposed schemes is the utilization of side

information at receivers as secret keys of one-time pad signals, which further is encoded as cloud centers in

broadcast coding schemes. That is, one-time pad signals are constructed such that they can be decoded at

both receivers, which can then extract their desired information utilizing the side information, whereas the

eavesdropper will be left with full ambiguity regarding the information content for each message individually.

We refer this signaling technique as the secret key approach.

As detailed in this section, we observe, for the case of a strong eavesdropper, that the secret key approach

(i.e., coding via one-time pad by mixing the messages) is the best one can do; while, in case of a weak

eavesdropper, the combined secret key and secrecy coding approach is required in order to achieve higher

rates. (Here, we use the phrase secrecy coding in order to refer to the extension of wiretap coding technique

to our broadcast model, where both users randomize their signals in order to confuse the eavesdropper.)

After a characterization of achievable rates and special case capacity results with these strategies, we detail a

universal approach by employing superposition coding and Marton’s coding to establish (general) achievable

individual secrecy rate regions.

A. Secret key approach and the capacity region for BC-RSI with a stronger eavesdropper

Consider the symmetric secret rate region where R1 = R2 = R, i.e., M1 and M2 are of the same entropy.

Under these conditions, communicating the message M1 ⊕ M2 readily provides individual secrecy, i.e., the

following rate region is achievable.

Proposition 3. Any (R1, R2) ∈ R
+

satisfying

R1 = R2 ≤ min{I(X ; Y1), I(X ; Y2)}, (11)

for any p(x) is achievable.

Proof: Randomly generate 2nR codewords xn according to p(x). Given (m1, m2), send xn(mk) with

mk = m1 ⊕ m2 to the channel. See Fig. 4 for the construction of Xn. Both receivers can decode reliably by

utilizing their side information to extract intended messages if R1 = R2 ≤ min{I(X ; Y1), I(X ; Y2)}. For the

secrecy of Mi, i = 1, 2 we have

I(Mi; Zn)
(a)

≤ I(Mi; Zn, Mk)
(b)
= I(Mi; Mk)

(c)
= 0, (12)

where (a) is due to the non-negativity of the conditional mutual information, i.e., I(Mi; Mk|Zn) ≥ 0; (b)
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is due to Markov chain Mi → Mk → Zn, i.e., I(Mi; Zn|Mk) = 0; and (c) follows as Mi is secured with a

one-time pad Mj (j 6= i) in Mk.

m1 :
m1

m2 :
m2

xn :
m1 ⊕ m2

︸ ︷︷ ︸

nR

Fig. 4: Secret key approach: Encoding.

Note that the above achievable region is limited by the capacity of the worse channel of the legitimate

receivers. Nevertheless, it serves as the individual secrecy capacity region when the eavesdropper has an

advantage on the channel over both legitimate receivers.

Theorem 4. If the channels to the legitimate receivers are degraded with respect to the channel to the

eavesdropper, then the individual secrecy capacity region is given by the union of non-negative rate pairs

(R1, R2) satisfying

R1 = R2 ≤ min{I(X ; Y1), I(X ; Y2)}, (13)

where the union is taken over p(x).

Proof: The achievablity follows from the proof of Proposition 3. Here, we detail the converse.

nR1 = H(M1) = I(M1; M2, Y n
1 ) + H(M1|M2, Y n

1 )

(a)

≤ I(M1; Y n
1 |M2) + nǫ′ ≤ I(M1, M2; Y n

1 ) + nǫ′;

(b)

≤ I(Xn; Y n
1 ) + nǫ′ (c)

=
n∑

i=1

I(Xi; Y1,i) + nǫ′

(d)
= nI(XQ; Y1,Q|Q) + nǫ′

(e)

≤ nI(X ; Y1) + nǫ′;

and, continuing from (a), we have

nR1 ≤ I(M1; Y n
1 |M2) + nǫ′ ≤ I(M1, M2; Y n

1 ) + nǫ′

(f)

≤ I(M1, M2; Zn) + nǫ′
(g)

≤ I(M2; Zn|M1) + n(ǫ′ + ǫ)

≤ H(M2) + n(ǫ′ + ǫ)
(h)
= nR2 + n(ǫ′ + ǫ)

(i)

≤ nI(X ; Y2) + n(ǫ′ + ǫ)

where (a) is due to Fano’s inequality and the fact that I(M1; M2) = 0; (b) is due to Markov chain (M1, M2) →

Xn → Y n
1 ; (c) follows as the channel is memoryless; (d) is by introducing a time-sharing random variable Q

which is uniform over 1, 2, . . . , n; (e) is by taking X = XQ, Y1 = Y1,Q; (f) is due to the channel degradedness,
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0 I(X ; Y2) I(X ; Y1)

I(X ; Y2)

R1

R
2

R1 = R2

min{I(X; Y1), I(X; Y2)}

Fig. 5: Individual secrecy capacity region in case of a strong eavesdropper.

i.e., Markov chain (M1, M2) → Zn → Y n
1 ; (g) is by the individual secrecy constraint (3); (h) is due to

H(M2) = nR2; and (i) is derived by applying a proof similar to nR1 ≤ nI(X ; Y1) + nǫ′ and by taking Y2 =

Y2,Q. At this point, from (h), we have R1 ≤ R2; and R1 ≤ min{I(X ; Y1), I(X ; Y2)}. By symmetry, we have

R2 ≤ R1 and R2 ≤ min{I(X ; Y1), I(X ; Y2)}. Thus, we establish that R1 = R2 ≤ min{I(X ; Y1), I(X ; Y2)}.

The individual secrecy capacity described in Theorem 4 is depicted in Fig. 5. That is, in case of a strong

eavesdropper, the best transmission strategy is to send the one-time pad of the messages to both receivers,

where both of them could recover its desired message with the help of side information; while the eavesdropper

gets only the mixed copy, which gives no clue for each message individually.

B. Combined secret key and secrecy coding approach and the capacity region for BC-RSI with a weaker

eavesdropper

Although the secret key approach is optimal in case of a strong eavesdropper, this scheme can be strictly

suboptimal for other scenarios. In fact, a counter-example follows from the linear deterministic model, for

the case where the eavesdropper is weak. In general, consider channel inputs p(x) such that I(X ; Z) ≤

min{I(X ; Y1), I(X ; Y2)}. We show in this section that, asymmetric rate pairs beyond the secret key approach

can be achieved if we combine secret key with a secrecy coding approach. That is, besides using the receiver

side information as secret key, one can further take the advantage over the channel against the eavesdropper

by employing secrecy coding approach [3], [4]. First, we have the following proposition.
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Proposition 5. Any (R1, R2) ∈ R
+

satisfying

I(X ; Z) ≤ R1 ≤ I(X ; Y1)

I(X ; Z) ≤ R2 ≤ I(X ; Y2)

for p(x) such that I(X ; Z) ≤ min{I(X ; Y1), I(X ; Y2)} is achievable.

Proof: Rate splitting: Assume that R2 ≤ R1. As illustrated in Fig. 6, we split M1 into two parts,

i.e., M1 = (M1k, M1s) with M1k of entropy nR2, the same as M2; whilst M1s of entropy nR1s. Note that

R1 = R1k + R1s.

m1 :

nR1k

︷ ︸︸ ︷

m1k

nR1s

︷ ︸︸ ︷

m1s

m2 :
m2

︸ ︷︷ ︸

nR2

Fig. 6: Combined secret key and secrecy coding approach: Rate splitting.

Codebook generation: Randomly generate 2nR1 codewords xn according to p(x). Throw them into 2nR1s

bins [47] and index them by xn(ik, i1s) with (ik, i1s) ∈ [1 : 2nR2 ] × [1 : 2nR1s ].

Encoding: To send messages (m1, m2), choose xn(mk, m1s) with mk = m1k ⊕ m2 and transmit it to the

channel. The choice of the codeword xn for given (m1, m2) is illustrated in Fig. 7.

xn :

nR2

︷ ︸︸ ︷

m1k ⊕ m2 m1s

︸ ︷︷ ︸

nR1s

︸ ︷︷ ︸

nR1

Fig. 7: Combined secret key and secrecy coding approach: Encoding

Decoding: Receiver 2 can decode mk reliably using typical set decoding if

R2 < I(X ; Y2) (14)

with the knowledge of m1, and thus extract m2. Receiver 1 can decode both mk and m1s if

R1 < I(X ; Y1) (15)

and extract m1k from the former with the knowledge of m2.

Individual secrecy: At the eavesdropper, we see that M1k is secured by capsuling with M2 as a one-time

pad (thus M2 is also secured as in Section V-A), while M1s is secured by using secrecy coding for classical
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wiretap channels under the condition that

R2 ≥ I(X ; Z). (16)

More specifically, the secrecy of M2 follows from

I(M2; Zn) ≤ I(M2; Zn, Mk, M1s) = I(M2; Mk, M1s) = 0.

And, the secrecy of M1 is shown as follows. Since R2 ≥ I(X ; Z), for a fixed i1s, one can further bin the

codewords xn and index them as xn(ikr, iks, i1s) with ik = (ikr, iks) ∈ [1 : 2n(I(X;Z)−ǫ)]×[1 : 2n(R2−I(X;Z)+ǫ)],

as illustrated in Fig. 8. Correspondingly, split Mk = (Mkr , Mks). We have

xn :

≈nI(X;Z)
︷ ︸︸ ︷

ikr iks

︸ ︷︷ ︸

nR2

i1s

︸ ︷︷ ︸

nR1s

Fig. 8: secret key and secrecy coding approach: Secrecy analysis.

H(M1s, Mks|Zn) =H(M1s, Mks, Xn|Zn) − H(Xn|M1s, Mks, Zn)

(a)

≥ H(M1s, Mks, Xn, Zn) − H(Zn) − nǫ1

=H(Xn) + H(Zn|Xn) − H(Zn) − nǫ1

(b)

≥nR1 + nH(Z|X) − nH(Z) − nǫ1

(c)

≥H(M1s, Mks) − nδ(ǫ),

where (a) follows as H(Xn|M1s, Mks, Zn) ≤ nǫ1 due to Fano’s inequality and that the eavesdropper can de-

code Xn reliably by using typical set decoder, given (Mks, M1s, Zn); (b) is due to the fact that H(Xn) = nR1;

H(Zn|Xn) = nH(Z|X) since the channel is memoryless; and H(Zn) =
∑n

i=1 H(Zi|Z
i−1
1 ) ≤

∑n

i=1 H(Zi) =

nH(Z); (c) follows that H(M1s, Mks) = nR1s +n(R2 −I(X ; Z)+ǫ) = nR1 −nI(X ; Z)+nǫ and δ(ǫ) = ǫ1 +ǫ.

Above inequality implies I(M1s; Zn) ≤ nδ(ǫ). Besides, due to Markov chain M1k → (Mk, M1s) → Zn, we

can bound I(M1k; Zn|M1s) ≤ I(M1k; Zn, M1s, Mk) = I(M1k; Mk, M1s) = 0. Therefore, we obtain

I(M1; Zn) = I(M1s; Zn) + I(M1k; Zn|M1s) ≤ nδ(ǫ).

This concludes the proof of the individual secrecy.

Achievable rate region: Combining the sufficient conditions for reliable transmission to both receivers, i.e.,

(14) and (15), and the condition for individual secrecy, i.e., (16), we obtain

I(X ; Z) ≤R2 ≤ I(X ; Y2)

R2 ≤R1 ≤ I(X ; Y1),
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0 I(X ; Z) I(X ; Y1) − I(X ; Z) I(X ; Y1)

I(X ; Z)

I(X ; Y2) − I(X ; Z)

I(X ; Y2)

Region I

Region III

Region II

R1

R
2

Fig. 9: Individual secrecy capacity region in case of a weak eavesdropper.

as the achievable rate region for the case R2 ≤ R1. Furthermore, one can apply a similar proof to establish

the rate region for the case R2 > R1. Putting them together completes the proof of the proposition.

Theorem 6. If the channel to the eavesdropper is degraded with respect to the channels to both legitimate

receivers, then the individual secrecy capacity region is given by the union of the non-negative rate pairs

(R1, R2) satisfying

R1 ≤ min{I(X ; Y1) − I(X ; Z) + R2, I(X ; Y1)};

R2 ≤ min{I(X ; Y2) − I(X ; Z) + R1, I(X ; Y2)},

where the union is taken over p(x).

Proof: Under the degradedness condition, we have that I(X ; Z) ≤ min{I(X ; Y1), I(X ; Y2)} holds for

any p(x). Utilizing the scheme in Proposition 5, Region I in Fig. 9 is achievable. To show Region II is

achievable, one can employ secrecy coding [4, Theorem 3] to achieve rate pairs (R1, R2) such that R1 = 0

and R2 ≤ I(X ; Y2) − I(X ; Z). Then, applying time sharing with the left boundary rate pairs of Region I,

one obtains the remaining rate pairs of Region II. A similar proof applies to establish the achievability of

Region III.

The converse follows from the fact that the achievable region is equal to the intersection of upper bounds

given in [35, Theorem 1], which is the capacity region of the BC-RSI without an external eavesdropper,

and the upper bound given in Proposition 21, which is a partial upper bound by applying the results for

wiretap channel with shared key for one receiver (while ignoring the requirement of reliable and secure
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communication for the other).

As shown in Fig. 9, the individual secrecy capacity region for a weak eavesdropper is a rectangle with

missing corners. Due to the symmetric roles of receiver 1 and receiver 2, the rate region is bounded in a

symmetric manner as well. But, unlike the case of a strong eavesdropper, for which the individual secrecy

capacity region is given in Fig. 5, asymmetric rate pairs are possible. Note that both receivers could benefit

from each other due to the possession of the message of the other as side information. On one hand, higher

rate for one receiver indicates more side information for the other. As a result, there is no loss in the high

rate pair region (i.e., R1, R2 ≥ I(X ; Z)), compared to [35, Theorem 1] which gives the capacity region of the

BC-RSI without any secrecy constraints. That is, individual secrecy to each legitimate receiver is offered for

free in high rate region. On the other hand, lower rate for one receiver implies less side information for the

other. In this case, the side information might be insufficient to facilitate the secure communication of the

other message at a high transmission rate and additional randomness might be necessary. This results in a

loss in the rate region, i.e., the missing corners. Another interesting observation is that, for communication

under individual secrecy constraint, one may not claim that if (R1, R2) is achievable, then (R1 − c1, R2 − c2)

is achievable for any c1 ≤ R1, c2 ≤ R2. This follows as the individual secrecy rates are coupled in the BC-RSI

setting.

