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Abstract

This paper presents a polar coding scheme to achieve secrddgck fading binary symmetric
wiretap channels without the knowledge of instantaneoascél state information (CSl) at the trans-
mitter. For this model, a coding scheme that hierarchiaatilizes polar codes is presented. In particular,
on polarization of different binary symmetric channelsmodiferent fading blocks, each channel use is
modeled as an appropriate binary erasure channel overgfddidcks. Polar codes are constructed for
both coding over channel uses for each fading block and goaler fading blocks for certain channel
uses. In order to guarantee security, random bits are intexti at appropriate places to exhaust the
observations of the eavesdropper. It is shown that thisngpdcheme, without instantaneous CSI at
the transmitter, is secrecy capacity achieving for the #ameous fading scenario. For the independent
fading case, the capacity is achieved when the fading edadizs for the eavesdropper channel is always
degraded with respect to the receiver. For the remainingsgdbe gap is analyzed by comparing lower

and upper bounds. Remarkably, for the scenarios where trecsecapacity is achieved, the results
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imply that instantaneous CSI does not increase the secegacity.
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I. INTRODUCTION

A. Background

Wiretap channels, introduced in the seminal paper of Wyiligrrhodel the communication
between a transmitter and a receiver in the presence of ags@@pper that overhears the
transmitted signals via the channel between transmittdresmvesdropper (e.g., by tapping the
wire between the legitimate nodes). The task of transmiteio hide information from the
eavesdropper while communicating reliably to the receiVéyner studied this problem and
characterized the capacity region for certain channel isomheluding the case of degraded
eavesdropper [1]. The achievability technique is the ramded version of the Shannon’s random
coding approach, where the randomization is utilized tofuwss the eavesdropper, in order to
achieve security. Since the publication of Wyner’s workjesal studies in the network informa-
tion theory domain have utilized this random coding appna@accharacterize the corresponding
secrecy capacities. Yet, the design of secrecy achievidipgschemes with practical constraints
such as low complexity and availability of channel stateinfation remains as an important
direction in the physical layer security.

Recently, polar codes have been utilized for communicabier degraded wiretap channels
[2]-[5]. Polar codes are the first family of provably capgcichieving codes for symmetric
binary-input discrete memoryless channels with low enogpdand decoding complexity |[6].
These codes rely on the “channel polarization” techniqueckvreconstructs a set of equivalent
channels such that each of them is either purely noisy oretess. Noting that the fraction of
noiseless channels approaches the symmetric channeltyapansmitting information symbols
on the good instances and freezing the bad ones achieveptth@brate. The schemes proposed
in [2]-[5] are based on the behavior of the polarization afrdéed channels, where the polarized
channels for the degraded wiretap channels can be paettitm one of the following sets: (i)
good for both receiver and eavesdropper, (i) good for kezeand bad for eavesdropper, and
(iif) bad for both receiver and eavesdropper. The fractibype (ii) channels approach to the
secrecy capacity for the degraded (binary symmetric) efr&hannels, and the communication
scheme utilizes this type of polarized indices to transnfiiimation; whereas, type (i) channels
are assigned to random bits to limit the eavesdropper’styald obtain information about the

messages. (Type (iii) channels are frozen, i.e., set to staptvalue and shared to receiver.) This



scheme allows for achieving the secrecy capacity, whileeriihg the low complexity nature
of polar codes. In other words, this technique mimics the &#fgnrandom coding approach
with practical encoding/decoding schemes. The main hufoilemost practical applications
though is to have the eavesdropper channel state inform&ti&l) at the transmitter, e.g., in
order to differentiate between type (i) and (ii) channelghis coding scheme. Remarkably, an
incorrect knowledge about the eavesdropper CSI would Iederation, hence will not result
in a meaningful security guarantee. In this work, we focusr@axing the assumption on the
instantaneous CSI knowledge, and develop polar codingnsetidor fading wiretap channels,

where only the statistics of CSI (of both receiver and eangszkr) is known at the transmitter.

B. Contributions

The contributions of the paper can be summarized as follows:

« We first focus on a simultaneous fading model, where both matheavesdropper channels
experience the same fading states. A good exemplar for ¢bisasio, perhaps, is physically
degraded channels, where the eavesdropper observes phug outhe main channel through
an additional noisy channel (e.g., through wiretapping)tiese models, when only the
main channel experiences fading, the resulting systemcesdto our simultaneous fading
model. Here, we divide our analysis with respect to diffe@aderings between the channel
gualities seen by receiver and eavesdropper. Focusingamaase separately, we propose
achievable secrecy rates based on hierarchical polargotims technique exploits multiple
polar codes, which are utilized over channel uses for eamtklas well as over fading blocks
for certain polarized channel indices.

« We next focus on the optimality of the proposed scheme by eoimg the resulting rate
with an upper bound on secrecy capacity of the simultaneadsd model. The upper
bound is obtained by allowing the transmitter to know instagous CSI, and remarkably,
this bound is shown to be matching to the secrecy rates attdiy the proposed achievable
scheme, therefore characterizing the secrecy capacitiieobystem. It is remarkable that
instantaneous CSI does not improve secrecy capacity ferntlidel, and having only the
statistical CSI suffices. (We note that our proposed codamgime based on polar codes is
instrumental in obtaining this result, as, to the best of knowledge, there are no random

coding strategies achieving a similar performance.)



