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Abstract

This paper presents a polar coding scheme to achieve secrecyin block fading binary symmetric

wiretap channels without the knowledge of instantaneous channel state information (CSI) at the trans-

mitter. For this model, a coding scheme that hierarchicallyutilizes polar codes is presented. In particular,

on polarization of different binary symmetric channels over different fading blocks, each channel use is

modeled as an appropriate binary erasure channel over fading blocks. Polar codes are constructed for

both coding over channel uses for each fading block and coding over fading blocks for certain channel

uses. In order to guarantee security, random bits are introduced at appropriate places to exhaust the

observations of the eavesdropper. It is shown that this coding scheme, without instantaneous CSI at

the transmitter, is secrecy capacity achieving for the simultaneous fading scenario. For the independent

fading case, the capacity is achieved when the fading realizations for the eavesdropper channel is always

degraded with respect to the receiver. For the remaining cases, the gap is analyzed by comparing lower

and upper bounds. Remarkably, for the scenarios where the secrecy capacity is achieved, the results

imply that instantaneous CSI does not increase the secrecy capacity.
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I. INTRODUCTION

A. Background

Wiretap channels, introduced in the seminal paper of Wyner [1], model the communication

between a transmitter and a receiver in the presence of an eavesdropper that overhears the

transmitted signals via the channel between transmitter and eavesdropper (e.g., by tapping the

wire between the legitimate nodes). The task of transmitteris to hide information from the

eavesdropper while communicating reliably to the receiver. Wyner studied this problem and

characterized the capacity region for certain channel models including the case of degraded

eavesdropper [1]. The achievability technique is the randomized version of the Shannon’s random

coding approach, where the randomization is utilized to confuse the eavesdropper, in order to

achieve security. Since the publication of Wyner’s work, several studies in the network informa-

tion theory domain have utilized this random coding approach to characterize the corresponding

secrecy capacities. Yet, the design of secrecy achieving coding schemes with practical constraints

such as low complexity and availability of channel state information remains as an important

direction in the physical layer security.

Recently, polar codes have been utilized for communicationover degraded wiretap channels

[2]–[5]. Polar codes are the first family of provably capacity achieving codes for symmetric

binary-input discrete memoryless channels with low encoding and decoding complexity [6].

These codes rely on the “channel polarization” technique, which reconstructs a set of equivalent

channels such that each of them is either purely noisy or noiseless. Noting that the fraction of

noiseless channels approaches the symmetric channel capacity, transmitting information symbols

on the good instances and freezing the bad ones achieves the optimal rate. The schemes proposed

in [2]–[5] are based on the behavior of the polarization of degraded channels, where the polarized

channels for the degraded wiretap channels can be partitioned to one of the following sets: (i)

good for both receiver and eavesdropper, (ii) good for receiver and bad for eavesdropper, and

(iii) bad for both receiver and eavesdropper. The fraction of type (ii) channels approach to the

secrecy capacity for the degraded (binary symmetric) wiretap channels, and the communication

scheme utilizes this type of polarized indices to transmit information; whereas, type (i) channels

are assigned to random bits to limit the eavesdropper’s ability to obtain information about the

messages. (Type (iii) channels are frozen, i.e., set to a constant value and shared to receiver.) This
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scheme allows for achieving the secrecy capacity, while inheriting the low complexity nature

of polar codes. In other words, this technique mimics the Wyner’s random coding approach

with practical encoding/decoding schemes. The main hurdlefor most practical applications

though is to have the eavesdropper channel state information (CSI) at the transmitter, e.g., in

order to differentiate between type (i) and (ii) channels inthis coding scheme. Remarkably, an

incorrect knowledge about the eavesdropper CSI would leak information, hence will not result

in a meaningful security guarantee. In this work, we focus onrelaxing the assumption on the

instantaneous CSI knowledge, and develop polar coding schemes for fading wiretap channels,

where only the statistics of CSI (of both receiver and eavesdropper) is known at the transmitter.

B. Contributions

The contributions of the paper can be summarized as follows:

• We first focus on a simultaneous fading model, where both mainand eavesdropper channels

experience the same fading states. A good exemplar for this scenario, perhaps, is physically

degraded channels, where the eavesdropper observes the output of the main channel through

an additional noisy channel (e.g., through wiretapping). In these models, when only the

main channel experiences fading, the resulting system reduces to our simultaneous fading

model. Here, we divide our analysis with respect to different orderings between the channel

qualities seen by receiver and eavesdropper. Focusing on each case separately, we propose

achievable secrecy rates based on hierarchical polar coding. This technique exploits multiple

polar codes, which are utilized over channel uses for each block as well as over fading blocks

for certain polarized channel indices.

• We next focus on the optimality of the proposed scheme by comparing the resulting rate

with an upper bound on secrecy capacity of the simultaneous fading model. The upper

bound is obtained by allowing the transmitter to know instantaneous CSI, and remarkably,

this bound is shown to be matching to the secrecy rates attained by the proposed achievable

scheme, therefore characterizing the secrecy capacity of the system. It is remarkable that

instantaneous CSI does not improve secrecy capacity for this model, and having only the

statistical CSI suffices. (We note that our proposed coding scheme based on polar codes is

instrumental in obtaining this result, as, to the best of ourknowledge, there are no random

coding strategies achieving a similar performance.)
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• Thirdly, we focus on a general model, where both main and eavesdropper channels have

independent fading but at every fading block main channel has a stronger channel realization

than the eavesdropper. In this case, a modified version of theaforementioned coding scheme

is shown to achieve secrecy capacity.

• Finally, we focus on the case of independent fading where eavesdropper’s channel realization

can be stronger than the main channel at a given block, but main channel is stronger on

the average. In this scenario, we proposed an appropriate coding scheme, again based on

hierarchical polar coding, and compare its performance with an upper bound on the secrecy

capacity, which is obtained with instantaneous CSI assumption. We analyze the gap between

the achievable rate and the outer bound, and investigate therole of instantaneous CSI in

increasing secrecy rates for this model.