C. Superposition coding

It is well-known that superposition coding is optimal for a degraded broadcast channel where X → Y1 → Y2

forms a Markov chain, wherein one can transmit a cloud center to the weak receiver and both the cloud center

and satellite codewords to the strong receiver [47]. For the BC-RSI model, we consider utilizing the one-time

pad signal as the cloud center and additional information on both messages being carried in the satellite

codeword. This approach generalizes the aforementioned secret key approach and the combined secret key and

secrecy coding approach, and thus achieves the optimality for stronger and weaker eavesdropper scenarios.

In the following, we first provide the corresponding achievability region and then discuss the details of the

proposed scheme together with the special cases.

Theorem 7. The individual secrecy rate region for the BC-RSI with an external eavesdropper is achievable

for the set of the non-negative rate pairs (R1, R2) such that

R1 ≤ min{I(V ; Y1), I(V ; Y1|U) − I(V ; Z|U) + R2};

R2 ≤ min{I(V ; Y2), I(V ; Y2|U) − I(V ; Z|U) + R1}.
(17)

over all p(u)p(v|u)p(x|v) subject to I(V ; Yi|U) ≥ I(V ; Z|U) for i = 1, 2.

Proof: The proof is given in Appendix C.

The coding approach we develop here utilizes cloud centers, i.e., the Un codewords, to carry a one-

time pad signal constructed from parts of the messages. In particular, the message intended for receiver i
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is splitted into Mi = (Mik, Misk, Mis), and the one-time pad signal carried by un(mk) is constructed as

Mk = M1k ⊕ M2k. This cloud center is designed to be decodable at both receivers, which then extract their

desired messages utilizing the corresponding side information available. In addition, the code design utilizes

satellite codewords, i.e., the V n codewords, that are not only superimposed on the cloud centers but also

carry additional information represented as (Msk, M1s, M2s, Mr). Here, Msk is an additional one-time pad

signal injected into V n, and given by Msk = M1sk ⊕ M2sk, and Mr is additional randomness. We remark

that both Msk and Mr serve as randomness to confuse the eavesdropper in this scheme, in order to achieve

secrecy of (M1s, M2s).

An interesting aspect of our superposition coding approach lies in the role of one-time pad signals. On

one hand, one-time pad signal is utilized as the message of the cloud centers (i.e., Mk). On the other hand,

it is also utilized as a part of randomization within the satellite codewords (i.e., Msk). In other words, the

coding scheme takes advantage of the rate splitting of one-time pad signals, in order to serve for these two

distinct purposes.

One may wonder, whether further rate splitting helps to improve the current region or not. For instance,

split Mi into Mi = (Mik, Misk, Mis, Mim), with an additional layer in the coding scheme, say T n which

carries information on Mim that is secured by employing secrecy coding. Interestingly, the answer is no

if still using superposition coding. For a detailed proof of this, one can refer to Appendix D. However,

if combining with Marton’s coding, further rate splitting may improve the achievable rate region as we

demonstrate in Section V-D.

Furthermore, we have the following observations:

• Setting Y2 = ∅, the region coincides with the secrecy capacity region of the wiretap channel [4];

• Letting U = ∅ and Rk = Rsk = 0 in the proof as given in Appendix C and applying Fourier-Motzkin

procedure, an achievable region under the joint secrecy constraint (follows from the secrecy proof in

Appendix C) can be obtained. And this region (i.e., (23)) coincides with the one established in [36].

• Superposition coding remains optimal in the following cases.

1) A strong eavesdropper, where the eavesdropper’s channel is less noisy than both of the legitimate

receivers. In this case, the individual secrecy capacity as shown in Fig. 5, can be achieved by

taking U = V = X, whereby the superposition coding reduces to the secret key approach. (See

Theorem 4.)

2) A weak eavesdropper, where both of the legitimate receivers channels are less noisy than the one

to the eavesdropper. In this case, the individual secrecy capacity is as shown in Fig. 9. Here, the

left boundary rate pairs of Region II in Fig. 9 can be achieved by taking R2 = 0, whereby the

superposition coding reduces to the secrecy coding approach as proposed in [3], [4]. Similarly, the

bottom boundary rate pairs of Region III in Fig. 9 can be achieved by taking R1 = 0. Region I

in Fig. 9 can be achieved by taking U = ∅ and V = X , whereby the superposition coding reduces
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to the combined secret key and secrecy coding as given in Section V-B. These achievable points

together with their time sharing provide the individual secrecy capacity region as shown in Fig. 9.

3) If the eavesdropper’s channel is deterministic in the manner that Z is a function of X, superposition

coding is optimal for achieving individual secrecy capacity as we demonstrate in the Theorem 8.

Theorem 8. For the BC-RSI channel with an external eavesdropper, if the eavesdropper’s channel is

deterministic in the manner that Z is a function of X, then the individual secrecy capacity region is given by

the convex hull of the non-negative rate pairs (R1, R2) satisfying

R1 ≤ min{I(X ; Y1), I(X ; Y1|Z) + R2},

R2 ≤ min{I(X ; Y2), I(X ; Y2|Z) + R1}.
(18)

Proof: The achievability is obtained by taking U = Z and V = X in (17). The proof of the converse is

given in Appendix E.

In particular, if Y1, Y2 and Z are all functions of X, the above corollary simplifies to the following:

Corollary 9. If the BC-RSI channel with an external eavesdropper is deterministic in the manner that Z,

Y1, and Y2 are deterministic functions of X, then the individual secrecy capacity region is given by the convex

hull of the non-negative rate pairs (R1, R2) satisfying

R1 ≤ min{H(Y1), H(Y1|Z) + R2},

R2 ≤ min{H(Y2), H(Y2|Z) + R1}.
(19)

Remark 10. Note that the deterministic BC is a more general model than the linear deterministic BC model

discussed in Section IV. As a direct consequence, Theorem 2 can be regarded as a special case of Corollary 9.

The region given in Theorem 7 fails to achieve any positive rates if the condition I(V ; Yi|U) ≥ I(V ; Z|U)

is not satisfied for either i = 1 or i = 2. For instance, when I(V ; Y1|U) > I(V ; Z|U) > I(V ; Y2|U) for

a given input probability distribution, the requirement of decoding randomness (in V n codewords) at the

second receiver becomes excessive. To resolve this problem, we develop a Marton’s coding approach in the

following section, where we further introduce two individual satellite codewords (V n
1 , V n

2 ), and require V n
i

to be decoded only at receiver i. This allows us to get a larger rate region for the mixed scenarios where the

eavesdropper is stronger than one legitimate receiver but weaker than the other one.

D. Marton’s coding

Although superposition coding demonstrates its optimality for some broadcast channels wherein one

receiver is stronger than the other, it is not optimal in general. In fact, for broadcast channels, Marton’s

coding can outperform superposition coding by not requiring either receiver to recover both messages

(for broadcast channels without any secrecy constraints) [47]. In the following, we consider achieving the

indivudual secrey of the BC-RSI model, by utilizing the one-time pad signal as the cloud center, further
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information on both messages being carried in the satellite codewords, and additional information on each

messages being conveyed in individual satellite codewords. This coding scheme is built on the previous

superposition coding scheme but with one more layer that employs Marton’s coding. As a direct result, it

generalizes the rate region established by superpostion coding. Moreover, we provide a special case under

which this Marton’s coding approach outperforms the aforementioned superposition approach (the region

given in Theorem 7).

Theorem 11. The individual secrecy rate region for the BC-RSI with an external eavesdropper is achievable

for the set of the non-negative rate pairs (R1, R2) such that

R1 ≤I(V0, V1; Y1|U) − I(V0, V1; Z|U) + min{R2, I(U ; Y1) + I(V0; Z|U)};

R2 ≤I(V0, V2; Y2|U) − I(V0, V2; Z|U) + min{R1, I(U ; Y2) + I(V0; Z|U)},
(20)

over any p(u, v0, v1, v2, x) = p(u)p(v0|u)p(v1, v2|v0)p(x|v1, v2) subject to I(V1; V2|V0) ≤ I(V1; Z|V0)+I(V2; Z|V0)−

I(V1, V2; Z|V0), I(Vi; Yi|V0) ≥ I(Vi; Z|V0) and I(V0, Vi; Yi|U) ≥ I(V0, Vi; Z|U) for i = 1, 2.

Proof: The proof is given in Appendix F.

The coding approach we develop here is built on the superposition coding which is discussed in Section

V-C, but with one additional coding layer that employs Marton’s coding. That is, we split Mi into Mi =

(Mik, Misk, Miss, Mism), for i = 1, 2, where Mik, Misk, Miss are encoded into Un, V n
0 codewords in the same

way as by the superposition coding; while information on M1sm, M2sm are carried by individual satellite

codewords V n
1 , V n

2 , respectively, via Marton’s coding. Note that the secrecy of M1sm, M2sm is ensured by

additional randomness with the spirit of secrecy coding approach [3], [4].

As reflected in the obtained region in (20), for legitimate receiver i, part of the message, i.e., (Mik, Misk),

is secured via one-time pad; while the other part, i.e., (Miss, Mism), is secured via secrecy coding. More

specifically, for receiver 1, on one hand, (M1k, M1sk) is secured via one-time pad (with key rate R2) in

the underneath superposition coding structure (at most I(U ; Yi) bits in the cloud center Un and at most

I(V0; Z|U) bits as randomness in the satellite codeword V n
0 ). Thus, in total at most min{R2, I(U ; Y1) +

I(V0; Z|U)} bits can be secured via one-time pad. On the other hand, M1ss, M1sm are secured via secrecy

coding in V n
0 and V n

1 , respectively, which in total contribute I(V0, V1; Y1|U) − I(V0, V1; Z|U) secret bits.

Furthermore, we have the following observations:

• Letting U = ∅ and Rk = Rsk = 0 in the proof as given in Appendix F and applying Fourier-Motzkin

procedure, an achievable region under the joint secrecy constraint (follows from the secrecy proof in

Appendix F) can be obtained. And this region (i.e., (24)) improves the one given in (23) which coincides

with the one established in [36].

• If we set V1 = V2 = V0, it reduces to the superposition coding approach and achieves the rate region in

(17) as given in Theorem 7.

• For the case where the eavesdropper’s channel is less noisy than one legitimate receiver, but more noisy
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than the other, (e.g.: Z is less noisy than Y2, if I(U ; Z) ≥ I(U ; Y2) for all p(u) such that U → X → (Y2, Z)

[47]), Marton’s coding approach gives an achievable rate region by setting U = V0 = V2 in (20) as

provided below.

Corollary 12. For the BC-RSI with an external eavesdropper, if Z is less noisy than Y2, then an achievable

individual secrecy rate region is given by the union of non-negative rate pairs (R1, R2) satisfying

R1 ≤ I(V1; Y1|U) − I(V1; Z|U) + R2;

R2 ≤ min{I(U ; Y2), R1},
(21)

where the union is taken over p(u)p(v1|u)p(x|v1, u).

We recall that superposition coding is optimal in cases of either a strong or weak eavesdropper (compared

to both legitimate receivers). However, in the mixed case, where the eavesdropper’s channel is less noisy than

one legitimate receiver, but more noisy than the other, superposition coding is no longer optimal.

For instance, consider the case where Z is strictly less noisy than Y2, i.e., I(V ; Z) > I(V ; Y2) for any p(v)

s.t. V → X → (Y2, Z). In order to apply superposition coding, one has to set V = U to satisfy the condition

that I(V ; Y2|U) ≥ I(V ; Z|U) given in (17) in Theorem 7. Therefore, the region in (17) reduces to the set of

the non-negative rate pairs (R1, R2) such that

R1 ≤ R2;

R2 ≤ min{I(U ; Y2), R1}.
(22)

Compare the obtained region in (22) by superposition coding with the one in (21) by Marton’s coding.

It is easy to see that the Marton’s coding outperforms in this case by not requiring the decoding of the

corresponding individual satellite codeword at the weak receiver.

E. Joint secrecy rate region for BC-RSI with an external eavesdropper

As a by-product, achievable joint secrecy rate regions can be obtained by letting U = ∅ and Rk = Rsk = 0

in the superposition coding approach and Marton’s coding approach proposed in previous subsections, which

validity follows from the secrecy proof in Appendix C for superposition coding; and the secrecy proof in

Appendix F for Marton’s coding, respectively. Note that the achievable joint secrecy rate region by Marton’s

coding, i.e., (24), is derived with the addition of a time-sharing random variable Q.

Corollary 13. (Achievable joint secrecy rate region by superposition coding) For BC-RSI with an external

eavesdropper, an achievable region under the joint secrecy constraint can be obtained by superposition coding

as the set of the non-negative rate pairs (R1, R2) such that

R1 ≤ I(V ; Y1) − I(V ; Z)

R2 ≤ I(V ; Y2) − I(V ; Z)
(23)

where V → X → (Y1, Y2, Z) forms a Markov chain such that I(V ; Yi) ≥ I(V ; Z) holds for i = 1, 2.
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Fig. 10: Gaussian BC-RSI with an external eavesdropper.