« Thirdly, we focus on a general model, where both main and ssaegper channels have
independent fading but at every fading block main channglehstronger channel realization
than the eavesdropper. In this case, a modified version @ffttrementioned coding scheme
iIs shown to achieve secrecy capacity.

« Finally, we focus on the case of independent fading wheresslopper’s channel realization
can be stronger than the main channel at a given block, but stannel is stronger on
the average. In this scenario, we proposed an approprigi@egecheme, again based on
hierarchical polar coding, and compare its performancé ait upper bound on the secrecy
capacity, which is obtained with instantaneous CSI assiompiVe analyze the gap between
the achievable rate and the outer bound, and investigateotbeof instantaneous CSI in
increasing secrecy rates for this model.

Overall, the proposed hierarchical polar coding schemekisyacomponent to achieve these
results. This technique utilizes the polarization phengan® convert the randomness in fading
realizations (for both main and eavesdropper channelgagues channels over which additional
polarization layer is used. Based on such a decompositionigecting random symbols in
appropriate positions (to achieve security over fadingkdd, we establish a coding scheme that
can secure messages without the need of any instantanedugDegiled description of this

technique is given later in the sequel.)

C. Related Work

In addition to [2]-[5], recent studies on the design of potading schemes to achieve
secrecy include [7]£[14], where strong security is consden [3], [8], [11], [13], key agree-
ment/generation is studied inl[3],1[9],_[10], and other amginmodels (different than discrete
memoryless wiretap channel) are consideredlin [4]) [124].[Dur model is similar to the
fading models considered ihl[3], [14], but differentiatesni all these prior studies in that only
a statistical (i.e., distribution) CSI fdrothreceiver and eavesdropper channels is assumed at the
transmitter. Polar coding schemes for fading wiretap cklnare first studied in _[3], where the
transmitter has the knowledge of instantaneous CSI forebeiver’s channel and statistical CSI
for the eavesdropper’s channel. With this setup, a key aggae scheme is proposed based on
utilizing polar codes for each fading block, where the comioated bits over fading blocks are

then used in a privacy amplification step to construct sd@gs. This technique when combined



with invertible extractors allows for secure message trassion but with the requirement of
receiver CSI at the transmitter [3]. Recent wark|[14] pragsa polar coding scheme that utilizes
artificial noise and multiple transmit antennas under thleesassumption (instantaneous CSI for
receiver and statistical CSI for eavesdropper) for thenfgdithannels. However, a guarantee
of secrecy rate with some probability (not the correspogdihannel capacity) is achieved. In
contrast, in this paper, we consider a fading channel moteleithe transmitter does not need to
know any instantaneous CSI, but only its distributiondothreceiver and eavesdropper channels.
The hierarchical polar coding scheme proposed in this papéne best of our knowledge, is the
first provably secrecy capacity achieving coding schemddding (binary symmetric) wiretap
channels. Considering that this type of binary channelsahtice AWGN channels with BPSK

modulation and demodulation, our scheme covers a wideagtjgh scenarios in practice.

D. Organization

The rest of the paper is organized as follows. Sedtibn llgresa brief introduction to polar
coding scheme. Sectidnllll focuses on the simultaneousidadiodel, where the achievable
coding scheme based on hierarchical polar coding is degdl@nd the secrecy capacity is
characterized. Sectidn 1V investigates the independafihdamodel, where modified coding
schemes are developed specific to this model and the gapdoitais analyzed via the difference

between upper and lower bounds. Finally, Secfidon V condube paper.

[1. INTRODUCTION TOPOLAR CODING

Before moving to the main body of this paper, we first intragldlce preliminary for polar
coding. The construction of polar code is based on a phenomeeferred to ashannel
polarization Consider a binary-input discrete memoryless chamiglyc : X — Y, where
X ={0,1}. Define

F=
1 1

Let By be the bit-reversal operator as defined[ih [6], wharas a power of2. By applying
the transformGy = ByF®'°eN (F®leN denotes thdog Nth Kronecker product ofF’) to

u1.n, the encoded codeword given hy.y = u;.xGy IS transmitted throughV independent
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Fig. 1: lllustration of channel polarization for polar cade

copies ofWg.pmc. Now, considerN binary-input coordinate channew](\? X = YN x it
(z €4{1,...,N}), the transition probability is given by

i 1
W](V)<y1:N7u1:i—1|ui) = Z WW@.{DM(:(QI:NWI:NGN)-

Ui 1N
Remarkably, asV — oo, the channels/vj(\? polarize to either noiseless or pure-noisy, and the
fraction of noiseless channels is closeltdVs.puc), the symmetric capacity of channéls.puc

[6].

Given this polarization phenomenon (as shown in Elg. 1)apobdes can be considered as
G y-coset codes with parametefd, K, A, u ), whereu . € XN~5 is frozen vector (can be
set to all-zeros for binary symmetric channéls [6]), andittiermation setA is chosen as & -
element subset dfl, ..., N} such that the Bhattacharyya parameters saﬂ$w](\?) < Z(W](J))
foralli € Aandj € A°, i.e., A denotes the set of indices fgnod channels (that are noiseless
in the limit). We use permutations (hamelyand¢ in the sequel) to denote the increasing order
of Bhattacharyya parameter values for the polarizationnafeulying channels. (For instance, for
block lengthN, 7 (1) gives the most reliable polarized channel index, afd) gives the most
unreliable one.)