Overall, the proposed hierarchical polar coding scheme is akey component to achieve these

results. This technique utilizes the polarization phenomena to convert the randomness in fading

realizations (for both main and eavesdropper channels) to erasure channels over which additional

polarization layer is used. Based on such a decomposition and injecting random symbols in

appropriate positions (to achieve security over fading blocks), we establish a coding scheme that

can secure messages without the need of any instantaneous CSI. (Detailed description of this

technique is given later in the sequel.)

C. Related Work

In addition to [2]–[5], recent studies on the design of polarcoding schemes to achieve

secrecy include [7]–[14], where strong security is considered in [3], [8], [11], [13], key agree-

ment/generation is studied in [3], [9], [10], and other channel models (different than discrete

memoryless wiretap channel) are considered in [4], [12], [14]. Our model is similar to the

fading models considered in [3], [14], but differentiates from all these prior studies in that only

a statistical (i.e., distribution) CSI forboth receiver and eavesdropper channels is assumed at the

transmitter. Polar coding schemes for fading wiretap channels are first studied in [3], where the

transmitter has the knowledge of instantaneous CSI for the receiver’s channel and statistical CSI

for the eavesdropper’s channel. With this setup, a key agreement scheme is proposed based on

utilizing polar codes for each fading block, where the communicated bits over fading blocks are

then used in a privacy amplification step to construct secretkeys. This technique when combined
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with invertible extractors allows for secure message transmission but with the requirement of

receiver CSI at the transmitter [3]. Recent work [14] proposes a polar coding scheme that utilizes

artificial noise and multiple transmit antennas under the same assumption (instantaneous CSI for

receiver and statistical CSI for eavesdropper) for the fading channels. However, a guarantee

of secrecy rate with some probability (not the corresponding channel capacity) is achieved. In

contrast, in this paper, we consider a fading channel model where the transmitter does not need to

know any instantaneous CSI, but only its distribution forbothreceiver and eavesdropper channels.

The hierarchical polar coding scheme proposed in this paper, to the best of our knowledge, is the

first provably secrecy capacity achieving coding scheme forfading (binary symmetric) wiretap

channels. Considering that this type of binary channels model the AWGN channels with BPSK

modulation and demodulation, our scheme covers a wide application scenarios in practice.

D. Organization

The rest of the paper is organized as follows. Section II presents a brief introduction to polar

coding scheme. Section III focuses on the simultaneous fading model, where the achievable

coding scheme based on hierarchical polar coding is developed and the secrecy capacity is

characterized. Section IV investigates the independent fading model, where modified coding

schemes are developed specific to this model and the gap to capacity is analyzed via the difference

between upper and lower bounds. Finally, Section V concludes the paper.

II. I NTRODUCTION TOPOLAR CODING

Before moving to the main body of this paper, we first introduce the preliminary for polar

coding. The construction of polar code is based on a phenomenon referred to aschannel

polarization. Consider a binary-input discrete memoryless channelWB-DMC : X → Y , where

X = {0, 1}. Define

F =





1 0

1 1



 .

Let BN be the bit-reversal operator as defined in [6], whereN is a power of2. By applying

the transformGN = BNF
⊗ logN (F⊗ logN denotes thelogN th Kronecker product ofF ) to

u1:N , the encoded codeword given byx1:N = u1:NGN is transmitted throughN independent
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Fig. 1: Illustration of channel polarization for polar codes

copies ofWB-DMC. Now, considerN binary-input coordinate channelsW(i)
N : X → YN × X i−1

(i ∈ {1, . . . , N}), the transition probability is given by

W
(i)
N (y1:N , u1:i−1|ui) ,

∑

ui+1:N

1

2N−1
WN

B-DMC(y1:N |u1:NGN ).

Remarkably, asN → ∞, the channelsW(i)
N polarize to either noiseless or pure-noisy, and the

fraction of noiseless channels is close toI(WB-DMC), the symmetric capacity of channelWB-DMC

[6].

Given this polarization phenomenon (as shown in Fig. 1), polar codes can be considered as

GN -coset codes with parameters(N,K,A, uAc), whereuAc ∈ XN−K is frozen vector (can be

set to all-zeros for binary symmetric channels [6]), and theinformation setA is chosen as aK-

element subset of{1, . . . , N} such that the Bhattacharyya parameters satisfyZ(W
(i)
N ) ≤ Z(W

(j)
N )

for all i ∈ A andj ∈ Ac, i.e.,A denotes the set of indices forgoodchannels (that are noiseless

in the limit). We use permutations (namely,π andφ in the sequel) to denote the increasing order

of Bhattacharyya parameter values for the polarization of underlying channels. (For instance, for

block lengthN , π(1) gives the most reliable polarized channel index, andπ(N) gives the most

unreliable one.)

A decoder for a polar code is the successive cancelation (SC)decoder, which gives an estimate

û1:N of u1:N given knowledge ofA, uAc, andy1:N by computing

ûi ,







1, if i ∈ A, and W
(i)
N

(y1:N ,û1:i−1|0)

W
(i)
N

(y1:N ,û1:i−1|1)
≥ 1,

0, otherwise,
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Fig. 2: System model for wiretap channels.

in the orderi from 1 to N . It has been shown that, by adopting an SC decoder, polar codes

achieve any rateR < I(WB-DMC) with a decoding error scaling asO(2−Nβ

), whereβ < 1/2.

Moreover, the complexity for both encoding and decoding isO(N logN).

III. H IERARCHICAL POLAR CODING FOR SIMULTANEOUS FADING CASE

A. Problem setup

In this section, we investigate the case where main channel and eavesdropper fade simultane-

ously. More precisely, consider the fading (binary symmetric) wiretap channel model (Fig. 2):

Alice wishes to send message to Bob through the main channelW, where the channel experiences

the following block fading phenomenon: with probabilityq1, channelW is a BSC(p1) (in the

superior state), and with the rest probabilityq2 , 1 − q1, channelW is a BSC(p2) (in the

degraded state). On the same time, the transmission also reaches to an adversary (Eve) through

the wiretap channelW∗, whereW∗ is degraded compared to the main channel, and experiences

the same fading state as the main channel. In particular, when W is a BSC(p1), W∗ is a BSC(p∗1);

whenW is a BSC(p2), W∗ is a BSC(p∗2). Under this system model, we havep1 ≤ p2 ≤ 0.5,

p∗1 ≤ p∗2 ≤ 0.5, p1 ≤ p∗1, andp2 ≤ p∗2.