Corollary 14. (Achievable joint secrecy rate region by Marton’s coding) For BC-RSI with an external

eavesdropper, an achievable region under the joint secrecy constraint can be obtained by Marton’s coding

as the set of the non-negative rate pairs (R1, R2) such that

R1 ≤ I(V0, V1; Y1|Q) − I(V0, V1; Z|Q)

R2 ≤ I(V0, V2; Y2|Q) − I(V0, V2; Z|Q)

R1 + R2 ≤ I(V0, V1; Y1|Q) + I(V0, V2; Y2|Q) − 2I(V0; Z|Q) − I(V1; V2|V0, Q)

(24)

over any p(q, v0, v1, v2, x) = p(q)p(v0|q)p(v1, v2|v0)p(x|v1, v2) subject to I(V1, V2; Z|V0) ≤ I(V1; Z|V0) +

I(V2; Z|V0) − I(V1; V2|V0) and I(Vi; Z|V0) ≤ I(Vi; Yi|V0) for i = 1, 2.

Remark 15. The region by superposition coding given in (23) coincides with the one established in [36].

Note that (23) is included in (24), i.e., the region by Marton’s coding, as a special case of (24) by taking

V1 = V2 = V0.

VI. Gaussian BC-RSI

In this section, we consider Gaussian broadcast channel with receiver side information (Gaussian BC-

RSI) as shown in Fig. 10. It is known that one can apply the discretization procedure [47] to extend the

coding schemes for finite alphabet channels to their Gaussian counterpart. Using this technique, we obtain an

achievable individual secrecy rate region for the Gaussian BC-RSI. Furthermore, we derive an outer bound

to the secrecy capacity region, and, show that, in the high SNR regime, one can approach the individual

secrecy capacity region for the Gaussian BC-RSI by employing the superposition coding. This observation

is consistent with the results suggested by the linear deterministic approach analyzed in Section IV.

Suppose X is the channel input with a power constraint P on it and the signals received by both receivers
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and the eavesdropper are

Y1 = X + N1;

Y2 = X + N2;

Z = X + Ne,

where N1 ∼ N (0, σ2
1), N2 ∼ N (0, σ2

2) and Ne ∼ N (0, σ2
e) are additive white Gaussian noise (AWGN)

independent of X . According to the noise level in the channels to both receives and the eavesdropper, the

overall channel can be regarded to be stochastically degraded in different orders. For simplicity, we only

consider their corresponding physically degraded instances. The reason is that the same analysis can be

easily extended to the stochastically degraded cases. So the following scenarios are of our interest (without

loss of generality we assume σ1 < σ2):

1) σ2
e ≥ σ2

2 ≥ σ2
1 , i.e., X → Y1 → Y2 → Z forms a Markov chain,

2) σ2
2 ≥ σ2

1 ≥ σ2
e , i.e., X → Z → Y1 → Y2 forms a Markov chain, and

3) σ2
2 ≥ σ2

e ≥ σ2
1 , i.e., X → Y1 → Z → Y2 forms a Markov chain.

The individual secrecy capacity of the first two cases can be easily derived by extending the results for

discrete memoryless channel model to the Gaussian scenario. For the third case, we show in the following

that we can approach the individual secrecy capacity region as P ≫ σ2
e or P ≪ σ2

1 .

A. An outer bound

Proposition 16. An outer bound of the individual secrecy capacity region for the Gaussian BC-RSI when

X → Y1 → Z → Y2 forms a Markov chain is given by the set of the rate pairs (R1, R2) satisfying

R2 ≤C

(
(1 − γα)P

γαP + σ2
2

)

;

R2 ≤ R1 ≤C

(
αP

σ2
1

)

− C

(
αP

σ2
e

)

+ R2,

for some α, γ ∈ [0, 1], and C(x) = 1
2 log(1 + x) is the Gaussian capacity function.

Proof: We observe that

n

2
log 2πeσ2

e = h(Zn|Xn) = h(Zn|M1, M2, Xn)

≤ h(Zn|M1, M2) ≤ h(Zn|M2) ≤ h(Zn)

(a)

≤
n

2
log 2πe(P + σ2

e),

where (a) is due to the fact that for a random variable with a fixed variance, Gaussian distribution maximizes

the entropy. This shows that there exist α, γ ∈ [0, 1], such that

h(Zn|M2) =
n

2
log 2πe(αP + σ2

e); (25)

h(Zn|M1, M2) =
n

2
log 2πe(γαP + σ2

e). (26)
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In particular, we have

h(Zn|M1) = h(Zn) − I(M1; Zn)
(b)

≥ h(Zn) − nǫ ≥ h(Zn|M2) − nǫ =
n

2
log 2πe(αP + σ2

e) − nǫ, (27)

where (b) is due to the individual secrecy constraint.

Similarly, we have

n

2
log 2πeσ2

2 = h(Y n
2 |Xn) = h(Y n

2 |M1, M2, Xn)

≤ h(Y n
2 |M1, M2) ≤ h(Y n

2 |M1) ≤ H(Y n
2 )

(a)

≤
n

2
log 2πe(P + σ2

2).

There must exist a β such that

h(Y n
2 |M1, M2) =

n

2
log 2πe(βP + σ2

2). (28)

Therefore,

nR2 = H(M2) = H(M2|M1)
(c)
= I(M2; Y n

2 |M1) + nO(ǫ)

= h(Y n
2 |M1) − h(Y n

2 |M1, M2) + nO(ǫ)

(d)

≤
n

2
log

P + σ2
2

βP + σ2
2

+ nO(ǫ), (29)

where (c) is due to the Fano’s inequality and (d) is due to (28).

Recall the Markov chain (M1, M2) → Xn → Y n
1 → Zn → Y n

2 . Applying the entropy power inequality

(EPI) [47], we obtain

h(Y n
2 |M1, M2) ≥

n

2
log

[

2
2

n
h(Zn|M1,M2) + 2πe(σ2

2 − σ2
e)

]

.

Using (28) here, we obtain

h(Zn|M1, M2) ≤
n

2
log 2πe(βP + σ2

e).

Comparing to (26) which gives that h(Zn|M1, M2) = n
2 log 2πe(γαP + σ2

e), we have

γα ≤ β. (30)

Recall (29), we have

nR2 ≤
n

2
log

P + σ2
2

βP + σ2
2

+ nO(ǫ) ≤
n

2
log

P + σ2
2

γαP + σ2
2

+ nO(ǫ) = nC

(
(1 − γα)P

γαP + σ2
2

)

+ nO(ǫ).

Letting ǫ → 0, we obtain

R2 ≤ C

(
(1 − γα)P

γαP + σ2
2

)

. (31)

Now we proceed to bound R1. First we show R1 ≥ R2 as follows.

nR1 = H(M1) = H(M1|M2)

≥ I(M1; Y n
1 |M2)
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= I(M1; Y n
1 , Zn|M2) − I(M1; Zn|M2, Y n

1 )

(e)
= I(M1; Zn|M2) + I(M1; Y n

1 |M2, Zn)

= h(Zn|M2) − h(Zn|M1, M2) + I(M1; Y n
1 |M2, Zn)

≥ h(Zn|M2) − h(Zn|M1, M2)

(f)

≥ h(Zn) − h(Zn|M1, M2) − nO(ǫ)

≥ h(Zn|M1) − h(Zn|M1, M2) − nO(ǫ)

= I(M2; Zn|M1) − nO(ǫ)

(g)

≥ I(M2; Y n
2 |M1) − nO(ǫ)

= H(M2|M1) − H(M2|M1, Y n
2 ) − nO(ǫ)

(h)

≥ nR2 − nO(ǫ),

where (e) follows by the fact that I(M1; Zn|M2, Y n
1 ) = 0, which is implied by I(M1, M2; Zn|Y n

1 ) = 0 due

to the channel degradedness, i.e., the Markov chain (M1, M2) → Xn → Y n
1 → Zn → Y n

2 ; (f) is due to the

individual secrecy constraint; and (g) is due to the channel degradedness, i.e., (M1, M2) → Xn → Y n
1 →

Zn → Y n
2 ; (h) is due to the Fano’s inequality.

Finally, letting ǫ → 0, we obtain

R1 ≥ R2. (32)

On the other hand, we have

nR1 = H(M1) = H(M1|M2)

(i)

≤ I(M1; Y n
1 |M2) + nO(ǫ)

= I(M1; Y n
1 , Zn|M2) − I(M1; Zn|M2, Y n

1 ) + nO(ǫ)

(j)
= I(M1; Zn|M2) + I(M1; Y n

1 |M2, Zn) + nO(ǫ)

= h(Zn|M2) − h(Zn|M1, M2) + I(M1; Y n
1 |M2, Zn) + nO(ǫ), (33)

where (i) is due to the Fano’s inequality and (j) is due to the channel degradedness. Note that

I(M1; Y n
1 |M2, Zn) = h(Y n

1 |M2, Zn) − h(Y n
1 |M1, M2, Zn)

≤ h(Y n
1 |M2, Zn) − h(Y n

1 |M1, M2, Xn, Zn)

= h(Y n
1 |M2, Zn) − h(Y n

1 |Xn, Zn)

= h(Y n
1 , Zn|M2) − h(Zn|M2) − h(Y n

1 |Xn, Zn)

(k)
= h(Y n

1 |M2) + h(Zn|Y n
1 ) − h(Zn|M2) − h(Y n

1 , Zn|Xn) + h(Zn|Xn)

(k)
= h(Y n

1 |M2) + h(Zn|Y n
1 ) − h(Zn|M2) − h(Y n

1 |Xn) − h(Zn|Y n
1 ) + h(Zn|Xn)
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= h(Y n
1 |M2) − h(Zn|M2) − h(Y n

1 |Xn) + h(Zn|Xn), (34)

where (k) follows by the fact that h(Zn|M2, Y n
1 ) = h(Zn|Y n

1 ) and h(Zn|Xn, Y n
1 ) = h(Zn|Y n

1 ) due to the

Markov chain (M1, M2) → Xn → Y n
1 → Zn.

Recall the Markov chain (M1, M2) → Xn → Y n
1 → Zn → Y n

2 . We apply the EPI and obtain

h(Zn|M2) ≥
n

2
log

[

2
n

2
h(Y n

1
|M2) + 2πe(σ2

e − σ2
1)

]

.

In addition to (25) which gives that h(Zn|M2) = n
2 log 2πe(αP + σ2

e), we have

h(Y n
1 |M2) ≤

n

2
log 2πe(αP + σ2

1). (35)

Combining (33) and (34), we have

nR1 ≤ h(Zn|M2) − h(Zn|M1, M2) + I(M1; Y n
1 |M2, Zn)

≤ h(Y n
1 |M2) − h(Zn|M1, M2) − h(Y n

1 |Xn) + h(Zn|Xn)

= h(Zn|M1) − h(Zn|M1, M2) + h(Y n
1 |M2) − h(Zn|M1) − h(Y n

1 |Xn) + h(Zn|Xn)

= I(M2; Zn|M1) + h(Y n
1 |M2) − h(Zn|M1) − h(Y n

1 |Xn) + h(Zn|Xn)

(l)

≤ nR2 + h(Y n
1 |M2) − h(Zn|M1) − h(Y n

1 |Xn) + h(Zn|Xn)

= nR2 + h(Y n
1 |M2) − h(Zn|M1) − h(Nn

1 ) + h(Nn
e )

(m)

≤ nR2 +
n

2
log

(αP + σ2
1)σ2

e

(αP + σ2
e)σ2

1

+ nO(ǫ)

= nR2 + nC

(
αP

σ2
1

)

− nC

(
αP

σ2
e

)

+ nO(ǫ),

where (l) is due to the fact that I(M2; Zn|M1) ≤ H(M2) = nR2; and (m) is due to (27) and (35).

Finally, letting ǫ → 0, we have

R1 ≤ C

(
αP

σ2
1

)

−

(
αP

σ2
e

)

+ R2. (36)

Combining (31), (32), and (36) establishes the outer bound.

Remark 17. Interestingly, γ = 1 corresponds to the joint secrecy constraint, since γ = 1 implies that

h(Zn|M1, M2) = h(Zn) according to (26). However, in case of (M1, M2) → Y n
1 → Zn → Y n

2 , we have

nR2 = H(M2) = I(M2; Y n
2 |M1) ≤ I(M1, M2; Y n

2 ) ≤ I(M1, M2; Y n
2 , Zn) = I(M1, M2; Zn) = 0

under joint secrecy constraint. That is, only positive R1 is possible. And, R1 ≤ C
(
P/σ2

1

)
− C

(
P/σ2

e

)
is

obtained by taking α = 1 via Wyner’s secrecy coding.
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B. An inner bound

Proposition 18. An inner bound of the individual secrecy capacity region for the Gaussian BC-RSI when

X → Y1 → Z → Y2 forms a Markov chain is given by the set of the rate pairs (R1, R2) satisfying

R2 ≤C

(
(1 − γα)P

γαP + σ2
2

)

;

R2 ≤ R1 ≤C

(
γαP

σ2
1

)

− C

(
γαP

σ2
e

)

+ R2,

where α, γ ∈ [0, 1].

Proof: For a fixed pair α, γ ∈ [0, 1], one can derive an inner bound of (R1, R2) by applying superposition

coding as described in the following.

Codebook generation: Randomly and independently generate 2nR2 sequences un(k), k ∈ [1 : 2nR2 ], each

i.i.d. N (0, (1 − γα)P ); and 2n(R1−R2+Rr) sequences vn(s, r), (s, r) ∈ [1 : 2n(R1−R2)] × [1 : 2nRr ], each i.i.d.

N (0, γαP ).

Encoding: To send the message pair (m1, m2) with m1 = (m1k, m1s), where m1k is of the same length as

m2, the encoder encapsulates m1k and m2 in mk with mk , m1k ⊕ m2, randomly chooses r ∈ [1 : 2nRr ],

and transmits xn(m1, m2) = un(mk) + vn(m1s, r).

Decoding: Receiver 2 decodes mk from yn
2 = un(mk)+(vn(m1s, r)+nn

2 ) while treating vn(m1s, r) as noise,

and further recovers m2 with his knowledge of m1. The probability of decoding error tends to zero as n → ∞

if R2 ≤ C
(

(1−γα)P

γαP +σ2

2

)

.