A decoder for a polar code is the successive cancelationd8€)der, which gives an estimate

u1.n Of up.n given knowledge ofA4, u 4, andy;.y by computing

(%) -
. Wy (y1:N,01:-10)
R 1, ificA, andwﬁi.)(1 — ‘1)21,
U; = N Wi:N,UL—-1

0, otherwise,
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Fig. 2: System model for wiretap channels.

in the orderi from 1 to . It has been shown that, by adopting an SC decoder, polarscode
achieve any ratd? < I(Ws.pmc) With a decoding error scaling ag(2~"), where 8 < 1/2.

Moreover, the complexity for both encoding and decodin@{sV log N).

IIl. HIERARCHICAL POLAR CODING FORSIMULTANEOUS FADING CASE
A. Problem setup

In this section, we investigate the case where main chamtetavesdropper fade simultane-
ously. More precisely, consider the fading (binary symiogtwviretap channel model (Fidl 2):
Alice wishes to send message to Bob through the main chawneihere the channel experiences
the following block fading phenomenon: with probabiligy, channelW is a BSGp;) (in the
superior state), and with the rest probability = 1 — ¢;, channelWW is a BSGp,) (in the
degraded state). On the same time, the transmission alsbe®#o an adversary (Eve) through
the wiretap channelvV*, whereWW* is degraded compared to the main channel, and experiences
the same fading state as the main channel. In particulam Whés a BSGp, ), W* is a BSQp3);
whenW is a BSQp,), W* is a BSGp}). Under this system model, we hawye < p, < 0.5,
pi < p5 <0.5, pr < pj, andpy < ps.

Remark 1. Simultaneous fading model considers the case where mammehand eavesdropper
channel experience the same fading states (i.e., both grerw or both are degraded), and
eavesdropper channel is assumed to be degraded to the mammehover each fading block.
In Section[1V, we consider an independent fading model whtegetwo channels take their
degraded/superior fading states independent of each .ofhrethis scenario, the eavesdropper
can be stronger than the main channel for a given fading hlbakthe main channel is assumed

to be stronger on the average.)



In general, fading coefficients vary at a much slower pace tiee transmission symbol
duration. For such cases, block fading model is considevedye the channel state is assumed
to be constant within each coherence time interval, andvidla stationary ergodic process
across fading blocks [15]. To this end, we consider the pralcécenario where channel state
information (CSI) is available only at the decoder (CSI-dpile the encoder only knows the
statistics of channel states. Under this model, a secressageM is encoded by an encoding
function f(-) to generate transmitted symbo¥:yz = f(M), whereN is the length of a fading
block, andB is the number of blocks. At the receiver, a decoding function gives an estimate

of the estimateM, i.e., M = g9(Y1.n5). The reliability of transmission is satisfied if
P.2 Pr{M # M|Yy.n5,S} = 0, asN, B — o (1)
whereS denotes CSI, and (weak) security is defined as achieving

1
5! (M:Zixs]S) = 0, asN. B — oc. )

We denote the secrecy capacity of this mode{’8s, 5, which represents the highest achievable

secrecy rate satisfying reliabilityl(1) and secrecy (2)stoints.

B. Upper bound to the secrecy capacity

Under the degraded assumption, the secrecy capacity of itetap system can be upper

bounded as reported in the following result.

Lemma 2. The secrecy capacity for the simultaneous fading model ieupounded by
Cesio < ai[H(p1) — H(p1)| + @2[H (p3) — H(p2)]-
Proof: We have

Csip £ max [T(X;Y[S) — I(X; Z|S)]

p(x)

—

< max 106 Y[S) ~ 1(X;Z|5)]

= mafql[f(X;Y\S =1) = I(X; Z|S = 1)]

p(z[1

N

!

+ r{lelgng[f(x;YIS =2) = I(X; Z|S = 2)]
p(x

QW [H(pt) — H(p)) + wlH(ps) — H(ps)), 3)
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Fig. 3: lllustration of polarizations for two binary symmetchannels.

where

(a) follows by upper bounding the secrecy capacity with the easere encoder has CSI and

adapts its coding scheme according to the channel statesds, cp [16];
(b) is due to the secrecy capacity result for the degraded bispmymetric wiretap channel

[17].

[
In this paper, assuming CSl is available only at the recejwee provide a polar coding scheme

that achieves this upper bound while satisfying reliapi{lf) and security((2) constraints. To this
end, the upper boundl(3) gives the secrecy capacity of ouem&dr the moment, we assume

p1 < p2 < pi < pi, and the remaining case;(< p; < p; < p}) is detailed in SectioA II-E.