Remark 1. Simultaneous fading model considers the case where main channel and eavesdropper

channel experience the same fading states (i.e., both are superior or both are degraded), and

eavesdropper channel is assumed to be degraded to the main channel over each fading block.

In Section IV, we consider an independent fading model wherethe two channels take their

degraded/superior fading states independent of each other. (In this scenario, the eavesdropper

can be stronger than the main channel for a given fading block, but the main channel is assumed

to be stronger on the average.)
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In general, fading coefficients vary at a much slower pace than the transmission symbol

duration. For such cases, block fading model is considered,where the channel state is assumed

to be constant within each coherence time interval, and follows a stationary ergodic process

across fading blocks [15]. To this end, we consider the practical scenario where channel state

information (CSI) is available only at the decoder (CSI-D),while the encoder only knows the

statistics of channel states. Under this model, a secrete messageM is encoded by an encoding

functionf(·) to generate transmitted symbols:X1:NB = f(M), whereN is the length of a fading

block, andB is the number of blocks. At the receiver, a decoding functiong(·) gives an estimate

of the estimatêM, i.e., M̂ = g(Y1:NB). The reliability of transmission is satisfied if

Pe , Pr{M 6= M̂|Y1:NB, S} → 0, asN,B → ∞ (1)

whereS denotes CSI, and (weak) security is defined as achieving

1

NB
I(M;Z1:NB|S) → 0, asN,B → ∞. (2)

We denote the secrecy capacity of this model asCs
CSI-D, which represents the highest achievable

secrecy rate satisfying reliability (1) and secrecy (2) constraints.

B. Upper bound to the secrecy capacity

Under the degraded assumption, the secrecy capacity of the wiretap system can be upper

bounded as reported in the following result.

Lemma 2. The secrecy capacity for the simultaneous fading model is upper bounded by

Cs
CSI-D ≤ q1[H(p∗1)−H(p1)] + q2[H(p∗2)−H(p2)].

Proof: We have

Cs
CSI-D , max

p(x)
[I(X;Y|S)− I(X;Z|S)]

(a)

≤ max
p(x|s)

[I(X;Y|S)− I(X;Z|S)]

= max
p(x|1)

q1[I(X;Y|S = 1)− I(X;Z|S = 1)]

+ max
p(x|2)

q2[I(X;Y|S = 2)− I(X;Z|S = 2)]

(b)
= q1[H(p∗1)−H(p1)] + q2[H(p∗2)−H(p2)], (3)
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0

1
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Fig. 3: Illustration of polarizations for two binary symmetric channels.

where

(a) follows by upper bounding the secrecy capacity with the casewhere encoder has CSI and

adapts its coding scheme according to the channel states, i.e.,Cs
CSI-ED [16];

(b) is due to the secrecy capacity result for the degraded binarysymmetric wiretap channel

[17].

In this paper, assuming CSI is available only at the receivers, we provide a polar coding scheme

that achieves this upper bound while satisfying reliability (1) and security (2) constraints. To this

end, the upper bound (3) gives the secrecy capacity of our model. For the moment, we assume

p1 ≤ p2 ≤ p∗1 ≤ p∗2, and the remaining case (p1 ≤ p∗1 ≤ p2 ≤ p∗2) is detailed in Section III-E.

C. Intuition behind the proposed coding scheme

The intuition of hierarchical polar coding scheme originates from the polarization of degraded

channels [18]. When polarizing two binary symmetric channels BSC(p1) and BSC(p2) with

p1 ≤ p2, the good channels (i.e., noiseless as block length tends to infinity)of the polarized

degraded channel BSC(p2) is a subset of that of the superior channel BSC(p1). As illustrated

in Fig. 3, setG contains all good channel indices after permutation for both channels, while

set B contains all bad channel indices after permutation for bothchannels. [19] utilizes this

property to construct hierarchical polar codes in order to achieve the capacity of fading binary

symmetric channels. More precisely, polar codes are not only designed over channel uses within

each fading block, but also utilized over different fading blocks. Inspired by this design, and
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combined with the polar coding scheme for wiretap channels [2]–[5], we design the proposed

polar coding scheme for fading binary symmetric wiretap channels.

D. The scenario ofp1 ≤ p2 ≤ p∗1 ≤ p∗2

Theorem 3. The secrecy capacity for the simultaneous fading model forp1 ≤ p2 ≤ p∗1 ≤ p∗2 is

given by

Cs
CSI-D = q1[H(p∗1)−H(p1)] + q2[H(p∗2)−H(p2)].

Proof: The upper bound follows from Lemma 2. We detail the coding scheme (ie., a lower

bound) as follows:

Encoder:

The encoder works in two phases (see Fig. 4), hierarchicallyusing polar codes to generate an

NB-length codeword.

Phase I (BEC Encoding):

Here, we consider two sets of messages to be encoded using polar encoders designed for

binary erasure channels (BECs). For the first set of messages, we generate|M1| number of

BEC polar codes, where

|M1| = N [H(p∗2)−H(p∗1)]. (4)

Consider a set of blockwise messagesu
(i)
1:|Ac| with i ∈ {1, . . . , |M1|}, whereA is the information

set for BEC(q2), i.e.,

|A| = B · q1, (5)

|Ac| = B · q2. (6)

For everyu(i)
1:|Ac|, we combine it with|A| random bits to construct polar codewordũ(i)

1:B. Denoting

the permutation for BEC(q2) channel asφ, and the uniform random string asr(i)1:|A| (each bit is

Ber(1/2) distributed), the encoding process is given by

ũ
(i)
1:B = µ

(i)
1:B ×GB,

φ
(

µ
(i)
1:B

)

=
[

r
(i)
1:|A| | u

(i)
1:|Ac|

]

,
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w
(k)

1:|I|

φ−1

0

transpose

ṽ
(j)
1:B

0

Ũ

Ṽ

Ṽ
T

Ũ
TPhase II

BSC Encoding

Phase I

BEC Encoding

φ−1

|Ac|

|Ac||A|

transpose

|M1|

|M2|

|A|

× GB =

× GN = X

× GB =

|I| |F||R| |M1| |M2|

random bits

information bits

frozen bits

π−1

v
(j)

1:|A|

r
(i)

1:|A| u
(i)

1:|Ac|
ũ
(i)
1:B

s
(k)

1:|R|

Fig. 4: Encoder of the polar coding scheme for fading wiretapchannels.

for everyi ∈ {1, . . . , |M1|}, whereGB is the polar generator matrix with sizeB. By collecting

all ũ(i)
1:B together, the encoder generates a|M1| × B matrix Ũ . We denoteŨT

k as thek-th row

of the transpose of̃U , wherek ∈ {1, . . . , B}.