Receiver 1 uses successive cancellation. It first decodes mk from yn
1 = un(mk) + (vn(m1s, r) + nn

1 ) while

treating vn(m1s, r) as noise, and recovers part of m1, i.e., m1k, with the knowledge of m2. The probability

of this decoding error tends to zero as n → ∞ if R2 ≤ C
(

(1−γα)P

γαP +σ2

2

)

, since it implies that R2 ≤ C
(

(1−γα)P

γαP +σ2

1

)

due to the fact that σ2
1 ≤ σ2

2 . (This implies that R2 ≤ R1.) Then, it subtracts off un(mk) and decodes

vn(m1s, r) + nn
1 to recover (m1s, r) and thus m1s, i.e., the rest of m1. The probability of this decoding error

tends to zero as n → ∞ if R1 − R2 + Rr ≤ C
(

γαP

σ2

1

)

.

Secrecy: The eavesdropper could decode mk from zn = un(mk)+(vn(m1s, r)+nn
e ). However, mk does not

disclose any information about m1s and m2, individually. Subtracting off un(mk) from zn, the eavesdropper

gets a better observation vn(m1s, r) + nn
e , which actually does not help to recover m1s if Rr ≈ C

(
γαP
σ2

e

)

.

In other words, the secrecy of m1s is guaranteed by the embedded secrecy coding in the choice of vn. The

individual secrecy for m1 then follows from an analysis similar to the previous sections.

As a conclusion, (R1, R2) is achievable under the individual secrecy constraints, once R1, R2, Rr satisfy

R2 ≤ C

(
(1 − γα)P

γαP + σ2
2

)

;

R1 − R2 + Rr ≤ C

(
γαP

σ2
1

)

;

Rr ≈ C

(
γαP

σ2
e

)

.
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Eliminating Rr, we get the desired region of (R1, R2), which concludes our proof of achievability.

C. Individual secrecy capacity region

Proposition 19. When σ2
2 ≥ σ2

e ≥ σ2
1 , and P ≫ σ2

2 or P ≪ σ2
1 , the individual secrecy capacity region for

the Gaussian BC-RSI is given as the set of (R1, R2) satisfying

R2 ≤C

(
(1 − γα)P

γαP + σ2
2

)

;

R1 ≤C

(
γαP

σ2
1

)

− C

(
γαP

σ2
e

)

+ R2,

where γ, α ∈ [0, 1].

Proof: Consider the gap between the inner and outer bounds derived in previous subsections. If we take

the same choice of α, γ in both bounds, the gap occurs only in R1, which is given by

C

(
αP

σ2
1

)

− C

(
αP

σ2
e

)

− C

(
γαP

σ2
1

)

+ C

(
γαP

σ2
e

)

=
1

2
log

(αP + σ2
1)(γαP + σ2

e)

(αP + σ2
e)(γαP + σ2

1)
→ 0,

as P ≫ σ2
e or P ≪ σ2

1 , regardless of the values of α, γ.

As a conclusion, we characterize the individual secrecy capacity region for the Gaussian BC-RSI as follows.

Proposition 20. The individual secrecy capacity region for the Gaussian BC-RSI is given by the following

set of (R1, R2):

• If σ2
e ≥ σ2

2 ≥ σ2
1 :

R1 ≤ min

{

C

(
P

σ2
1

)

− C

(
P

σ2
e

)

+ R2, C

(
P

σ2
1

)}

;

R2 ≤ min

{

C

(
P

σ2
2

)

− C

(
P

σ2
e

)

+ R1, C

(
P

σ2
2

)}

,

• If σ2
2 ≥ σ2

1 ≥ σ2
e :

R1 = R2 ≤ C

(
P

σ2
2

)

,

• If σ2
2 ≥ σ2

e ≥ σ2
1 , and, P ≫ σ2

2 or P ≪ σ2
1 :

R1 ≤C

(
γP

σ2
1

)

− C

(
γP

σ2
e

)

+ R2;

R2 ≤C

(
(1 − γ)P

γP + σ2
2

)

, where γ ∈ [0, 1].

VII. Conclusion

In this paper, we studied the problem of secure communication over BC-RSI under the individual secrecy

constraints. We first characterized the individual secrecy capacity region for the linear deterministic channel

model. Then, utilizing secret key, secrecy coding, superposition coding, and Marton’s coding approaches,

we derived achievable rate regions for the discrete memoryless model. Together with converse arguments,

these techniques allow us to characterize the individual secrecy capacity region for some specific scenarios
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which include 1) the case of a strong eavesdropper (as a line on (R1, R2) plane); 2) the case of a weak

eavesdropper (as a rectangle with missing corners); and 3) the case that the eavesdropper’s channel is

deterministic. Our results exhibit the coupling between the communication rates. In particular, we observe

that one can not arbitrarily decrease one user’s rate without sacrificing the rate of the other. Moreover, we

studied the corresponding Gaussian scenario, where, in addition to the capacity regions for strong and weak

eavesdropper cases, we established the individual secrecy capacity region for the low and high SNR regimes

when the eavesdropper channel is weaker than one of the legitimate receivers but stronger than the other.

We here point out some avenues for further research. First, the characterization of the individual secrecy

capacity region for the general case remains as an open problem. In particular, the characterization of the

capacity region for the mixed case (where the eavesdropper channel is less noisy than one legitmate receiver

but more noisy than the other) has resisted our best efforts thus far. (For the Gaussian case, we were able to

establish low and high SNR individual secrecy capacity results in this scenario.) Remarkably, this mixed case

is distinctive for the study on secure communication via broadcast channels (with RSI or without RSI) since

in this case, positive rate pairs are attainable under the individual secrecy constraint but impossible under

the joint secrecy constraint. We believe that our results will initiate the study of individual secrecy for other

multi-terminal models. During the preparation of this manuscript, we have noticed that the parallel work

[40] has considered the extension of BC-RSI model to include common messages. Studying other channel

models under the lens of individual secrecy and comparing this notion to other secrecy constraints will be

of interest.

Appendix A

Upper bound on the individual secrecy rate

An upper bound on the individual secrecy rate follows from the results for wiretap channel with shared

key [24] as provided below.

Lemma 21. For any R2 in the achievable region, R1 is upper bounded as

R1 ≤ max
U→V →X→(Y1,Z)

min{I(V ; Y1|U) − I(V ; Z|U) + R2, I(V ; Y1)}.

If the channel to the legitimate receiver 1 is degraded with respect to the channel to the eavesdropper, then

for any R2 in the achievable region, R1 is upper bounded by

R1 ≤ max
X→Y1→Z

min{I(X ; Y1) − I(X ; Z) + R2, I(X ; Y1)}.

Similar results hold for interchanging 1 and 2 above.

Proof: The proof follows by the result given for the wiretap channel with shared key [24, Theorem 1].

As the rate for M2 is R2, then the secrecy rate for receiver 1 can be upper bounded by the wiretap channel

with shared key of rate R2.
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Appendix B

Achievability Proof for Theorem 2

For each scenario, a specific coding scheme is provided, where for a given m1 = [m1(1), · · · , m1(R1)] and

m2 = [m2(1), · · · , m2(R2)], we construct the codeword X = [x(1), x(2), · · · , x(n1)]T .

A. q = n1 ≥ n2 ≥ ne

1) R1 < R2 and R1 < ne: We have

R1 < ne; R1 < R2 ≤ n2 − ne + R1. (37)

We set

x(k) =







m1(k) ⊕ m2(k) 1 ≤ k ≤ R1

r(k) R1 < k ≤ ne

m2(k − ne + R1) ne < k ≤ ne + R2 − R1

r(k) ne + R2 − R1 < k ≤ n1

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 11. In this scenario,

receiver 2 could recover m2 completely only if R2 − R1 + ne ≤ n2. Combining this with the aforementioned

conditions, R1 < R2 and R1 < ne, we obtain the desired region of (R1, R2) as specified in (37).

m1 :
m1(1), · · · , m1(R1)

m2 :
m2(1), · · · , m2(R1), · · · , m2(R2)

XT :

R1

︷ ︸︸ ︷

m1(k) ⊕ m2(k) r(k)
︸ ︷︷ ︸

ne

R2−R1

︷ ︸︸ ︷

m2(k − ne + R1)

︸ ︷︷ ︸

≤n2

r(k)

︸ ︷︷ ︸

n1

Fig. 11: Codeword X for n1 ≥ n2 ≥ ne and R1 < R2, R1 < ne.

2) R1 < R2 and ne ≤ R1: We have

ne ≤ R1 < R2 ≤ n2. (38)

We set

x(k) =







m1(k) ⊕ m2(k) 1 ≤ k ≤ R1

m2(k) R1 < k ≤ R2

r(k) R2 < k ≤ n1,

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 12. In this scenario,

receiver 2 could recover m2 completely only if R2 ≤ n2. Combining this with the aforementioned conditions,

ne ≤ R1 < R2, we obtain the desired region of (R1, R2) as specified in (38).
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m1 :
m1(1), · · · , m1(R1)

m2 :
m2(1), · · · , m2(R1), · · · , m2(R2)

XT :

R1

︷ ︸︸ ︷

m1(k) ⊕ m2(k)
︸ ︷︷ ︸

ne

R2−R1

︷ ︸︸ ︷

m2(k)

︸ ︷︷ ︸

≤n2

r(k)

︸ ︷︷ ︸

n1

Fig. 12: Codeword X for n1 ≥ n2 ≥ ne and ne ≤ R1 < R2.

3) R1 ≥ R2 and R2 < ne: We have

R2 < ne; R2 ≤ R1 ≤ n1 − ne + R2. (39)

We set

x(k) =







m1(k) ⊕ m2(k) 1 ≤ k ≤ R2

r(k) R2 < k ≤ ne

m1(k − ne + R2) ne + 1 ≤ k ≤ ne + R1 − R2

r(k) ne + R1 − R2 < k ≤ n1

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 13. In this scenario,

receiver 1 could recover m1 completely only if R1 − R2 + ne ≤ n1. Combining this with the aforementioned

conditions, i.e., R1 ≥ R2 and R2 < n2, we obtain the desired region of (R1, R2) as specified in (39).

m1 :
m1(1), · · · , m1(R2), · · · , m1(R1)

m2 :
m2(1), · · · , m2(R2)

XT :

R2

︷ ︸︸ ︷

m1(k) ⊕ m2(k) r(k)
︸ ︷︷ ︸

ne≤n2

R1−R2

︷ ︸︸ ︷

m1(k − ne + R2) r(k)

︸ ︷︷ ︸

n1

Fig. 13: Codeword X for n1 ≥ n2 ≥ ne and R1 ≥ R2, R2 < ne.

4) R1 ≥ R2 and ne ≤ R2: We have

R2 ≤ n2; ne ≤ R2 ≤ R1 ≤ n1. (40)

We set

x(k) =







m1(k) ⊕ m2(k) 1 ≤ k ≤ R2

m1(k) R2 < k ≤ R1

r(k) R1 < k ≤ n1,
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where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 14. In this scenario,

receiver 2 could recover m2 completely only if R2 ≤ n2; and receiver 1 could recover m1 completely only if

R1 ≤ n1. Combining this with the aforementioned assumptions, ne ≤ R2 ≤ R1, we obtain the desired region

of (R1, R2) as specified in (40).

m1 :
m1(1), · · · , m1(R2), · · · , m1(R1)

m2 :
m2(1), · · · , m2(R2)

XT :

R2

︷ ︸︸ ︷

m1(k) ⊕ m2(k)
︸ ︷︷ ︸

ne

︸ ︷︷ ︸

≤n2

R1−R2

︷ ︸︸ ︷

m1(k) r(k)

︸ ︷︷ ︸

n1

Fig. 14: Codeword X for n1 ≥ n2 ≥ ne and ne ≤ R2 ≤ R1.

B. q = n1 ≥ ne ≥ n2

Since R2 ≤ n2 ≤ ne, we have

R2 ≤ n2; R2 ≤ R1 ≤ n1 − ne + R2. (41)

We set

x(k) =







m1(k) ⊕ m2(k) 1 ≤ k ≤ R2

r(k) R2 < k ≤ ne

m1(k − ne + R2) ne < k ≤ ne + R1 − R2

r(k) ne + R1 − R2 < k ≤ n1

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 15. In this case,

receiver 2 could recover m2 completely only if R2 ≤ n2; and receiver 1 could recover m1 completely only if

R1 − R2 + ne ≤ n1. Combining these with the fact R1 − R2 ≥ 0, which is implied by the code construction,

we obtain the desired region of (R1, R2) as specified in (41).

m1 :
m1(1), · · · , m1(R2), · · · , m1(R1)

m2 :
m2(1), · · · , m2(R2)

XT :

R2

︷ ︸︸ ︷

m1(k) ⊕ m2(k)
︸ ︷︷ ︸

≤n2

r(k)

︸ ︷︷ ︸

ne≥n2

R1−R2

︷ ︸︸ ︷

m1(k − ne + R2) r(k)

︸ ︷︷ ︸

n1

Fig. 15: Codeword X for n1 ≥ ne ≥ n2.
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C. q = ne ≥ n1 ≥ n2

In this case, we have R1 ≤ R2 and R2 ≤ R1 both holds. This gives that

R1 = R2 = R ≤ min{n1, n2}. (42)

We set

x(k) =







m1(k) ⊕ m2(k) 1 ≤ k ≤ R

r(k) R < k ≤ ne,

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 16. In this scenario,

both receivers could recover m1, m2, respectively, only if R ≤ min{n1, n2}. Combining this with the fact

R1 = R2 = R, which is implied by the code construction, we obtain the desired region of (R1, R2) as specified

in (42).

m1 :
m1(1), · · · , m1(R)

m2 :
m2(1), · · · , m2(R)

XT :

R
︷ ︸︸ ︷

m1(k) ⊕ m2(k)
︸ ︷︷ ︸

≤min{n1,n2}

r(k)

︸ ︷︷ ︸

ne

Fig. 16: Codeword X for ne ≥ n1 ≥ n2.