C. Intuition behind the proposed coding scheme

The intuition of hierarchical polar coding scheme origesatrom the polarization of degraded
channels[[18]. When polarizing two binary symmetric chaari@SQp;) and BSQp,) with
p1 < po, the good channels (i.e., noiseless as block length tends to infimfybhe polarized
degraded channel B$f;) is a subset of that of the superior channel B&C. As illustrated
in Fig. [3, setg contains all good channel indices after permutation fohhziannels, while
set B contains all bad channel indices after permutation for bztannels.[[19] utilizes this
property to construct hierarchical polar codes in orderdioieve the capacity of fading binary
symmetric channels. More precisely, polar codes are ngt @esigned over channel uses within

each fading block, but also utilized over different fadinigdis. Inspired by this design, and
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combined with the polar coding scheme for wiretap chanri@s[§], we design the proposed

polar coding scheme for fading binary symmetric wiretapneiegs.

D. The scenario 0p; < p, < pi < p3

Theorem 3. The secrecy capacity for the simultaneous fading modepfor p, < pj < pj is
given by
Cesio = @[H(pY) — H(p1)] + ¢2[H (p3) — H(p2)]-

Proof: The upper bound follows from Lemni& 2. We detail the codingesoh (ie., a lower

bound) as follows:

Encoder:

The encoder works in two phases (see Elig. 4), hierarchicailyg polar codes to generate an
N B-length codeword.

Phase | (BEC Encoding):

Here, we consider two sets of messages to be encoded usiag eqaioders designed for
binary erasure channels (BECs). For the first set of messagegeneratd M;| number of

BEC polar codes, where

|Mu| = N{H(p3) — H(p)] (4)

Consider a set of blockwise messa(z;éf%“c| with i € {1,...,|M,|}, whereA is the information
set for BEG¢,), i.e.,

Al =B - q, (5)

Al =B g>. (6)

For everyug’;)‘ 4¢» We combine it withA| random bits to construct polar codewdr@B. Denoting
the permutation for BE(@:) channel asp, and the uniform random string aéf‘)A‘ (each bit is

Ber(1/2) distributed), the encoding process is given by
i = uip X G,

MY _[,0 ()
o (i) = [ iy 1 ol |
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”1{\A| 0 ”511)5

Phase 1 ¢! x Gp =
BEC Encoding

[ M|

<>
Al A7

~ (1)
Uy p

JMll transpose

B random bits
[ information bits
(] frozen bits

transpose

Phase I1 a1
BSC Encoding

X Gy = X

Fig. 4: Encoder of the polar coding scheme for fading wirethpnnels.

for everyi € {1,...,| M|}, whereG3 is the polar generator matrix with size. By collecting
all ag”B together, the encoder generates\d,| x B matrix U. We denotel} as thek-th row
of the transpose of/, wherek € {1,..., B}.

Secondly, we generate\l,| number of BEC polar codes, where

| M| = N[H (ps) — H(p1)]- (7)

Consider another set of blockwise messagfé@‘ with j € {1,...,|M,|}. Each message is set
as information bits to construct polar codewo]ﬁ,é. More formally, this encoding process is

given by

(J
1 VlB X Gp,

- [ 1 0]

for everyj € {1,...,|M,|}. The collection of allz\/), together is denoted as|A1,| x B matrix
V. We denoteV,” as thek-th row of the transpose o, wherek € {1, ..., B}.
Phase Il (BSC Encoding):
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In this phase, we generateé number of BSC polar codes, each with lengih The encoded
codewords from previous phase are embedded as messageés jpifidse. We consider a set of
with k£ € {1,..., B}, where

|Z| = N[H (p1) — H(p2)]. (8)

For everyw!' , we introduce random bits;"), , where
R = N[1—H(p3)l], 9)

. . k
and combine the output from the previous phase as messagadstuct polar codewordgzj)\,.

messages." m

More formally, if we denote the reordering permutation f@®p,) as~, then the encoder of
this phase can be expressed as

(k)
1:

Ty = wleGN,

( ) [ S1IR| | OF | wﬁ)ﬂ VI oo,
for everyk € {1,..., B}, whereGy is the polar generator matrix with siz¥. That is, the
codewords generated from BEC encoding phase are transpodezgimbedded into the messages
of the BSC encoding process. We denote these codewordssby & matrix X. The proposed
encoder is illustrated in Fid.l 4.

Decoder for the Main Channel:

The codewordsrg’f})V are transmitted through both the main channel and the wirettannel.
After receiving the output sequeng{—:’f}v forall k£ € {1,..., B}, the task of the decoder at Bob
is to make estimates for all the information and random Mitgarticular, the decoder aims to
recoveruﬁAc‘, v§ |)A|, wﬁ)ﬂ, 7{ 4 and 31 |R| successfully with high probability. As that of the
encoding process, the decoding process also works in plssed-ig[h).