Secondly, we generate|M2| number of BEC polar codes, where

|M2| = N [H(p2)−H(p1)]. (7)

Consider another set of blockwise messagesv
(j)
1:|A| with j ∈ {1, . . . , |M2|}. Each message is set

as information bits to construct polar codewordṽ(j)1:B. More formally, this encoding process is

given by

ṽ
(j)
1:B = ν

(j)
1:B ×GB,

φ
(

ν
(j)
1:B

)

=
[

v
(j)
1:|A| | 0

]

,

for everyj ∈ {1, . . . , |M2|}. The collection of all̃v(j)1:B together is denoted as a|M2|×B matrix

Ṽ . We denoteṼ T
k as thek-th row of the transpose of̃V , wherek ∈ {1, . . . , B}.

Phase II (BSC Encoding):
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In this phase, we generateB number of BSC polar codes, each with lengthN . The encoded

codewords from previous phase are embedded as messages of this phase. We consider a set of

messagesw(k)
1:|I| with k ∈ {1, . . . , B}, where

|I| = N [H(p∗1)−H(p2)]. (8)

For everyw(k)
1:|I|, we introduce random bitss(k)1:|R|, where

|R| = N [1−H(p∗2)], (9)

and combine the output from the previous phase as message to construct polar codewordx(k)
1:N .

More formally, if we denote the reordering permutation for BSC(p1) asπ, then the encoder of

this phase can be expressed as

x
(k)
1:N = ω

(k)
1:N ×GN ,

π
(

ω
(k)
1:N

)

=
[

s
(k)
1:|R| | ŨT

k | w
(k)
1:|I| | Ṽ T

k | 0
]

,

for every k ∈ {1, . . . , B}, whereGN is the polar generator matrix with sizeN . That is, the

codewords generated from BEC encoding phase are transposedand embedded into the messages

of the BSC encoding process. We denote these codewords by aB×N matrixX. The proposed

encoder is illustrated in Fig. 4.

Decoder for the Main Channel:

The codewordsx(k)
1:N are transmitted through both the main channel and the wiretap channel.

After receiving the output sequencey(k)1:N for all k ∈ {1, . . . , B}, the task of the decoder at Bob

is to make estimates for all the information and random bits.In particular, the decoder aims to

recoveru(i)
1:|Ac|, v

(j)
1:|A|, w

(k)
1:|I|, r

(i)
1:|A|, and s

(k)
1:|R| successfully with high probability. As that of the

encoding process, the decoding process also works in phases(see Fig. 5).

Phase I (BSC Decoding for the Superior Channel State):

In this phase, using the BSC SC decoder, channels corresponding to the superior state are

decoded. More precisely, since the receiver knows the channel states, it can adopt the correct SC

decoder to obtain estimateŝω(k)
1:N from y

(k)
1:N for every k corresponding to the superior channel

state. To this end, the decoder adopted in this phase is the classical BSC SC polar decoder with

parameterp1, i.e.,

ω̂(k)
n =







1, if n /∈ F , and
W

(n)
1,N (y

(k)
1:N ,ω̂

(k)
1:n−1|1)

W
(n)
1,N (y

(k)
1:N ,ω̂

(k)
1:n−1|0)

≥ 1,

0, otherwise,
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ŵ
(k)

1:|I|
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|I| |F||R| |M1| |M2|

random bits

information bits

frozen bits

erased bits

φ−1

0

|Ac|
transpose

|M2|

transpose

0

0

N
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Phase I: BSC Decoding for the Superior Channel State

Phase II: BEC Docding

Phase III: BSC Decoding for the Degraded Channel State

π−1

π−1

|A|

ŝ
(k)

1:|R| ŵ
(k)

1:|I|

v̂
(j)

1:|A|

ŝ
(k)

1:|R|

Fig. 5: Decoder at the main channel receiver given the knowledge of the channel states

information.

in the ordern from 1 to N , andW(n)
1,N is then-th polarized channel from BSC(p1). Then, for

everyk corresponding to the superior channel state, the decoder can obtain the messages (with

the knowledge of the frozen symbols corresponding toF indices)

π
(

ω̂
(k)
1:N

)

=
[

ŝ
(k)
1:|R| | ˆ̃

UT
k | ŵ

(k)
1:|I| | ˆ̃

V T
k | 0

]

.

However, for the blocks with degraded channel states, one cannot decode reliably because the

frozen bits corresponding to setM2 are unknown at the decoder. At this point, we use the

next phase to decode these frozen bits using a BEC SC decoder.To proceed, we construct a

B × |M2| matrix ˆ̃
V T such that its rows corresponding to the superior state are determined in

previous decoding process, while the ones corresponding tothe degraded states are all set to

erasures.
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Phase II (BEC Decoding):

In this phase, we decode the frozen bits with respect to the degraded channel state. More

precisely, each row of matrix̂̃V , denoted by ˆ̃Vj for j ∈ {1, . . . , |M2|}, is considered as the

input to the decoder, and the receiver aims to obtain an estimate of the information bits from it

using BEC SC decoder. To this end, the decoder adopted in thisphase is the classical BEC SC

decoder with parameterq2, i.e.,

ν̂
(j)
b =











1, if b ∈ A, and
W

(b)
e,B( ˆ̃Vj ,ν̂

(j)
1:b−1|1)

W
(b)
e,B( ˆ̃Vj ,ν̂

(j)
1:b−1|1)

≥ 1,

0, otherwise,

in the orderb from 1 to B, andW
(b)
e,B is the b-th polarized channel from BEC(q2). Then, for

everyj, the decoder can declare

φ
(

ν̂
(j)
1:B

)

=
[

v̂
(j)
1:|A| | 0

]

.