Remark 22. Note that in our achievability schemes, the elements of the input vector X are i.i.d. Bern(1
2 )

in all scenarios. That is, Bern(1
2 ) serves as an optimal input distribution to achieve the individual secrecy

capacity. Nevertheless, this choice is not the only optimal one. As an alternative, instead of choosing as

uniformly random, one can simply use zeros for the bits represented by r(k) in our achievability schemes.

Appendix C

Proof of Theorem 7

Rate splitting: As illustrated in Fig. 17, we split M1 = (M1k, M1sk, M1s) and M2 = (M2k, M2sk, M2s),

with both M1k and M2k of entropy nRk, both M1sk and M2sk of entropy nRsk, M1s of entropy nR1s and

M2s of entropy nR2s. Thus, we have R1 = Rk + Rsk + R1s and R2 = Rk + Rsk + R2s.

m1 :

nRk

︷ ︸︸ ︷

m1k

nRsk

︷ ︸︸ ︷

m1sk

nR1s

︷ ︸︸ ︷

m1s

m2 :
m2k

︸ ︷︷ ︸

nRk

m2sk

︸ ︷︷ ︸

nRsk

m2s

︸ ︷︷ ︸

nR2s

Fig. 17: Superposition coding: Rate splitting.
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Codebook generation: Fix p(u), p(v|u). First, randomly generate 2nRk i.i.d. sequences un(k), k ∈ [1 :

2nRk ], according to p(u). Secondly, for each un(k), according to p(v|u), randomly generate i.i.d. sequences

vn(k, msk, m1s, m2s, r) with (msk, m1s, m2s, r) ∈ [1 : 2nRsk ] × [1 : 2nR1s ] × [1 : 2nR2s ] × [1 : 2nRr ].

Encoding: To send messages (m1, m2), choose un(k), where k = mk , m1k ⊕ m2k. Given un(k), randomly

choose r ∈ [1 : 2nRr ] and find vn(k, msk, m1s, m2s, r), where msk , m1sk ⊕ m2sk. The choice of un, vn for

given (m1, m2) is illustrated in Fig. 18. Generate xn according to p(x|v), and transmit it to the channel.

un(k) :

nRk

︷ ︸︸ ︷

m1k ⊕ m2k

vn(k, msk, m1s, m2s, r) :
m1s

︸ ︷︷ ︸

nR1s

nRsk

︷ ︸︸ ︷

m1sk ⊕ m2sk

nRr

︷︸︸︷

r m2s

︸ ︷︷ ︸

nR2s

Fig. 18: Superposition coding: Encoding.

Decoding: Receiver 1, upon receiving yn
1 and with knowledge of m2, decodes m̂1 = (m2k ⊕ k̂, m2sk ⊕

m̂sk, m̂1s) if (k̂, m̂sk, m̂1s, m2s) is the unique quadruple such that (un(k̂), vn(k̂, m̂sk, m̂1s, m2s, r̂), yn
1 ) is jointly

typical.

Receiver 2, upon receiving yn
2 and with knowledge of m1, decodes m̃2 = (m1k ⊕ k̃, m1sk ⊕ m̃sk, m̃2s), if

(k̃, m̃sk, m1s, m̃2s) is the unique quadruple such that (un(k̃), vn(k̃, m̃sk, m1s, m̃2s, r̃), yn
2 ) is jointly typical.

Analysis of the error probability of decoding: Assume that (M1, M2) = (m1, m2) with m1 = (m1k, m1sk, m1s),

m2 = (m2k, m2sk, m2s) is sent. Or, more specifically, k, msk, m1s and m2s are sent, where k , m1k ⊕ m2k

and msk = m1sk ⊕ m2sk.

At receiver 1, i.e., for Pe,1, a decoding error happens if receiver 1’s estimate is un(k̂), vn(k̂, m̂sk, m̂1s, m2s, r̂)

with (k̂, m̂sk, m̂1s) 6= (k, msk, m1s). In more details, the error event can be partitioned into the followings:

1) Error event corresponds to k̂ 6= k. Note that this event occurs with arbitrarily small probability if

R1 + Rr ≤ I(U, V ; Y1) = I(V ; Y1). (43)

2) Error event corresponds to k̂ = k, but (m̂1s, m̂sk) 6= (m1s, msk) Note that this event occurs with

arbitrarily small probability if

Rsk + R1s + Rr ≤ I(V ; Y1|U). (44)

Similar analysis can be done at the receiver 2, from which the decoding error probability Pe,2 can be made

arbitrarily small if

R2 + Rr ≤ I(V ; Y2) (45)

Rsk + R2s + Rr ≤ I(V ; Y2|U) (46)
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Analysis of individual secrecy: Due to the symmetric roles of receiver 1 and receiver 2, we only need to

prove the secrecy of one message (e.g., M1). The proof for the other case (e.g., the secrecy of M2) follows

similarly. For the secrecy of M1, we have

I(M1; Zn) =I(M1k, M1sk, M1s; Zn)

=I(M1k; Zn) + I(M1sk, M1s; Zn|M1k)

(a)
= I(M1sk, M1s; Zn|M1k)

=I(M1sk; Zn|M1k) + I(M1s; Zn|M1k, M1sk)

(b)
=I(M1s; Zn|M1k, M1sk)

=H(M1s) − H(M1s|M1k, M1sk, Zn)

(c)

≤nR1s − H(M1s|Mk, Zn),

where (a) is due to the fact that I(M1k; Zn) = 0 by I(M1k; Zn) ≤ I(M1k; Zn, Mk) = I(M1k; Mk) = 0,

which follows by the Markov chain M1k → Mk → Zn; (b) follows the fact that I(M1sk; Zn|M1k) = 0

as H(M1sk|Zn, M1k) ≥ H(M1sk|Zn, M1k, Msk) = H(M1sk|Msk) = H(M1sk) = H(M1sk|M1k); (c) is due

to the fact that H(M1s|M1k, M1sk, Zn) ≥ H(M1s|M1k, Mk, M1sk, Zn) = H(M1s|Mk, Zn), where the last

equality follows as M1k, M1sk are independent of M1s given Mk, Zn, which is due to the Markov chain

M1s → (Zn, Mk) → (M1k, M1sk).

To complete the proof that I(M1; Zn) ≤ nδ′(ǫ), we show in the following that H(M1s, M2s|Mk, Zn) ≥

n(R1s + R2s) − nδ′(ǫ), which implies that H(M1s|Mk, Zn) ≥ nR1s − nδ′(ǫ).

H(M1s, M2s|Mk, Zn)
(d)
=H(M1s, M2s|Un, Zn)

=H(M1s, M2s, Zn|Un) − H(Zn|Un)

=H(M1s, M2s, Zn, V n|Un) − H(V n|Un, M1s, M2s, Zn) − H(Zn|Un)

=H(V n|Un) + H(Zn|Un, V n) − H(V n|Un, M1s, M2s, Zn) − H(Zn|Un)

(e)

≥n(Rsk + R1s + R2s + Rr) + nH(Z|U, V ) − nH(Z|U) − nǫ

(f)
= n(R1s + R2s) − nδ′(ǫ)

where (d) is due to the fact that Un is uniquely determined by Mk; (e) follows by H(V n|Un) = n(Rsk +R1s+

R2s+Rr) by the codebook construction and the choice of V n is randomly chosen based on MK , Msk, M1s, M2s

which are presumed to be uniformly distributed; Moreover, since the channel is discrete memoryless, we

have H(Zn|Un, V n) =
∑n

i=1 H(Zi|Ui, Vi) = nH(Z|U, V ); and, H(V n|Un, M1s, M2s, Zn) ≤ nǫ due to Fano’s

inequality by taking

Rsk + Rr ≤ I(V ; Z|U) − ǫ′, (47)
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since the eavesdropper can decode V n reliably by using typical set decoding given (Un, M1s, M2s, Zn); and

H(Zn|Un) =
∑n

i=1 H(Zi|Zi−1, Un) ≤
∑n

i=1 H(Zi|Ui) = nH(Z|U); (f) holds by taking

Rsk + Rr ≥ I(V ; Z|U) − 2ǫ′ (48)

and δ′(ǫ) = ǫ + 2ǫ′.

Achievable rate region: Combining the followings:

• the non-negativity for rates, i.e.,

Rk, Rsk, R1s, R2s, Rr ≥ 0;

• the rate relations imposed by rate splitting, i.e.,

R1 = Rk + Rsk + R1s,

R2 = Rk + Rsk + R2s;

• the constraints for a reliable communication to both legitimate receivers, i.e., (43)-(46):

R1 + Rr ≤ I(V ; Y1),

R2 + Rr ≤ I(V ; Y2),

Rsk + R1s + Rr ≤ I(V ; Y1|U),

Rsk + R2s + Rr ≤ I(V ; Y2|U);

• the constraints for individual secrecy of the messages at the eavesdropper, i.e., (47)-(48):

Rsk + Rr ≈ I(V ; Z|U).

Eliminating Rr, Rk, Rsk, R1s, R2s by applying Fourier-Motzkin procedure [47], we obtain a region as the

union of the set of non-negative (R1, R2) pairs satisfying

R1 ≤ min{I(V ; Y1), I(V ; Y1|U) − I(V ; Z|U) + R2};

R2 ≤ min{I(V ; Y2), I(V ; Y2|U) − I(V ; Z|U) + R1}.
(49)

where the union is taken over all p(u)p(v|u)p(x|v) subject to I(V ; Yi|U) ≥ I(V ; Z|U) for i = 1, 2.

Appendix D

Discussion on Rate splitting in Superposition Coding

Rate splitting: As illustrated in Fig. 19, we represent M1, M2 by M1 = (M1k, M1sk, M1s, M1m) and M2 =

(M2k, M2sk, M2s, M2m) with M1k, M2k of entropy nRk; M1sk, M2sk of entropy nRsk; while M1s, M1m of

entropy nR1s, nR1m; and M2s, M2m of entropy nR2s, nR2m, respectively. For simplicity, we denote Mk =

M1k ⊕ M2k, Msk = M1sk ⊕ M2sk, Mss = (M1s, M2s) and Msm = (M1m, M2m).
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m1 :

nRk

︷ ︸︸ ︷

m1k

nRsk

︷ ︸︸ ︷

m1sk

nR1s

︷ ︸︸ ︷

m1s

nR1m

︷ ︸︸ ︷

m1m

m2 :
m2k

︸ ︷︷ ︸

nRk

m2sk

︸ ︷︷ ︸

nRsk

m2s

︸ ︷︷ ︸

nR2s

m2m

︸ ︷︷ ︸

nR2m

Fig. 19: Superposition coding: Rate splitting.

Codebook generation: Fix p(u), p(v|u) and p(t|v).

First, randomly generate 2nRk i.i.d. sequences un(k), k ∈ [1 : 2nRk ], according to p(u).

For each un(k), according to p(v|u), randomly generate 2n(R1s+R2s+Rsk+Rr) i.i.d. sequences vn(k, ss1, ss2, sk, r)

with (ss1, ss2, sk, r) ∈ [1 : 2nR1s ] × [1 : 2nR2s ] × [1 : 2nRsk ] × [1 : 2nRr ].

For each fixed un(k) and vn(k, ss1, ss2, sk, r), randomly generate 2n(R1m+R2m+Rr1
) i.i.d. sequences tn with

indices (k, ss1, ss2, sk, r, sm1, sm2, r1), where (sm1, sm2, r1) ∈ [1 : 2nR1m ]×[1 : 2nR2m ]×[1 : 2nRr1 ], according

to p(t|v).

Encoding: To send messages (m1, m2), choose un(k), where k = mk , m1k ⊕ m2k.

Given un(k), randomly choose r ∈ [1 : 2nRr ] and find the corresponding vn(k, m1s, m2s, msk, r), where

msk , m1sk ⊕ m2sk.

Given un(k) and vn(k, m1s, m2s, msk, r), randomly choose r1 ∈ [1 : 2nRr1 ], and send the corresponding

codeword tn with index (k, m1s, m2s, msk, r, m1m, m2m, r1).

The choice of un, vn and tn for given (m1, m2) is illustrated in Fig. 20.

un(k) :

nRk

︷ ︸︸ ︷

m1k ⊕ m2k

vn(msk, m1s, m2s, r)|un :
m1s

︸ ︷︷ ︸

nR1s

nRsk

︷ ︸︸ ︷

m1sk ⊕ m2sk

nRr

︷︸︸︷

r m2s

︸ ︷︷ ︸

nR2s

tn(m1m, m2m, r1)|un, vn :
m1m

︸ ︷︷ ︸

nR1m

nRr1

︷ ︸︸ ︷

r1 m2m

︸ ︷︷ ︸

nR2m

Fig. 20: Superposition coding: Encoding.

Decoding: Receiver 1, upon receiving yn
1 and with the side information m2, decodes m̂1 = (m2k ⊕ k̂, m2sk ⊕

m̂sk, m̂1s, m̂1m), if (k̂, m̂sk, m̂1s, m2s, r̂, m̂1m, m2m) is the unique tuple such that (ûn, v̂n, t̂n, yn
1 ) is jointly

typical, where ûn, v̂n, t̂n are with indices (k̂, m̂sk, m̂1s, m2s, r̂, m̂1m, m2m, r̂1).

And, receiver 2, upon receiving yn
2 and with the side information m1, decodes m̃2 = (m1k ⊕ k̃, m1sk ⊕

m̃sk, m̃2s, m̃2m), if (k̃, m̃sk, m1s, m̃2s, r̃, m1m, m̃2m) is the unique tuple such that (ũn, ṽn, t̃n, yn
1 ) is jointly

typical, where ûn, v̂n, t̂n are with indices (k̃, m̃sk, m1s, m̃2s, r̃, m1m, m̃2m, r̃1).
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Analysis of decoding error: Assume that m1 = (m1k, m1sk, m1s, m1m), m2 = (m2k, m2sk, m2s, m2m) is sent,

i.e., more specifically, k, msk, m1s, m1m and m2s, m2m are sent, where k , m1k⊕m2k and msk = m1sk⊕m2sk.