Phase | (BSC Decoding for the Superior Channel State):

In this phase, using the BSC SC decoder, channels correisgotwl the superior state are
decoded. More precisely, since the receiver knows the alatates, it can adopt the correct SC
decoder to obtain estimates}kN from y ) for every k corresponding to the superior channel
state. To this end, the decoder adopted in this phase isdksichl BSC SC polar decoder with
parametemp;, i.e.,

W G ok 1y

1, if n¢ F, and AxWn@inall 4
o) b ing W R =

0, otherwise




| N | |

f 1 f
N
- —
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N
- —
Y e

Phase I: BSC Decoding for the Superior Channel State

Phase II: BEC Docding

random bits ot
information bits

frozen bits
erased bits

OOoOm

transpose

Phase III: BSC Decoding for the Degraded Channel State

N

Fig. 5: Decoder at the main channel receiver given the kndgdeof the channel states

information.

in the ordern from 1 to N, and Wl("Jz, is the n-th polarized channel from BS@;). Then, for
every k corresponding to the superior channel state, the decodeoluain the messages (with

the knowledge of the frozen symbols correspondingrtandices)

(@) = 8% 1 Or | el | VT ] o
However, for the blocks with degraded channel states, onaatadecode reliably because the
frozen bits corresponding to sé¢f, are unknown at the decoder. At this point, we use the
next phase to decode these frozen bits using a BEC SC dedmleroceed, we construct a
B x | Mj| matrix ffT such that its rows corresponding to the superior state aerrdmed in
previous decoding process, while the ones correspondiripetalegraded states are all set to

erasures.
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Phase |1 (BEC Decoding):
In this phase, we decode the frozen bits with respect to tlggaded channel state. More

precisely, each row of matrif/, denoted byf/j for j € {1,...,

input to the decoder, and the receiver aims to obtain an atiof the information bits from it
using BEC SC decoder. To this end, the decoder adopted ipliaise is the classical BEC SC
decoder with parameteg, i.e.,

(b) ~ ()
WeB(V D1 111)
—s 0= >,

(b) (V §Jl3 1|1) -

o) 1, ifbe A and
0, otherwise
in the orderb from 1 to B, and W’} e IS the b-th polarized channel from BEG,). Then, for

every j, the decoder can declare

o(#5) = b 1 0]

At this point, the decoder can reconstruct all erased bitgedls More precisely, the erased rows
in f/T can be recovered, and they can be further utilized to dedwaformation bits in blocks
with the degraded channel state in the next phase.

Phase 111 (BSC Decoding for the Degraded Channel State):

In this phase, the remaining blocks from Phase | are decogesdihg BSC SC decoders with
respect to degraded channel states. In particular, bitsarfrbzen set for the degraded channel
state (setF and setM,) are known due to the previous phases. Hence, the receinattezde

from y\*) using BSC SC decoder with parameter i.e.,

(”)( (k) (k) 1)
Win—1 > 1
k k ]

W R 10

1, if n¢ F,n¢ M,, and
@, =< VT if e My,
0, otherwise

in the ordern from 1 to NV, and Wé"}, is the n-th polarized channel from BS@,). Then, for

every k corresponding to the degraded channel state, the decodiarete

k R 2 . 2
m(@f) =89 1 Or 1 el 1 V] o

Hence, after this decoding procedure, the receiver makessamateU of matrix U, which

further implies all information bits iruﬁAc| are decoded. Note that, in addition to information
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bits, all random bits are decoded reliably at Bob as well. e\av, in order to guarantee security,
we set these bits random (instead of information).

Achievable Rate and Reliability:

The proposed hierarchical scheme allows for recoveringnédkmation bits (represented by
light blue in Fig.[4) reliably, as long as the designed ratepaar codes do not exceed the

corresponding channel capacities. Hence, the achievatdas given by
1
R = <= (Mo x |A] + [Mu] x | A + B x |Z])
= [H(p2) = H(p1)] x 1 + [H(p3) — H(p1)] X g2 + [H(p1) — H(p2)]
= [H(py) — H(p1)] x ¢ + [H(p3) — H(p2)] X o, (10)

where we have usedl(4).] (5)] (6)] (7), ahdl (8). In this schdBneyumber of N-length polar codes
are decoded in Phase | and Il in total, godls| number of B-length polar codes are decoded

in Phase Il. Hence, the decoding error probability is upprmiaed by
PHM # M|Yy.y5,S} < B- 27N + | My| - 275, (11)

where 5 < 1/2; and, M is the collection of random variables representing for afbimation
bits (its realizations include’ ., v}/, , andw{’} ), andM is the estimate oM obtained by
Bob. Noting that the right hand side d&f (11) tendsOtevhen implemented with properly large
B and N, the proposed scheme achieves the upper bound gived byligd)lye

Security:

Assume that, in addition t@ﬁ?\,, a genie reveals Eve all information bizté?#', Ui{I)AI' and
wﬁ)ﬂ Under this condition, we show that all random bits can beaé} decoded at Eve. More
precisely, the decoder designed for the eavesdropper aldaswn phases, similar to the one for
the main channel (see Figl. 6).

« Phase | (BSC Decoding for the Superior Channel State): Thedd# still works over the
blocks with the superior channel state. However, for thesdropper channel with superior
channel state, the frozen set consists of bits not only infsdiut also in sets\, andZ.
Since we have assumed the information bits are known at Beeclassical BSG7;) SC
decoder can be used to decode the random bits.

« Phase Il (BEC Decoding): This phase aims to recover the umRrfiezen bits corresponding

to the degraded channel state, where a similar scheme a# thatmain receiver is adopted.



Phase I: BSC Decoding for the Superior Channel State

(5 (i
Phase II: BEC Decoding "1:l4) c

random bits
information bits

frozen bits
erased bits ‘

NOooOm

N

Fig. 6: Decoder at the eavesdropper given the knowledgeeo€iiannel states information and

information bits.