At this point, the decoder can reconstruct all erased bits aswell. More precisely, the erased rows

in ˆ̃
V T can be recovered, and they can be further utilized to decode the information bits in blocks

with the degraded channel state in the next phase.

Phase III (BSC Decoding for the Degraded Channel State):

In this phase, the remaining blocks from Phase I are decoded by using BSC SC decoders with

respect to degraded channel states. In particular, bits in the frozen set for the degraded channel

state (setF and setM2) are known due to the previous phases. Hence, the receiver can decode

from y
(k)
1:N using BSC SC decoder with parameterp2, i.e.,

ω̂(k)
n =



















1, if n /∈ F , n /∈ M2, and
W

(n)
2,N (y

(k)
1:N ,ω̂

(k)
1:n−1|1)

W
(n)
2,N (y

(k)
1:N ,ω̂

(k)
1:n−1|0)

≥ 1,

ˆ̃
V T

kn, if n ∈ M2,

0, otherwise,

in the ordern from 1 to N , andW(n)
2,N is then-th polarized channel from BSC(p2). Then, for

everyk corresponding to the degraded channel state, the decoder declares

π
(

ω̂
(k)
1:N

)

=
[

ŝ
(k)
1:|R| | ˆ̃

UT
k | ŵ

(k)
1:|I| | ˆ̃

V T
k | 0

]

.

Hence, after this decoding procedure, the receiver makes anestimate ˆ̃
U of matrix Ũ , which

further implies all information bits inu(i)
1:|Ac| are decoded. Note that, in addition to information
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bits, all random bits are decoded reliably at Bob as well. However, in order to guarantee security,

we set these bits random (instead of information).

Achievable Rate and Reliability:

The proposed hierarchical scheme allows for recovering allinformation bits (represented by

light blue in Fig. 4) reliably, as long as the designed rates of polar codes do not exceed the

corresponding channel capacities. Hence, the achievable rate is given by

R =
1

NB
(|M2| × |A|+ |M1| × |Ac|+B × |I|)

= [H(p2)−H(p1)]× q1 + [H(p∗2)−H(p∗1)]× q2 + [H(p∗1)−H(p2)]

= [H(p∗1)−H(p1)]× q1 + [H(p∗2)−H(p2)]× q2, (10)

where we have used (4), (5), (6), (7), and (8). In this scheme,B number ofN-length polar codes

are decoded in Phase I and III in total, and|M2| number ofB-length polar codes are decoded

in Phase II. Hence, the decoding error probability is upper bounded by

Pr{M 6= M̂|Y1:NB, S} ≤ B · 2−Nβ

+ |M2| · 2
−Bβ

, (11)

whereβ < 1/2; and,M is the collection of random variables representing for all information

bits (its realizations includeu(i)
1:|Ac|, v

(j)
1:|A|, andw(k)

1:|I|), and M̂ is the estimate ofM obtained by

Bob. Noting that the right hand side of (11) tends to0 when implemented with properly large

B andN , the proposed scheme achieves the upper bound given by (3) reliably.

Security:

Assume that, in addition toz(k)1:N , a genie reveals Eve all information bitsu(i)
1:|Ac|, v

(j)
1:|A|, and

w
(k)
1:|I|. Under this condition, we show that all random bits can be reliably decoded at Eve. More

precisely, the decoder designed for the eavesdropper also works in phases, similar to the one for

the main channel (see Fig. 6).

• Phase I (BSC Decoding for the Superior Channel State): The decoder still works over the

blocks with the superior channel state. However, for the eavesdropper channel with superior

channel state, the frozen set consists of bits not only in setF , but also in setsM2 andI.

Since we have assumed the information bits are known at Eve, the classical BSC(p∗1) SC

decoder can be used to decode the random bits.

• Phase II (BEC Decoding): This phase aims to recover the unknown frozen bits corresponding

to the degraded channel state, where a similar scheme as thatof the main receiver is adopted.
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ŝ
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w

(k)
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Fig. 6: Decoder at the eavesdropper given the knowledge of the channel states information and

information bits.

More precisely, by modeling the appropriate symbols corresponding to degraded channel

states as erasures, we utilize the BEC(q2) SC decoder over each row of the matrix after

transpose. This scheme successively recovers the erased elements, as the frozen bits for this

BEC is the information bitsu(i)
1:|Ac| and they are assumed to be known.

• Phase III (BSC Decoding for the Degraded Channel State): Finally, the decoded result from

the previous phase is utilized at the BSC decoding for the degraded state, where the classical

BSC(p∗2) SC decoder is adopted.

By adopting this hierarchical polar decoder, Eve can decodeall random bits with high prob-

ability, i.e.,

Pr{R 6= R̂|Z1:NB,M, S} ≤ B · 2−Nβ

+ |M1| · 2
−Bβ

, (12)

whereR is the collection of random variables representing for random bits (its realization include
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r
(i)
1:|A| and s

(k)
1:|R|), and R̂ is the estimate ofR. Then, using Fano’s inequality, together with (12),

we have

H(R|Z1:NB,M, S)

≤ [B · 2−Nβ

+ |M1| · 2
−Bβ

] · [|R| · B + |A| · |M1|]

+H(B · 2−Nβ

+ |M1| · 2
−Bβ

). (13)

Based on this, the following steps provide an upper bound (omitting the subscript ofZ):

I(M;Z|S) = I(M,R;Z|S)− [H(R|M, S)−H(R|Z,M, S)]

(a)
= I(M,R;Z|S)−H(R) +H(R|Z,M, S)

(b)
≤ NB · CCSI-D(W

∗)−H(R) +H(R|Z,M, S)

(c)
= NB · CCSI-D(W

∗)− |A| · |M1| − B · |R|+H(R|Z,M, S)

(d)
= NB · CCSI-D(W

∗)−Bq1 ·N [H(p∗2)−H(p∗1)]− B ·N [1−H(p∗2)] +H(R|Z,M, S)

= NB · CCSI-D(W
∗)−NB · q1[1−H(p∗1)]−NB · q2[1−H(p∗2)] +H(R|Z,M, S)

(e)
= H(R|Z,M, S),

where

(a) follows asR is independent ofM andS;

(b) is due to the definition of channelW∗’s capacity with CSI-D;

(c) is due to the assumption thatR is uniform;

(d) is due to equations (4), (5), and (9);

(e) is due to the ergodic capacity of the degraded fading eavesdropper channel with channel

state information known only at the decoder [17], i.e.,

CCSI-D(W
∗) = q1[1−H(p∗1)] + q2[1−H(p∗2)].