For Pe,1, a decoding error happens if receiver 1’s estimate is (ûn, v̂n, t̂n) with indices (k̂, m̂1s, m2s, m̂sk, r̂,

m̂1m, m2m, r̂1) such that (k̂, m̂1s, m̂sk, r̂, m̂1m) 6= (k, m1s, msk, r, m1m). In more details, the error event can

be partitioned into the followings:

1) Error event corresponds to k̂ 6= k. Note that this event occurs with arbitrarily small probability if

R1 + Rr + Rr1
≤ I(U, V, T ; Y1) = I(T ; Y1). (50)

2) Error event corresponds to k̂ = k, but (m̂1s, m̂sk, r̂) 6= (m1s, msk, r) Note that this event occurs with

arbitrarily small probability if

R1 − Rk + Rr + Rr1
≤ I(V, T ; Y1|U) = I(T ; Y1|U). (51)

3) Error event corresponds to (k̂, m̂1s, m̂sk, r̂) = (k, m1s, msk, r) but m̂1m 6= m1m. Note that this event

occurs with arbitrarily small probability if

R1m + Rr1
≤ I(T ; Y1|U, V ) = I(T ; Y1|V ). (52)

Similar analysis can be done at the receiver 2, from which the decoding error probability Pe,2 can be made

arbitrarily small if

R2 + Rr + Rr1
≤ I(T ; Y2) (53)

R2 − Rk + Rr + Rr1
≤ I(T ; Y2|U) (54)

R2m + Rr1
≤ I(T ; Y2|V ). (55)

Analysis of individual secrecy: For the secrecy of M1, we have

I(M1; Zn) =I(M1k, M1sk, M1s, M1m; Zn)

=I(M1k, M1sk; Zn) + I(M1s, M1m; Zn|M1k, M1sk)

(a)
= I(M1s, M1m; Zn|M1k, M1sk)

=H(M1s, M1m) − H(M1s, M1m|M1k, M1sk, Zn)

≤H(M1s, M1m) − H(M1s, M1m|Mk, M1k, M1sk, Zn)

(b)
=nR1s + nR1m − H(M1s, M1m|Mk, Zn)

where

(a) is due to the fact that I(M1k, M1sk; Zn) = 0 since

I(M1k, M1sk; Zn) ≤ I(M1k, M1sk; Zn, Mk, Msk, M1s, M1m, M2s, M2m)

= I(M1k, M1sk; Mk, Msk, M1s, M1m, M2s, M2m)

= 0,
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where the first equality is by the Markov chain (M1k, M2k, M1sk, M2sk) → (Mk, Msk, Mss, Msm) → Zn;

(b) is due to the fact that I(M1s, M1m; M1k, M1sk|Zn, Mk) = 0, where the equality follows by:

1) I(M1s, M1m; M1k, M1sk|Zn, Mk) ≥ 0; and

2) I(M1s, M1m; M1k, M1sk|Zn, Mk) ≤ 0 since

H(M1k, M1sk|Zn, Mk, M1s, M1m) ≥ H(M1k, M1sk|Zn, Mk, Msk, M1s, M1m)

= H(M1k, M1sk|Mk, Msk)

= H(M1k, M1sk)

≥ H(M1k, M1sk|Zn, Mk).

So far, we obtain

I(M1; Zn) ≤ nR1s + nR1m − H(M1s, M1m|Mk, Zn). (56)

Similarly, for the secrecy of M2, we have

I(M2; Zn) ≤ nR2s + nR2m − H(M2s, M2m|Mk, Zn). (57)

In the following, we show that H(M1s, M1m, M2s, M2m|Mk, Zn) ≥ n(R1s + R1m + R2s + R2m) − nδ′(ǫ)

holds if the rates satisfy (59) and (62). This implies that H(M1s, M1m|Mk, Zn) ≥ R1s + R1m − nδ′(ǫ) and

H(M2s, M2m|Mk, Zn) ≥ R2s + R2m − nδ′(ǫ). Further by (56) and (57), we obtain I(M1; Zn) ≤ nδ′(ǫ) and

I(M2; Zn) ≤ nδ′(ǫ), thus completing the desired individual secrecy proof.

Note that

H(M1s, M1m, M2s, M2m|Mk, Zn)

(a)
=H(Mss, Msm|Un, Zn)

=H(Mss, Msm, V n|Un, Zn) − H(V n|Un, Mss, Msm, Zn)

≥H(Mss, Msm, V n|Un, Zn) − H(V n|Un, Mss, Zn)

(b)

≥H(V n|Un, Zn) + H(Msm|Un, V n, Zn) − n(Rsk + Rr − I(V ; Z|U)) − nǫ1, (58)

where (a) is due to the one-to-one correspondence between Mk and Un; and the simplification by denoting

Mss = (M1s, M2s) and Msm = (M1m, M2m); (b) follows from [48, Lemma 1] that H(V n|Un, Mss, Zn) ≤

n(Rsk + Rr − I(V ; Z|U)) + nǫ1 if

Rsk + Rr ≥ I(V ; Z|U) + ǫ. (59)

For the first term in (58), i.e., H(V n|Un, Zn), we have

H(V n|Un, Zn) = H(V n, Zn|Un) − H(Zn|Un)

= H(V n|Un) + H(Zn|Un, V n) − H(Zn|Un)

= n(R1s + R2s + Rsk + Rr) + H(Zn|Un, V n) − H(Zn|Un); (60)
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And, for the second term in (58), i.e., H(M1m, M2m|Un, V n, Zn), we have

H(M1m, M2m|Un, V n, Zn) = H(Msm|Un, V n, Zn)

=H(Msm, Zn|Un, V n) − H(Zn|Un, V n)

=H(Msm, Zn, T n|Un, V n) − H(Zn|Un, V n) − H(T n|Un, V n, Msm, Zn)

≥H(T n|Un, V n) + H(Zn|Un, V n, T n) − H(Zn|Un, V n) − H(T n|Un, V n, Msm, Zn)

=n(R1m + R2m + Rr1
) + H(Zn|Un, V n, T n) − H(Zn|Un, V n) − H(T n|Un, V n, Msm, Zn)

(a)

≥n(R1m + R2m + Rr1
) + H(Zn|Un, V n, T n) − H(Zn|Un, V n) − n(Rr1

− I(T ; Z|U, V )) − nǫ2 (61)

where (a) follows from [48, Lemma 1] that H(T n|Un, V n, Msm, Zn) ≤ n(Rr1
− I(T ; Z|U, V )) + nǫ2 if

Rr1
≥ I(T ; Z|V ) + ǫ. (62)

Combining (60) and (61) in (58), we have

H(M1s, M1m, M2s, M2m|Mk, Zn)

≥H(V n|Un, Zn) + H(M1m, M2m|Un, V n, Zn) − n(Rsk + Rr − I(V ; Z|U)) − nǫ1

≥n(R1s + R2s + Rsk + Rr) + H(Zn|Un, V n) − H(Zn|Un)

+ n(R1m + R2m + Rr1
) + H(Zn|Un, V n, T n) − H(Zn|Un, V n) − n(Rr1

− I(T ; Z|U, V )) − nǫ2

− n(Rsk + Rr − I(V ; Z|U)) − nǫ1

(a)

≥n(R1s + R1m + R2s + R2m) − nH(Z|U) + nH(Z|U, V, T ) + nI(V, T ; Z|U) + nδ′(ǫ)

=n(R1s + R1m + R2s + R2m) − nδ′(ǫ)

where (a) follows from H(Zn|Un) ≤
∑n

i=1 H(Zi|Ui) = nH(Z|U); H(Zn|Un, V n, T n) = nH(Z|U, V, T ); and

δ′(ǫ) = ǫ1 + ǫ2.

Achievable rate region: Combining the followings:

• the non-negativity for rates, i.e.,

Rk, Rsk, R1s, R2s, Rr ≥ 0;

• the rate relations imposed by rate splitting, i.e.,

R1 = Rk + Rsk + R1s + R1m,

R2 = Rk + Rsk + R2s + R2m;

• the constraints for a reliable communication to both legitimate receivers, i.e., (50)-(55):

R1 + Rr + Rr1
≤ I(T ; Y1)

R2 + Rr + Rr1
≤ I(T ; Y2)
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R1 − Rk + Rr + Rr1
≤ I(T ; Y1|U)

R2 − Rk + Rr + Rr1
≤ I(T ; Y2|U)

R1m + Rr1
≤ I(T ; Y1|V )

R2m + Rr1
≤ I(T ; Y2|V ).

• the constraints for individual secrecy of the messages at the eavesdropper, i.e., (59) and (62):

Rsk + Rr ≥ I(V ; Z|U)

Rr1
≥ I(T ; Z|V ).

Applying Fourier-Motzkin procedure [47] to eliminate Rk, Rsk, R1m, R2m, Rr, Rr1
, we get an achievable

region, which is the union of non-negative (R1, R2) pairs satisfying

R1 ≤ min{I(T ; Y1) − I(T ; Z|V ), I(T ; Y1|U) − I(T ; Z|U) + R2}; (63)

R2 ≤ min{I(T ; Y2) − I(T ; Z|V ), I(T ; Y2|U) − I(T ; Z|U) + R1}, (64)

where the union is taken over probability distributions satisfying U → V → T → (Y1, Y2, Z) forming a

Markov chain and for i = 1, 2, both I(T ; Yi|V ) ≥ I(T ; Z|V ) and I(T ; Yi|U) ≥ I(T ; Z|U) hold.

Note that for fixed p(t), p(t|u), the above region is outer bounded by the choice of V = T, i.e., the outer

bounding region is given by the union of non-negative (R1, R2) pairs satisfying

R1 ≤ min{I(V ; Y1), I(V ; Y1|U) − I(V ; Z|U) + R2}; (65)

R2 ≤ min{I(V ; Y2), I(V ; Y2|U) − I(V ; Z|U) + R1}, (66)

where the union is taken over probability distributions satisfying U → V → (Y1, Y2, Z) forming a Markov

chain and I(V ; Yi|U) ≥ I(V ; Z|U) holds for i = 1, 2. This reduces to the region provided in Theorem 7.

Appendix E

Proof of Converse for Theorem 8

Consider a BC-RSI with an external eavesdropper. In addition, the eavesdropper’s channel is deterministic

in the sense that Z is a function of X. For a reliable communication under individual secrecy constraint, we

have

nR1 =H(M1) = H(M1|M2)

=I(M1; Y n
1 |M2) + H(M1|M2, Y n

1 )

(a)

≤ I(M1; Y n
1 |M2) + nǫ

where (a) is due to the reliability constraint, i.e., H(M1|M2, Y n
1 ) ≤ nǫ1 by Fano’s inequality.
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On one hand, we have

nR1 ≤I(M1; Y n
1 |M2) + nǫ

=
n∑

i=1

I(M1; Y1i|M2, Y1
i−1
1 ) + nǫ

≤
n∑

i=1

I(M1, M2, Y1
i−1
1 ; Y1i) + nǫ

(b)

≤
n∑

i=1

I(Xi; Y1i) + nǫ

(c)

≤nI(X ; Y1) + nǫ

where (b) is due to the Markov chain (M1, M2, Y1
i−1
1 ) → Xi → Y1i; (c) is by introducing a time-sharing

random variable Q which is uniform over 1, 2 · · · , n and by taking X = XQ, Y1 = Y1,Q.

On the other hand, we have

nR1 ≤I(M1; Y n
1 |M2) + nǫ

= I(M1; Y n
1 |M2) − I(M1; Zn|M2)

︸ ︷︷ ︸

nRs

1

+ I(M1; Zn|M2)
︸ ︷︷ ︸

nRk

1

+nǫ.

The first term Rs
1 can be bounded as follows:

nRs
1 =I(M1; Y n

1 |M2) − I(M1; Zn|M2)

≤I(M1; Y n
1 , Zn|M2) − I(M1; Zn|M2)

=I(M1; Y n
1 |M2, Zn)

=

n∑

i=1

I(M1; Y1i|M2, Zn, Y i−1
1,1 )

≤
n∑

i=1

I(M1, M2, Y1
i−1
1 , Zi−1

1 , Zn
i+1; Y1i|Zi)

(d)

≤
n∑

i=1

I(Xi; Y1i|Zi)

(e)

≤nI(X ; Y1|Z),

where (d) is due to the Markov chain (M1, M2, Y1
i−1
1 , Zi−1

1 , Zn
i+1) → Xi → (Y1i, Zi); (e) is by applying the

time-sharing random variable Q which is uniform over 1, 2 · · · , n and by taking X = XQ, Y1 = Y1,Q, Z = ZQ.

And the second term Rk
1 can be bounded by

nRk
1 =I(M1; Zn|M2)

≤I(M1, M2; Zn)

(d)

≤I(M2; Zn|M1) + nǫ
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≤H(M2|M1) + nǫ

=nR2 + nǫ,

where (d) is due to the individual secrecy constraint, i.e., I(M1; Zn) ≤ nǫ.

As a conclusion of above discussions, we have as ǫ → 0

R1 ≤ min{I(X ; Y1), I(X ; Y1|Z) + R2}.

A similar proof can be applied to R2 and thus completes the proof of the converse.