More precisely, by modeling the appropriate symbols cpaoading to degraded channel
states as erasures, we utilize the B&C SC decoder over each row of the matrix after
transpose. This scheme successively recovers the erasedras, as the frozen bits for this
BEC is the information bitsi{’) .
« Phase IlIl (BSC Decoding for the Degraded Channel Stateglligjrihe decoded result from

| and they are assumed to be known.

the previous phase is utilized at the BSC decoding for theadisgl state, where the classical
BSC(p;) SC decoder is adopted.
By adopting this hierarchical polar decoder, Eve can de@ldeindom bits with high prob-
ability, i.e.,
PR # R|Zyn5, M, S} < B- 27N 4 | My|- 277", (12)

whereR is the collection of random variables representing for candbits (its realization include
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(4)

LAl and s&’j’m), andR is the estimate oR. Then, using Fano’s inequality, together wil1(12),

,
we have
H(R|Zy.nB,M,S)
<[B-27V M| 27 IR] - B+ Al (M)
+H(B-27V" 1My - 278, (13)
Based on this, the following steps provide an upper boundt{img the subscript ofZ):
I(M;Z|S) = I(M,R; Z|S) — [H(RIM,S) — H(R|Z,M,S)]

@ 1(M,R;Z|S) — H(R) + H(R|Z,M,S)

(b)
< NB- CCSI-D(W*) — H(R) + H(R|Z, M, S)

ONB - CesoW?) — |A| - M| — B+ |R| + H(R|Z,M,S)

@ NB - Cesio(W*) — By - N[H(p3) — H(p})] — B+ N[1 — H(p3)] + H(R]Z,M,S)
= NB - Ccsio(W?*) = NB - q[1 = H(p})] = NB - ¢2[1 — H(p3)] + H(R|Z, M, S)

© HR|Z,M,S),

where

(a) follows asR is independent oM andS§;

(b) is due to the definition of chann&/*’s capacity with CSI-D;

(c) is due to the assumption thRtis uniform;

(d) is due to equation§l(4)1(5), ard (9);

(e) is due to the ergodic capacity of the degraded fadingselmwpper channel with channel

state information known only at the decoder][17], i.e.,
CesioWV") = qu[l — H(p)] + @2[1 — H(p)]-

Finally, combining with [(IB), we have

1
ml('\/h Zl:NB|S) — 0,

as N and B tends to infinity (with proper choice of the their scalingatgnship). Hence, the

proposed scheme achieves the secrecy constraint.
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E. The Scenario gf; < p; < ps < p;
In this section, we extend the aforementioned coding schentee scenario op; < pj <

po < ph. Combined with Theoreril 3 provided earlier in this sectibiis tompletes the proof for

all possible cases of simultaneous fading and establisteefotiowing result.

Theorem 4. The secrecy capacity for the simultaneous fading modelvisngby
Clsio= q[H (p) — H(p1)] + q2[H (p3) — H(p2)]-

Proof: Note that although; < p, the main channel is still stronger than the eavesdropper
channel in each fading block (because of the simultanealisgaassumption). To this end, the
upper bound reported in Lemrh 2 still holds for this scendtri@mains to show the achievability
for pi1 < pi < p2 <ps.

Encoding:

From the previous scenario, the key idea for hierarchicErpmding scheme is setting the size
of random bits beV B - Ccs.p(W*) and setting the size of information bits BeB - C&g o (V).
Based on this observation, the encoder for the scenariughisd here is illustrated in Figl 7.
Note that we still have five categories for channel indicasrgbolarization.R and F remain
the same as the previous scenario, but we do not have purengiion set in this scenario due
to p; < po. Instead, a new sedt; contains coding results from random bits and frozen bits.

More precisely, parameters shown in the figure are defined!ksvt
IRl = N[1—H(p3)],
(Mi| = N{H(p3) — H(p2)],
| M| = N[H(py) — H(p1)],

‘M3‘ = N[H(m) - H(PD];

|[Fl=N-H(p),
‘A‘ = B‘Qb
‘Ac‘ =B * (2.

Then, the encoding procedure works analog to the previoeisasio, except that three sets

of BEC encoding are performed and the resulting codeworelsransposed and embedded into
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Fig. 7: Encoder for the scenario of < pi < py < p3.

the second phase. In particular, the sketch of hierarcbhmding scheme is described as follow:
Phase | (BEC Encoding):
« Random bitsrf;')A| combined with information bitsaﬁAc‘ are encoded to generais,;, for
eachi € 1,...,|My|;
« Information bit5v§f|)A| combined with frozen bit§ are encoded to generaie),, for each
jel ..., [Myf;
. Random bitst{ ,
lel,... |Msl.
Phase Il (BSC Encoding):

Coded bits from Phase | are combined with random kﬁ% and frozen bits) are encoded

combined with frozen bit$) are encoded to generafeﬁ)g, for each

k
to generater\*), for eachk € 1,.. ., B.

Decoder for the Main Channel:
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Fig. 8: Decoder at the main channel for the scenarip,0& p < ps < p}.