Finally, combining with (13), we have

1

NB
I(M;Z1:NB|S) → 0,

asN andB tends to infinity (with proper choice of the their scaling relationship). Hence, the

proposed scheme achieves the secrecy constraint.
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E. The Scenario ofp1 ≤ p∗1 ≤ p2 ≤ p∗2

In this section, we extend the aforementioned coding schemeto the scenario ofp1 ≤ p∗1 ≤

p2 ≤ p∗2. Combined with Theorem 3 provided earlier in this section, this completes the proof for

all possible cases of simultaneous fading and establishes the following result.

Theorem 4. The secrecy capacity for the simultaneous fading model is given by

Cs
CSI-D = q1[H(p∗1)−H(p1)] + q2[H(p∗2)−H(p2)].

Proof: Note that althoughp∗1 ≤ p2, the main channel is still stronger than the eavesdropper

channel in each fading block (because of the simultaneous fading assumption). To this end, the

upper bound reported in Lemma 2 still holds for this scenario. It remains to show the achievability

for p1 ≤ p∗1 ≤ p2 ≤ p∗2.

Encoding:

From the previous scenario, the key idea for hierarchical polar coding scheme is setting the size

of random bits beNB ·CCSI-D(W
∗) and setting the size of information bits beNB ·Cs

CSI-D(W).

Based on this observation, the encoder for the scenario discussed here is illustrated in Fig. 7.

Note that we still have five categories for channel indices after polarization.R andF remain

the same as the previous scenario, but we do not have pure information set in this scenario due

to p∗1 ≤ p2. Instead, a new setM3 contains coding results from random bits and frozen bits.

More precisely, parameters shown in the figure are defined as follow:

|R| = N [1−H(p∗2)],

|M1| = N [H(p∗2)−H(p2)],

|M2| = N [H(p∗1)−H(p1)],

|M3| = N [H(p2)−H(p∗1)],

|F| = N ·H(p1),

|A| = B · q1,

|Ac| = B · q2.

Then, the encoding procedure works analog to the previous scenario, except that three sets

of BEC encoding are performed and the resulting codewords are transposed and embedded into
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ũ
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1:B

π−1

s
(k)

1:|R|

r
(i)

1:|A|

Fig. 7: Encoder for the scenario ofp1 ≤ p∗1 ≤ p2 ≤ p∗2.

the second phase. In particular, the sketch of hierarchicalcoding scheme is described as follow:

Phase I (BEC Encoding):

• Random bitsr(i)1:|A| combined with information bitsu(i)
1:|Ac| are encoded to generatẽu(i)

1:B, for

eachi ∈ 1, . . . , |M1|;

• Information bitsv(j)1:|A| combined with frozen bits0 are encoded to generatẽv(j)1:B, for each

j ∈ 1, . . . , |M2|;

• Random bitst(l)1:|A| combined with frozen bits0 are encoded to generatẽw(l)
1:B, for each

l ∈ 1, . . . , |M3|.

Phase II (BSC Encoding):

Coded bits from Phase I are combined with random bitss
(k)
1:|R| and frozen bits0 are encoded

to generatex(k)
1:N , for eachk ∈ 1, . . . , B.

Decoder for the Main Channel:
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Fig. 8: Decoder at the main channel for the scenario ofp1 ≤ p∗1 ≤ p2 ≤ p∗2.

The decoder at the main channel also works in phases. Quite similar to the previous case, the

sketch of decoder is as follows (illustrated in Fig. 8):

• Phase I (BSC Decoding for the Superior State): Decode the block with respect to the superior

state using BSC(p1) SC decoder by choosing frozen bits as0.

• Phase II (BEC Decoding): Add erasures to the decoded bits in set M3 and M2 from

previous phase, then decode both the random bits and information bits using BEC(q2) SC

decoder by choosing frozen bits as0.

• Phase III (BSC Decoding for the Degraded State): Recover allbits in setM3 andM2 to

make them the frozen bits, and decode the block with respect to the degraded state using

BSC(p2) SC decoder.

Achievable Rate and Reliability:
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Fig. 9: Decoder at the eavesdropper for the scenario ofp1 ≤ p∗1 ≤ p2 ≤ p∗2.

In this way, all information bits and random bits can be recovered reliably, i.e., (11) still holds

in this scenario. Meanwhile, we have

R =
1

NB
(|M2| × |A|+ |M1| × |Ac|)

= [H(p∗1)−H(p1)]× q1 + [H(p∗2)−H(p2)]× q2,

which means the upper bound (3) is achieved.

Security:

Assume the receiver from the eavesdropper channel knows allthe information bits, i.e.,u(i)
1:|Ac|

and v
(j)
1:|A| in this scenario. Then, the decoder (employed at the eavesdropper) can obtain all

random bits by following the steps below (also see Fig. 9):

• Phase I (BSC Decoding for the Superior State): Decode the block with respect to the superior

state using BSC(p∗1) SC decoder by knowing all frozen bits inF andM2.



22

• Phase II (BEC Decoding): Add erasures to the decoded bits in set M1 and M3 from

previous phase, then decode both the random bits using BEC(q2) SC decoder by choosing

frozen bits asu(i)
1:|Ac| and0 respectively.

• Phase III (BSC Decoding for the Degraded State): Recover allbits in setM1 andM3 to

make them the frozen bits, and decode the block with respect to the degraded state using

BSC(p∗2) SC decoder.