Appendix F

Proof of Theorem 11

Rate splitting: As illustrated in Fig. 21, we represent M1, M2 by M1 = (M1k, M1sk, M1ss, M1sm) and M2 =

(M2k, M2sk, M2ss, M2sm) with M1k, M2k of entropy nRk; M1sk, M2sk of entropy nRsk; while M1ss, M1sm of

entropy nR1ss, nR1sm; and M2ss, M2sm of entropy nR2ss, nR2sm, respectively. For simplicity, we denote

Mk = M1k ⊕ M2k, Msk = M1sk ⊕ M2sk, Mss = (M1ss, M2ss) and Msm = (M1sm, M2sm).

m1 :

nRk

︷ ︸︸ ︷

m1k

nRsk

︷ ︸︸ ︷

m1sk

nR1ss

︷ ︸︸ ︷

m1ss

nR1sm

︷ ︸︸ ︷

m1sm

m2 :
m2k

︸ ︷︷ ︸

nRk

m2sk

︸ ︷︷ ︸

nRsk

m2ss

︸ ︷︷ ︸

nR2ss

m2sm

︸ ︷︷ ︸

nR2sm

Fig. 21: Martion’s coding: Rate splitting.

Codebook generation: Fix p(u), p(v0|u), p(v1, v2|v0) and p(x|v1, v2).

First, randomly generate 2nRk i.i.d. sequences un(k), k ∈ [1 : 2nRk ], according to p(u).

For each un(k), randomly generate 2n(R1ss+R2ss+Rsk+Rr) i.i.d. sequences vn
0 (k, m1ss, m2ss, msk, r) with

(m1ss, m2ss, msk, r) ∈ [1 : 2nR1ss ] × [1 : 2nR2ss ] × [1 : 2nRsk ] × [1 : 2nRr ], according to p(v0|u);

For each fixed vn
0 (k, m1ss, m2ss, msk, r), randomly generate 2n(R1sm+R1r+R1c) i.i.d. sequences vn

1 (k, m1ss,

m2ss, msk, r, sm1, r1, c1) with (sm1, r1, c1) ∈ [1 : 2nR1sm ] × [1 : 2nR1r ] × [1 : 2nR1c ], according to p(v1|v0); and

similarly generate 2n(R2sm+R2r+R2c) i.i.d. sequences vn
2 (k, m1ss, m2ss, msk, r, sm2, r2, c2) with (sm2, r2, c2) ∈

[1 : 2nR2sm ] × [1 : 2nR2r ] × [1 : 2nR2c ], according to p(v2|v0).

Encoding: To send messages (m1, m2), choose un(k), where k = mk , m1k ⊕ m2k.

Given un(k), randomly choose r ∈ [1 : 2nRr ] and find vn
0 (un, m1ss, m2ss, msk, r), where msk , m1sk⊕m2sk.

Given vn
0 (k, m1ss, m2ss, msk, r), randomly choose (r1, r2) ∈ [1 : 2nR1r ] × [1 : 2nR2r ], and pick (c1, c2) such

that vn
1 (k, m1ss, m2ss, sk, r, sm1, r1, c1) and vn

2 (k, m1ss, m2ss, sk, r, sm2, r2, c2) are jointly typical. (If there is

more than one such jointly typical pair, choose one of them uniformly at random. This is possible with high

probability, if

R1c + R2c > I(V1; V2|V0) (67)
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(refer to [49] for the proof).

Finally, for the chosen jointly typical pair (vn
1 , vn

2 ), generate a codeword xn at random according to

p(x|v1, v2) and transmit it.

The choice of un, vn
0 , vn

1 , vn
2 for given (m1, m2) is illustrated in Fig. 22.

un(k) :

nRk

︷ ︸︸ ︷

m1k ⊕ m2k

vn
0 (k, m1ss, m2ss, msk, r) :

m1ss

︸ ︷︷ ︸

nR1ss

nRsk

︷ ︸︸ ︷

m1sk ⊕ m2sk

nRr

︷︸︸︷

r m2ss

︸ ︷︷ ︸

nR2ss

vn
1 (k, m1ss, m2ss, sk, r, m1sm, r1, c1) :

m1sm

︸ ︷︷ ︸

nR1sm

nR1r

︷︸︸︷

r1

nR1c

︷︸︸︷

c1

vn
2 (k, m1ss, m2ss, sk, r, m2sm, r2, c2) :

m2sm

︸ ︷︷ ︸

nR2sm

nR2r

︷︸︸︷

r2

nR2c

︷︸︸︷

c2

Fig. 22: Marton’s coding: Encoding.

Decoding: Receiver 1, upon receiving yn
1 , finds a unique vn

1 (k̂, m̂1ss, m2ss, m̂sk, r̂, m̂1sm, r̂1, ĉ1) such that

(vn
1 , yn

1 ) is jointly typical. And, receiver 2, upon receiving yn
2 , finds a unique vn

2 (k̃, m1ss, m̃2ss, m̃sk, r̃, m1sm,

r̃2, c̃2) such that (vn
2 , yn

2 ) is jointly typical.

Analysis of decoding error: Assume that m1 = (m1k, m1sk, m1ss, m1sm), m2 = (m2k, m2sk, m2ss, m2sm) is

sent, i.e., more specifically, k, msk, m1ss, m1sm and m2ss, m2sm are sent, where k , m1k ⊕ m2k and msk =

m1sk ⊕ m2sk. For Pe,1, a decoding error happens if receiver 1’s estimate is un(k̂), vn
0 (un, m̂1ss, m2ss, m̂sk, r̂),

vn
1 (vn

0 , m̂1sm, r̂1, ĉ1) with (k̂, m̂1ss, m̂sk, r̂, m̂1sm, r̂1, ĉ1) 6= (k, m1ss, msk, r, m1sm, r1, c1). In more details, the

error event can be partitioned into the followings:

1) Error event corresponds to k̂ 6= k. Note that this event occurs with arbitrarily small probability if

R1 + Rr + R1r + R1c ≤ I(U, V0, V1; Y1) = I(V0, V1; Y1). (68)

2) Error event corresponds to k̂ = k, but (m̂1ss, m̂sk, r̂) 6= (m1ss, msk, r) Note that this event occurs with

arbitrarily small probability if

R1 − Rk + Rr + R1r + R1c ≤ I(V0, V1; Y1|U). (69)

3) Error event corresponds to (k̂, m̂1ss, m̂sk, r̂) = (k, m1ss, msk, r) but (m̂1sm, r̂1, ĉ1) 6= (m1sm, r1, c1).

Note that this event occurs with arbitrarily small probability if

R1sm + R1r + R1c ≤ I(V1; Y1|U, V0) = I(V1; Y1|V0). (70)
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Similar analysis can be done at the receiver 2, from which the decoding error probability Pe,2 can be made

arbitrarily small if

R2 + Rr + R2r + R2c ≤ I(V0, V2; Y2) (71)

R2 − Rk + Rr + R2r + R2c ≤ I(V0, V2; Y2|U) (72)

R2sm + R2r + R2c ≤ I(V2; Y2|U, V0) = I(V2; Y2|V0). (73)

Analysis of individual secrecy: For the secrecy of M1, we have

I(M1; Zn) =I(M1k, M1sk, M1ss, M1sm; Zn)

=I(M1k, M1sk; Zn) + I(M1ss, M1sm; Zn|M1k, M1sk)

(a)
= I(M1ss, M1sm; Zn|M1k, M1sk)

=H(M1ss, M1sm) − H(M1ss, M1sm|M1k, M1sk, Zn)

≤H(M1ss, M1sm) − H(M1ss, M1sm|Mk, M1k, M1sk, Zn)

(b)
=nR1ss + nR1sm − H(M1ss, M1sm|Mk, Zn)

where

(a) is due to the fact that I(M1k, M1sk; Zn) = 0 since

I(M1k, M1sk; Zn) ≤ I(M1k, M1sk; Zn, Mk, Msk, M1ss, M1sm, M2ss, M2sm)

= I(M1k, M1sk; Mk, Msk, M1ss, M1sm, M2ss, M2sm)

= 0,

where the first equality is by the Markov chain (M1k, M2k, M1sk, M2sk) → (Mk, Msk, Mss, Msm) → Zn;

(b) is due to the fact that I(M1ss, M1sm; M1k, M1sk|Zn, Mk) = 0, where the equality follows by:

1) I(M1ss, M1sm; M1k, M1sk|Zn, Mk) ≥ 0; and

2) I(M1ss, M1sm; M1k, M1sk|Zn, Mk) ≤ 0 since

H(M1k, M1sk|Zn, Mk, M1ss, M1sm) ≥ H(M1k, M1sk|Zn, Mk, Msk, M1ss, M1sm)

= H(M1k, M1sk|Mk, Msk)

= H(M1k, M1sk)

≥ H(M1k, M1sk|Zn, Mk).

So far, we obtain

I(M1; Zn) ≤ nR1ss + nR1sm − H(M1ss, M1sm|Mk, Zn). (74)

Similarly, for the secrecy of M2, we have

I(M2; Zn) ≤ nR2ss + nR2sm − H(M2ss, M2sm|Mk, Zn). (75)
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In the following, we show that H(M1ss, M1sm, M2ss, M2sm|Mk, Zn) ≥ n(R1ss+R1sm+R2ss+R1sm)−nδ′(ǫ)

holds if the rates satisfy (80), (82), (84) and (85). This implies that H(M1ss, M1sm|Mk, Zn) ≥ R1ss +

R1sm − nδ′(ǫ) and H(M2ss, M2sm|Mk, Zn) ≥ R2ss + R2sm − nδ′(ǫ). Further by (74) and (75), we obtain

I(M1; Zn) ≤ nδ′(ǫ) and I(M2; Zn) ≤ nδ′(ǫ), thus completing the desired individual secrecy proof.

Note that

H(M1ss, M1sm, M2ss, M2sm|Mk, Zn)
(a)
= H(Mss, Msm|Un, Zn)

=H(Mss, Msm, V n
0 |Un, Zn) − H(V n

0 |Un, Mss, Msm, Zn)

≥H(Mss, Msm, V n
0 |Un, Zn) − H(V n

0 |Un, Mss, Zn)

≥H(V n
0 |Un, Zn) + H(Msm|Un, V n

0 , Zn) − H(V n
0 |Un, Mss, Zn). (76)

We now bound the terms above.

For the first term in (76), i.e., H(V n
0 |Un, Zn), we have

H(V n
0 |Un, Zn) = H(V n

0 , Zn|Un) − H(Zn|Un)

= H(V n
0 |Un) + H(Zn|Un, V n

0 ) − H(Zn|Un)

= n(R1ss + R2ss + Rsk + Rr) + H(Zn|Un, V n
0 ) − H(Zn|Un); (77)

And, for the second term in (76), i.e., H(M1sm, M2sm|Un, V n
0 , Zn), we have

H(M1sm, M2sm|Un, V n
0 , Zn)

=H(M1sm, M2sm, Zn|Un, V n
0 ) − H(Zn|Un, V n

0 )

=H(M1sm, M2sm, Zn, V n
1 , V n

2 |Un, V n
0 ) − H(Zn|Un, V n

0 ) − H(V n
1 , V n

2 |Un, V n
0 , M1sm, M2sm, Zn)

=H(Zn, V n
1 , V n

2 |Un, V n
0 ) − H(Zn|Un, V n

0 ) − H(V n
1 , V n

2 |Un, V n
0 , M1sm, M2sm, Zn)

=H(Zn|Un, V n
0 , V n

1 , V n
2 ) + H(V n

1 , V n
2 |Un, V n

0 ) − H(Zn|Un, V n
0 ) − H(V n

1 , V n
2 |Un, V n

0 , M1sm, M2sm, Zn)

(a)

≥H(Zn|Un, V n
0 , V n

1 , V n
2 ) + H(V n

1 , V n
2 |Un, V n

0 ) − H(Zn|Un, V n
0 )

− H(V n
1 |Un, V n

0 , M1sm, M2sm, Zn) − H(V n
2 |Un, V n

0 , M1sm, M2sm, Zn)

(b)

≥H(Zn|Un, V n
0 , V n

1 , V n
2 ) + n(R1sm + R1r + R2sm + R2r) − H(Zn|Un, V n

0 )

− H(V n
1 |Un, V n

0 , M1sm, Zn) − H(V n
2 |Un, V n

0 , M2sm, Zn)

(c)

≥H(Zn|Un, V n
0 , V n

1 , V n
2 ) + n(R1sm + R1r + R2sm + R2r) − H(Zn|Un, V n

0 )

− n(R1r + R1c − I(V1; Z|V0)) − nǫ1 − n(R2r + R2c − I(V2; Z|V0)) − nǫ1 (78)

where (a) is due to the fact that H(A, B|C) ≤ H(A|C) + H(B|C), (b) follows as

H(V n
1 , V n

2 |Un, V n
0 ) = H(M1sm, M2sm, M1r, M2r|Un, V n

0 ) + H(V n
1 , V n

2 |Un, V n
0 , M1sm, M2sm, M1r, M2r)

≥ H(M1sm, M2sm, M1r, M2r|Un, V n
0 ) = H(M1sm, M2sm, M1r, M2r)
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= n(R1sm + R1r + R2sm + R2r)

since the choice of M1sm, M2sm, M1r, M2r are independent of Un, V n
0 ; (c) is due to the followings: First, we

have

H(V n
1 |Un, V n

0 , M1sm, Zn) = H(V n
1 |V n

0 , M1sm, Zn) ≤ n(R1r + R1c − I(V1; Z|V0)) + nǫ1 (79)

if, for an arbitrarily small ǫ > 0,

R1r + R1c ≥ I(V1; Z|V0) + ǫ. (80)

This follows from [48, Lemma 1]. And, similarly, we have

H(V n
2 |Un, V n

0 , M2sm, Zn) = H(V n
2 |V n

0 , M2sm, Zn) ≤ n(R2r + R2c − I(V2; Z|V0)) + nǫ1 (81)

if, for an arbitrarily small ǫ > 0,

R2r + R2c ≥ I(V2; Z|V0) + ǫ. (82)

Finally, for the last term in (76), i.e., H(V n
0 |Un, Mss, Zn), we have

H(V n
0 |Un, Mss, Zn) ≤ n(Rsk + Rr − I(V0; Z|U)) + nǫ1, (83)

if, for an arbitrarily small ǫ > 0,

Rsk + Rr ≥ I(V0; Z|U) + ǫ. (84)

This follows from [48, Lemma 1].