The decoder at the main channel also works in phases. Qmitkasto the previous case, the
sketch of decoder is as follows (illustrated in Higj. 8):

« Phase | (BSC Decoding for the Superior State): Decode thekblith respect to the superior
state using BS(@;) SC decoder by choosing frozen bits (as

« Phase Il (BEC Decoding): Add erasures to the decoded bitetin\$é; and M, from
previous phase, then decode both the random bits and infiemiaits using BECq,) SC
decoder by choosing frozen bits @s

« Phase lll (BSC Decoding for the Degraded State): Recovebi@lin setM3; and M, to
make them the frozen bits, and decode the block with respetitet degraded state using

BSC(p;) SC decoder.
Achievable Rate and Reliability:
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Fig. 9: Decoder at the eavesdropper for the scenarig of p; < ps < p3.

In this way, all information bits and random bits can be reged reliably, i.e.,[{11) still holds

in this scenario. Meanwhile, we have
1
R = 5= (Mol x || + [ M| x JAY)

= [H(p}) — H(p1)] X q1 + [H(p3) — H(p2)] X g2,

which means the upper bourid (3) is achieved.

Security:

Assume the receiver from the eavesdropper channel knowiseaihformation bits, i.e.uﬁ 4|
and Ugl)Al in this scenario. Then, the decoder (employed at the eawesedr) can obtain all
random bits by following the steps below (also see Eig. 9):

« Phase | (BSC Decoding for the Superior State): Decode thekblith respect to the superior

state using BS@7;) SC decoder by knowing all frozen bits iA and M.
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« Phase Il (BEC Decoding): Add erasures to the decoded bitetin\$; and M3 from
previous phase, then decode both the random bits using BESC decoder by choosing
frozen bits asu{] .

. Phase lll (BSC Decoding for the Degraded State): Recovebit@lin setM; and M3 to
make them the frozen bits, and decode the block with respetitet degraded state using

BSC(p;) SC decoder.

| and0 respectively.

Hence, all random bits can be decoded reliably, ile.] (liR)hstlds in this scenario. Then,

the same procedures as the previous scenario completedbeqgirsecurity.

V. HIERARCHICAL POLAR CODING FORINDEPENDENTFADING CASE

In this section, we focus on the case of independent fadinghi® main channel and the
eavesdropper channel. More precisely, the main channgbradésbility ¢; to be in the superior
fading state, while the eavesdropper channel has protakilito be in the superior state
(independent of the main channel). The main hurdle hereas ttre main and eavesdropper
channels can be in different fading states (e.g., the maanmdé can be in degraded state while
the eavesdropper channel is in the superior state). Stilcomsidered in the previous section,

we distinguish two scenarios based on the relation betwaesaneters] and p,.

A. The Scenario of; < p, < p; < p;

In this scenario, for those fading blocks where the main nkhis in degraded state and
eavesdropper channel is in superior state, the main chahiséll stronger due t, < pj. To

this end, the upper bound for secrecy capacity can be exguress follows.

Lemma 5. The secrecy capacity for the independent fading scenatio pyi< p, < pi < p} is

upper bounded by

Césip < G H(PY) + o H(p3) — n H (p1) — g2 H (p2).
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Proof: We have the following.
C’éSI-D S C’éSI-ED

= max [[(X;Y|S,S") — I(X;Z]|S,S")]

plals,s*)
= q¢; [H(py) — H(p1)] + q1g5[H (p3) — H(p1)]
+ qqi[H (p7) — H(p2)] + q2q5[H (p3) — H(p2)]

= ¢ H(py) + ¢H(p3) — @i H(p1) — g2 H (p2), (14)

where random variableS and S* are the fading states for the main channel and eavesdropper
respectively;go =1 — ¢ andgs =1 — gf. [ ]

The encoder for this independent fading case is similar ¢osimultaneous fading case (see
Fig.[10), however, the random bit§ ., are now of length.A*|, where setd* is the information
set for channel BE(;), and corresponding decoder at the eavesdropper is SG@BEdecoder.

Based on these modifications, all information bits and ramtdts can still be decoded in this
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scenario, which implies an achievable rate given by

R = = (1Mol X |4 + |My] x |A] +|2] x B)

= [H(p2) — H(p1)] x v + [H(p3) — H(p})] x a5 + [H(p}) — H(p2)]

= H(py) + ¢ H(p3) — qH(p1) — q2H (p2).
The reliability and security proofs follow from the same psteas the ones detailed for the
simultaneous fading case. This achievable rate matchdwetagper bound given by Lemrha 5,

establishing the secrecy capacity of the system as repbgieav.

Theorem 6. The secrecy capacity for the independent fading scenatio pvi< p, < pi < p}
is given by
Cesio = GG H(pY) + 3 H(p3) — quH (p1) — g2 H (p2).

B. The Scenario of; < p; < ps < p;

Upper bound on secrecy capacity:
In this scenario, for those fading blocks where the main nbhins in degraded state and
eavesdropper channel is in superior state, the eavesdroppanel is stronger. Therefore, the

upper bound for secrecy capacity can be expressed as inltbeifa.