Hence, all random bits can be decoded reliably, i.e., (12) still holds in this scenario. Then,

the same procedures as the previous scenario complete the proof of security.

IV. H IERARCHICAL POLAR CODING FOR INDEPENDENT FADING CASE

In this section, we focus on the case of independent fading for the main channel and the

eavesdropper channel. More precisely, the main channel hasprobability q1 to be in the superior

fading state, while the eavesdropper channel has probability q∗1 to be in the superior state

(independent of the main channel). The main hurdle here is that the main and eavesdropper

channels can be in different fading states (e.g., the main channel can be in degraded state while

the eavesdropper channel is in the superior state). Still, as considered in the previous section,

we distinguish two scenarios based on the relation between parametersp∗1 andp2.

A. The Scenario ofp1 ≤ p2 ≤ p∗1 ≤ p∗2

In this scenario, for those fading blocks where the main channel is in degraded state and

eavesdropper channel is in superior state, the main channelis still stronger due top2 ≤ p∗1. To

this end, the upper bound for secrecy capacity can be expressed as follows.

Lemma 5. The secrecy capacity for the independent fading scenario with p1 ≤ p2 ≤ p∗1 ≤ p∗2 is

upper bounded by

Cs
CSI-D ≤ q∗1H(p∗1) + q∗2H(p∗2)− q1H(p1)− q2H(p2).



23

u
(i)

1:|A∗c|

φ−1

0

transpose

ṽ
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Fig. 10: Encoder for the scenario ofp1 ≤ p2 ≤ p∗1 ≤ p∗2.

Proof: We have the following.

Cs
CSI-D ≤ Cs

CSI-ED

= max
p(x|s,s∗)

[I(X;Y|S, S∗)− I(X;Z|S, S∗)]

= q1q
∗
1 [H(p∗1)−H(p1)] + q1q

∗
2[H(p∗2)−H(p1)]

+ q2q
∗
1[H(p∗1)−H(p2)] + q2q

∗
2[H(p∗2)−H(p2)]

= q∗1H(p∗1) + q∗2H(p∗2)− q1H(p1)− q2H(p2), (14)

where random variablesS andS∗ are the fading states for the main channel and eavesdropper

respectively;q2 = 1− q1 andq∗2 = 1− q∗1.

The encoder for this independent fading case is similar to the simultaneous fading case (see

Fig. 10), however, the random bitsr(i)1:|A∗| are now of length|A∗|, where setA∗ is the information

set for channel BEC(q∗2), and corresponding decoder at the eavesdropper is SC BEC(q∗2) decoder.

Based on these modifications, all information bits and random bits can still be decoded in this
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scenario, which implies an achievable rate given by

R =
1

NB
(|M2| × |A|+ |M1| × |A∗c|+ |I| × B)

= [H(p2)−H(p1)]× q1 + [H(p∗2)−H(p∗1)]× q∗2 + [H(p∗1)−H(p2)]

= q∗1H(p∗1) + q∗2H(p∗2)− q1H(p1)− q2H(p2).

The reliability and security proofs follow from the same steps as the ones detailed for the

simultaneous fading case. This achievable rate matches to the upper bound given by Lemma 5,

establishing the secrecy capacity of the system as reportedbelow.

Theorem 6. The secrecy capacity for the independent fading scenario with p1 ≤ p2 ≤ p∗1 ≤ p∗2

is given by

Cs
CSI-D = q∗1H(p∗1) + q∗2H(p∗2)− q1H(p1)− q2H(p2).

B. The Scenario ofp1 ≤ p∗1 ≤ p2 ≤ p∗2

Upper bound on secrecy capacity:

In this scenario, for those fading blocks where the main channel is in degraded state and

eavesdropper channel is in superior state, the eavesdropper channel is stronger. Therefore, the

upper bound for secrecy capacity can be expressed as in the following.

Lemma 7. The secrecy capacity for the independent fading scenario with p1 ≤ p∗1 ≤ p2 ≤ p∗2 is

upper bounded by

Cs
CSI-D ≤ q1q

∗
1H(p∗1) + q∗2H(p∗2)− q1H(p1)− q2q

∗
2H(p2).

Proof: We have

Cs
CSI-D ≤ Cs

CSI-ED

= max
p(x|s,s∗)

[I(X;Y|S, S∗)− I(X;Z|S, S∗)]

= q1q
∗
1[H(p∗1)−H(p1)] + q1q

∗
2[H(p∗2)−H(p1)]

+ q2q
∗
10 + q2q

∗
2[H(p∗2)−H(p2)]

= q1q
∗
1H(p∗1) + q∗2H(p∗2)− q1H(p1)− q2q

∗
2H(p2). (15)
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Fig. 11: Encoder for independent fading case withq1 ≥ q∗1

Lower bound on secrecy capacity (for q1 ≥ q∗1):

We focus on the case where superior fading states of the main channel occur more frequently

than the superior states of the eavesdropper channel, i.e.,q1 ≥ q∗1. Under this assumption, we

establish an achievable rate as reported below.

Theorem 8. The secrecy capacity for the independent fading scenario with p1 ≤ p∗1 ≤ p2 ≤ p∗2

and q1 ≥ q∗1 is lower bounded by

Cs
CSI-D ≥ [H(p∗1)−H(p1)]× q1 + [H(p∗2)−H(p2)]× q∗2 + [H(p2)−H(p∗1)]× (q1 − q∗1).

Proof:

In the scenario ofq1 ≥ q∗1 , the probability of degraded fading state (the underlying erasure

probability in the proposed coding scheme) for the main channel is smaller than that of the

eavesdropper channel. Therefore, the polarized indices for these receivers satisfyA∗ ⊆ A. This

enables us to construct another set of information bits of size (|A| − |A∗|) × |M3| in setM3
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(as shown in Fig. 11). Then, the main channel decoder can decode all information bits, and

eavesdropper, given the information bits, can also decode random bits. We note that the amount

of randomness is equal to the capacity of fading eavesdropper channel, so the analysis detailed

in Section III-D follows here, establishing the proof of security. Hence, the achievable secrecy

rate is

R =
1

NB
[|M2| × |A|+ |M1| × |A∗c|+ |M3| × (|A| − |A∗|)]

= [H(p∗1)−H(p1)]× q1 + [H(p∗2)−H(p2)]× q∗2 + [H(p2)−H(p∗1)]× (q1 − q∗1).