Combining (77), (78) and (83) in (76), we have

H(M1ss, M1sm, M2ss, M2sm|Mk, Zn)

≥H(V n
0 |Un, Zn) + H(Msm|Un, V n

0 , Zn) − H(V n
0 |Un, Mss, Zn)

≥n(R1ss + R2ss + Rsk + Rr) + H(Zn|Un, V n
0 ) − H(Zn|Un)

+ H(Zn|Un, V n
0 , V n

1 , V n
2 ) + n(R1sm + R1r + R2sm + R2r) − H(Zn|Un, V n

0 )

− n(R1r + R1c − I(V1; Z|V0)) − nǫ1 − n(R2r + R2c − I(V2; Z|V0)) − nǫ1

− n(Rsk + Rr − I(V0; Z|U)) − nǫ1

(a)

≥n(R1ss + R1sm + R2ss + R2sm)

+ n(−R1c − R2c − H(Z|U) + H(Z|U, V0, V1, V2) + I(V1; Z|V0) + I(V2; Z|V0) + I(V0; Z|U) − 3ǫ1)

(b)

≥n(R1ss + R1sm + R2ss + R2sm) − nδ(ǫ)

where (a) follows from H(Zn|Un) ≤
∑n

i=1 H(Zi|Ui) = nH(Z|U) and the fact that H(Zn|Un, V n
0 , V n

1 , V n
2 ) =

nH(Z|U, V0, V1, V2); and (b) follows by the rate choice

R1c + R2c ≤ I(V1; Z|V0) + I(V2; Z|V0) − I(V1, V2; Z|V0) (85)

February 26, 2015 DRAFT



48

with δ(ǫ) = 3ǫ1.

Achievable rate region: Combining the non-negativity for rates, the conditions for reliable communication

at both legitimate receivers, i.e., (67), (68)-(73), and individual secrecy at the eavesdropper, i.e., (80), (82),

(84) and (85), we obtain the followings:

Rk, Rsk, R1ss, R1sm, R2ss, R2sm, Rr, R1c, R2c, R1r, R2r ≥ 0 (86)

R1 = Rk + Rsk + R1ss + R1sm (87)

R2 = Rk + Rsk + R2ss + R2sm (88)

R1c + R2c > I(V1; V2|V0) (89)

R1 + Rr + R1r + R1c ≤ I(V0, V1; Y1) (90)

R1 − Rk + Rr + R1r + R1c ≤ I(V0, V1; Y1|U) (91)

R1sm + R1r + R1c ≤ I(V1; Y1|V0) (92)

R2 + Rr + R2r + R2c ≤ I(V0, V2; Y2) (93)

R2 − Rk + Rr + R2r + R2c ≤ I(V0, V2; Y2|U) (94)

R2sm + R2r + R2c ≤ I(V2; Y2|V0) (95)

Rsk + Rr ≥ I(V0; Z|U) (96)

R1r + R1c ≥ I(V1; Z|V0) (97)

R2r + R2c ≥ I(V2; Z|V0) (98)

R1c + R2c ≤ I(V1; Z|V0) + I(V2; Z|V0) − I(V1, V2; Z|V0), (99)

where the union is taken over probability distributions satisfying

p(q, u, v0, v1, v2, x) = p(q)p(u|q)p(v0|u)p(v1, v2|v0)p(x|v1, v2).

Eliminating R1c, R2c, R1r, R2r, Rr, R1sm, R2sm, R1ss, R2ss, Rk, Rsk, by applying Fourier-Motzkin proce-

dure [47], we obtain the region of (R1, R2) as given in (20) in Theorem 11. Note that a sketch of this

Fourier-Motzkin procedure is provided in Appendix G.

Appendix G

Fourier-Motzkin Elimination for Theorem 11

Here we briefly outline the Fourier-Motzkin procedure in the proof of Theorem 11.

• To eliminate R1ss, we consider the non-negativity of the rate and the equality (87). We end up with

R1sm + Rk + Rsk ≤ R1 (100)
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• To eliminate R2ss, we consider the non-negativity of the rate and the equality (88). We end up with

R2sm + Rk + Rsk ≤ R2 (101)

• To eliminate R1sm, we consider the non-negativity of the rate and the inequalities (92) and (100) which

involve R1sm. We end up with

R1r + R1c ≤ I(V1; Y1|V0) (102)

Rk + Rsk ≤ R1 (103)

• To eliminate R2sm, we consider the non-negativity of the rate and the inequalities (95) and (101) which

involve R2sm. We end up with

R2r + R2c ≤ I(V2; Y2|V0) (104)

Rk + Rsk ≤ R2 (105)

• To eliminate Rr, we consider the non-negativity of the rate and the inequalities (90), (91), (93), (94),

(96) which involve Rr. We end up with

R1 + R1r + R1c ≤ I(V0, V1; Y1) (106)

R1 − Rk + R1r + R1c ≤ I(V0, V1; Y1|U) (107)

R2 + R2r + R2c ≤ I(V0, V2; Y2) (108)

R2 − Rk + R2r + R2c ≤ I(V0, V2; Y2|U) (109)

R1 − Rsk + R1r + R1c ≤ I(V0, V1; Y1) − I(V0; Z|U) (110)

R1 − Rk − Rsk + R1r + R1c ≤ I(V0, V1; Y1|U) − I(V0; Z|U) (111)

R2 − Rsk + R2r + R2c ≤ I(V0, V2; Y2) − I(V0; Z|U) (112)

R2 − Rk − Rsk + R2r + R2c ≤ I(V0, V2; Y2|U) − I(V0; Z|U) (113)

• To eliminate Rk, we consider the non-negativity of the rate and the inequalities (107), (109), (111),

(113), (103), (105) which involve Rk. We end up with

Rsk ≤ R1 (114)

Rsk ≤ R2 (115)

Rsk + R1r + R1c ≤ I(V0, V1; Y1|U) (116)

R1 − R2 + Rsk + R1r + R1c ≤ I(V0, V1; Y1|U) (117)

R2 − R1 + Rsk + R2r + R2c ≤ I(V0, V2; Y2|U) (118)

Rsk + R2r + R2c ≤ I(V0, V2; Y2|U) (119)

R1r + R1c ≤ I(V0, V1; Y1|U) − I(V0; Z|U) (120)
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R1 − R2 + R1r + R1c ≤ I(V0, V1; Y1|U) − I(V0; Z|U) (121)

R2 − R1 + R2r + R2c ≤ I(V0, V2; Y2|U) − I(V0; Z|U) (122)

R2r + R2c ≤ I(V0, V2; Y2|U) − I(V0; Z|U) (123)

• To eliminate Rsk, we consider the non-negativity of the rate and the inequalities (110), (112), (114),

(115), (116), (117), (118), (119) which involve Rsk. We end up with the following inequalities after

cancelling the redundant ones.

R1 ≥ 0 (124)

R2 ≥ 0 (125)

• To eliminate R1r, we consider the non-negativity of the rate and the inequalities (97), (106), (102), (120),

(121) which involve R1r. We end up with the following inequalities after cancelling the redundant ones.

R1 + R1c ≤ I(V0, V1; Y1) (126)

R1c ≤ I(V1; Y1|V0) + [I(V0; Y1|U) − I(V0; Z|U)]− (127)

R1 − R2 + R1c ≤ I(V0, V1; Y1|U) − I(V0; Z|U) (128)

R1 ≤ I(V0, V1; Y1) − I(V1; Z|V0) (129)

I(V1; Z|V0) ≤ I(V1; Y1|V0) (130)

I(V0, V1; Z|U) ≤ I(V0, V1; Y1|U) (131)

R1 − R2 ≤ I(V0, V1; Y1|U) − I(V0, V1; Z|U) (132)

where [a]− = min{0, a}.

• To eliminate R2r, we consider the non-negativity of the rate and the inequalities (98), (108), (104),

(122), (123) which involve R2r. We end up with the following inequalities after canceling the redundant

ones.

R2 + R2c ≤ I(V0, V2; Y2) (133)

R2c ≤ I(V2; Y2|V0) + |I(V0; Y2|U) − I(V0; Z|U)|− (134)

R2 − R1 + R2c ≤ I(V0, V2; Y2|U) − I(V0; Z|U) (135)

R2 ≤ I(V0, V2; Y2) − I(V2; Z|V0) (136)

I(V2; Z|V0) ≤ I(V2; Y2|V0) (137)

I(V0, V2; Z|U) ≤ I(V0, V2; Y2|U) (138)

R2 − R1 ≤ I(V0, V2; Y2|U) − I(V0, V2; Z|U) (139)

• To eliminate R1c, we consider the non-negativity of the rate and the inequalities (89), (99), (126), (127)

and (128) which involve R1c. We end up with the following inequalities after canceling the redundant
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ones.

R2c ≤ I(V1; Z|V0) + I(V2; Z|V0) − I(V1, V2; Z|V0) (140)

I(V1; V2|V0) ≤ I(V1; Z|V0) + I(V2; Z|V0) − I(V1, V2; Z|V0) (141)

R1 − R2c ≤ I(V0, V1; Y1) − I(V1; V2|V0) (142)

R2c ≥ I(V1; V2|V0) − I(V1; Y1|V0) − [I(V0; Y1|U) − I(V0; Z|U)]− (143)

R1 − R2 − R2c ≤ I(V0, V1; Y1|U) − I(V0; Z|U) − I(V1; V2|V0) (144)

• To eliminate R2c, we consider the non-negativity of the rate and the inequalities (133), (134), (135),

(140), (142), (143), (144) which involve R2c. We end up with the following inequalities after cancelling

some redundant ones.

R1 + R2 ≤ I(V0, V1; Y1) + I(V0, V2; Y2) − I(V1; V2|V0) (145)

R1 ≤ I(V0, V1; Y1) − I(V1; V2|V0) + I(V2; Y2|V0) + [I(V0; Y2|U) − I(V0; Z|U)]− (146)

R2 ≤ I(V0, V2; Y2|U) − I(V1; V2|V0) − I(V0; Z|U) + I(V0, V1; Y1) (147)

R1 ≤ I(V0, V1; Y1) − I(V1; V2|V0) + I(V1; Z|V0) + I(V2; Z|V0) − I(V1, V2; Z|V0) (148)

R2 ≤ I(V0, V2; Y2) − I(V1; V2|V0) + I(V1; Y1|V0) + [I(V0; Y1|U) − I(V0; Z|U)]− (149)

R2 − R1 ≤ I(V0, V2; Y2|U) − I(V1; V2|V0) − I(V0; Z|U) + I(V1; Y1|V0)

+ [I(V0; Y1|U) − I(V0; Z|U)]− (150)

R1 ≤ I(V0, V1; Y1|U) − I(V1; V2|V0) − I(V0; Z|U) + I(V0, V2; Y2) (151)

R1 − R2 ≤ I(V0, V1; Y1|U) + I(V2; Y2|V0) − I(V1; V2|V0) − I(V0; Z|U)

+ [I(V0; Y2|U) − I(V0; Z|U)]− (152)

R1 − R2 ≤ I(V0, V1; Y1|U) − I(V1; V2|V0) − I(V0; Z|U)

+ I(V1; Z|V0) + I(V2; Z|V0) − I(V1, V2; Z|V0) (153)

Note that (145) is redundant due to (129), (136) and (141); (147) is redundant due to (139), (129) and

(141); (148) is redundant due to (129) and (141); (150) is redundant due to (139), (130) or (131), and

(141); (151) is redundant due to (132), (136) and (141); (152) is redundant due to (132), (137) or (138),

and (141); (153) is redundant due to (132) and (141).

So far, we have for R1 the inequalities (124), (129), (132), (146) and for R2 the inequalities (125), (136),

(139), (149). An individual secrecy rate region is obtained as a set of the non-negative rate pairs (R1, R2)

such that

R1 ≤ min{I(V0, V1; Y1) − I1, I(V0, V1; Y1|U) − I(V0, V1; Z|U) + R2};

R2 ≤ min{I(V0, V2; Y2) − I2, I(V0, V2; Y2|U) − I(V0, V2; Z|U) + R1},
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with

I1 = max{I(V1; Z|V0), I(V1; V2|V0) − I(V2; Y2|V0), I(V1; V2|V0) + I(V0; Z|U) − I(V0, V2; Y2|U)};

I2 = max{I(V2; Z|V0), I(V1; V2|V0) − I(V1; Y1|V0), I(V1; V2|V0) + I(V0; Z|U) − I(V0, V1; Y1|U)},

Note that U → V0 → (V1, V2) → (Y1, Y2, Z) forms a Markov chain such that (130), (131), (137), (138), (141)

hold. Further, we notice that I1 = I(V1; Z|V0) since

I(V1; V2|V0) − I(V2; Y2|V0)
(a)

≤ I(V1; V2|V0) − I(V2; Z|V0)
(b)

≤ I(V1; Z|V0);

I(V1; V2|V0) + I(V0; Z|U) − I(V0, V2; Y2|U)
(c)

≤ I(V1; V2|V0) + I(V0; Z|U) − I(V0, V2; Z|U)
(b)

≤ I(V1; Z|V0),

where (a) is due to (137); (b) is due to (141); and (c) is due to (138). Similarly, we have I2 = I(V2; Z|V0).

Thus the region could be simplified into

R1 ≤ min{I(V0, V1; Y1) − I(V1; Z|V0), I(V0, V1; Y1|U) − I(V0, V1; Z|U) + R2}

=I(V0, V1; Y1|U) − I(V0, V1; Z|U) + min{R2, I(U ; Y1) + I(V0; Z|U)};

R2 ≤ min{I(V0, V2; Y2) − I(V2; Z|V0), I(V0, V2; Y2|U) − I(V0, V2; Z|U) + R1}

=I(V0, V2; Y2|U) − I(V0, V2; Z|U) + min{R1, I(U ; Y2) + I(V0; Z|U)}.

This is the desired region in (20) in Theorem 11.
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