Remark 9. We note that the technique described above may not be utilized for the case of

q1 < q∗1 . In particular, the symbols denoted byM3 in Fig. 11 has to include full randomness

dictated byA∗ to satisfy the secrecy constraint. However, with such a code, the main receiver

may not decode these random bits asA ⊂ A∗.

On the gap between lower and upper bounds (for q1 ≥ q∗1):

We remark that the rate gap between the upper bound in Lemma 7 and the achievable rate

reported in Theorem 8 is given by

∆R = {q1q
∗
1H(p∗1) + q∗2H(p∗2)− q1H(p1)− q2q

∗
2H(p2)}

− {[H(p∗1)−H(p1)]× q1 + [H(p∗2)−H(p2)]× q∗2 + [H(p2)−H(p∗1)]× (q1 − q∗1)}

= q∗1q2[H(p2)−H(p∗1)] (16)

Noting that we haveq1 ≥ q∗1 in this scenario, we can further upper bound the gap as follows.

∆R = q∗1q2[H(p2)−H(p∗1)] (17)

(a)

≤ q∗1(1− q∗1)[H(p2)−H(p∗1)] (18)

(b)

≤ 0.25[H(p2)−H(p∗1)] (19)

(c)

, ∆R, (20)

where (a) is due toq1 ≥ q∗1, implying q2 = 1− q1 ≤ 1− q∗1, (b) follows asmax
x

x(1−x) = 0.25,

and in (c) we define this upper bound on the gap as∆R.
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Fig. 12: Illustration of the gap to capacity. (a) Gap coefficient ∆R
[H(p2)−H(p∗1)]

as a function of the

fading parametersq1 and q∗1 for p1 ≤ p∗1 ≤ p2 ≤ p∗2. (b) Upper bound∆R on the gap between

achievable rate and capacity. (No gap exists and the capacity is achieved forp2 ≤ p∗1.)

Fig. 12 illustrates the relationships between the upper bound and achievable rate proposed in

Lemma 7 and Theorem 8. In Fig. 12a, we report thegap coefficient ∆R
[H(p2)−H(p∗1)]

as a function

of the fading parametersq1 and q∗1 , the probabilities of superior fading states for main and

eavesdropper channels, respectively. Note that we have1 ≥ q1 ≥ q∗1 ≥ 0 in this case. In Fig. 12b,

we report the upper bound on the gap given by∆R as a function of channel parametersp2 and

p∗1. Note that, we have0.5 ≥ p2 ≥ p∗1 ≥ 0 in this case. The upper bound on the gap is at most

0.25 (bits), as can be seen from the expression of∆R in (20), increases withp2, and decreases

with p∗1. Here, the gap diminishes asp∗1 ≤ p2 gets closer top2. The capacity is established

earlier forp∗1 ≥ p2 case, i.e., when main channel fading realization is always stronger than that

of eavesdropper, so we set the corresponding points for gap to zero in the plot.∆R is equal to

q2q
∗
1 times the difference between the channel capacity for superior eavesdropper channel (i.e.,

1 − H(p∗1)) and that for degraded main channel (i.e.,1 − H(p2)). Thus, this upper bound on

gap to capacity for the proposed scheme linearly scales withthe difference of these channel

capacities.
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We remark that the proposed coding scheme pays the penalty ofsecuring information by

exhausting the capacity seen by the eavesdropper. That is, the amount of randomness we utilize

is equal to the fading channel capacity seen by the eavesdropper (according to the marginal

distribution of the channelp(y∗|x)). However, this is not always the case for the upper bound.

For instance, when the eavesdropper channel realization issuperior and the main channel is

degraded, as the encoder is assumed to know CSI, no additional penalty is paid to secure the

information for these fading blocks as security can not be achieved. So, while the achievability

assumes no knowledge of instantaneous CSI, the encoder knows and adapts the code according

to eavesdropper CSI for the converse argument. Therefore, the gap we reported here (probably

mostly) reflects the loss due to this CSI knowledge difference.

V. CONCLUSION

In this paper, a hierarchical polar coding scheme is proposed for binary symmetric wiretap

channels with block fading. By exploiting an erasure decoding approach at the receiver, this

scheme utilizes the polarization of degraded binary symmetric channels to survive from the

impact of fading. Meanwhile, to combat with eavesdropping,random bits are injected into the

encoded symbols. We showed that this proposed coding schemeachieves the secrecy capacity

when both main and eavesdropper channels experience block fading simultaneously. For the

scenario of independent block fading model, we showed that the capacity is achieved when the

main channel has always a superior fading realization as compared to that of the eavesdropper.

For the remaining case of when eavesdropper’s state can be stronger than the main receiver, a

gap to secrecy capacity is derived using an upper bound derived from a model where the encoder

knows the instantaneous CSI and a lower bound for the specialcase of when superior fading

state frequency of the main channel is higher than that of theeavesdropper.

Remarkably, for the cases where the proposed coding scheme achieves the secrecy capacity,

there is no loss due to statistical CSI knowledge (as compared to instantaneous CSI knowledge).

For the remaining cases, namely when the eavesdropper channel can see stronger channel state

than that of the main channel, this conclusion remains an open problem, and not only the inner

bound, but also the upper bound we proposed here could be loose. In addition, the case where the

superior fading channel frequency of the eavesdropper channel is greater than that of the main

channel has resisted our efforts thus far. The hierarchicalcoding scheme proposed here does
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not extend to this case (as the required inclusion of polarized channels is not satisfied for this

scenario), and this case remains as an open problem. We finally note that, although we consider

binary symmetric channels in this paper, the hierarchical coding scheme can be applied as a

general method to other scenarios (such as fading blocks with more states) for simultaneously

resolving fading and security problems. In particular, noting that AWGN channels with BPSK

modulation and demodulation resembles a BSC, the proposed scheme covers a fairly large set

of practically relevant channel models.
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