Lemma 7. The secrecy capacity for the independent fading scenatio pvi< pj < p, < p} is
upper bounded by

Césip < gt H(ph) + ¢ H(py) — i H (p1) — q2q5H (p2).
Proof: We have

s ]
C(CSI-D < C(CSI-ED

= max [[(X;Y|S,S") — I(X; Z|S,S*)]

plals,s*)
= qq;[H(py) — H(p1)] + q1g5[H (p3) — H(p1)]
+ @010 + ¢205[H (p3) — H(p2)]

= qqiH(pY) + ¢ H(p3) — i H (p1) — q2g5H (p2). (15)
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Lower bound on secrecy capacity (for ¢, > ¢):
We focus on the case where superior fading states of the rhaimel occur more frequently
than the superior states of the eavesdropper channelgi.ex,¢;. Under this assumption, we

establish an achievable rate as reported below.

Theorem 8. The secrecy capacity for the independent fading scenatio pyi< pi < ps < p}

and ¢, > q; is lower bounded by
Césio = [H(py) — H(p1)] x a1 + [H(p3) — H(p2)] X ¢ + [H(p2) — H(p))] % (@1 — ¢7).

Proof:
In the scenario of;; > ¢f, the probability of degraded fading state (the underlyinasere
probability in the proposed coding scheme) for the main okaims smaller than that of the
eavesdropper channel. Therefore, the polarized indiagethése receivers satisft* C A. This

enables us to construct another set of information bits zd GiA| — | A*|) x | M3] in set M3
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(as shown in Fig[_11). Then, the main channel decoder canddeab information bits, and

eavesdropper, given the information bits, can also decaddom bits. We note that the amount
of randomness is equal to the capacity of fading eavesdrag@nel, so the analysis detailed
in SectionIl-D follows here, establishing the proof of saty. Hence, the achievable secrecy

rate is

1
R = o [|Ma] % JA] + [Ma] x |4 + [Ma] x (JA] = |A7])]

= [H(pi) — H(p)] x q1 + [H(p3) — H(p2)] X ¢5 + [H(p2) — H(p1)] X (@1 — 7).
Remark 9. We note that the technique described above may not be dtifaethe case of
¢1 < q;. In particular, the symbols denoted by(; in Fig. 11 has to include full randomness

dictated by.A* to satisfy the secrecy constraint. However, with such a ctue main receiver

may not decode these random bits.as- A*.

On the gap between lower and upper bounds (for ¢ > ¢f):
We remark that the rate gap between the upper bound in Lemnmal Zhe achievable rate
reported in Theorernl 8 is given by
AR ={qqiH(p}) + ¢ H(p3) — a1 H (p1) — 205 H (p2) }
—{[HP)) — H(p1)] x @ + [H(p3) — H(p2)] x g5 + [H(p2) — HpY)] % (@1 — ¢7)}
= q1q2[H (p2) — H(p})] (16)

Noting that we have; > ¢; in this scenario, we can further upper bound the gap as fellow

AR = ¢iq2[H (p2) — H(p7)] 17)
< (- a)Hp) — H) (18)
< 0.25[H (p2) — H(p7) (19)
o AR, (20)

where (a) is due tg, > ¢f, implying ¢, = 1 —¢; < 1—¢j, (b) follows asmax z(1 —z) = 0.25,
and in (c) we define this upper bound on the gap\d&
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achievable rate and capacity. (No gap exists and the cgpadichieved fomp, < p7.)

Fig.[12 illustrates the relationships between the uppen@and achievable rate proposed in
LemmalT and Theorem 8. In Fig._12a, we report gag coefficientm(mffl";ﬂm as a function
of the fading parameterg, and ¢;, the probabilities of superior fading states for main and
eavesdropper channels, respectively. Note that we have; > ¢ > 0 in this case. In Fid._12b,
we report the upper bound on the gap given/i as a function of channel parametersand
p;. Note that, we hav@.5 > p, > p; > 0 in this case. The upper bound on the gap is at most
0.25 (bits), as can be seen from the expressiod\éf in (20), increases with,, and decreases
with pi. Here, the gap diminishes ag < p, gets closer tgp,. The capacity is established
earlier forp; > p, case, i.e., when main channel fading realization is alwaygsmger than that
of eavesdropper, so we set the corresponding points for@aprb in the plotAR is equal to
¢2q; times the difference between the channel capacity for smpeavesdropper channel (i.e.,
1 — H(p})) and that for degraded main channel (i.e5 H(p2)). Thus, this upper bound on
gap to capacity for the proposed scheme linearly scales thdhdifference of these channel

capacities.
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We remark that the proposed coding scheme pays the penakganifring information by
exhausting the capacity seen by the eavesdropper. Thaeisnount of randomness we utilize
is equal to the fading channel capacity seen by the eavegselirdpccording to the marginal
distribution of the channeb(y*|z)). However, this is not always the case for the upper bound.
For instance, when the eavesdropper channel realizatisugsrior and the main channel is
degraded, as the encoder is assumed to know CSI, no adtlifenalty is paid to secure the
information for these fading blocks as security can not Heemed. So, while the achievability
assumes no knowledge of instantaneous CSI, the encodeskarmvadapts the code according
to eavesdropper CSI for the converse argument. Theretoeegdp we reported here (probably

mostly) reflects the loss due to this CSI knowledge diffeeenc

V. CONCLUSION

In this paper, a hierarchical polar coding scheme is prapdse binary symmetric wiretap
channels with block fading. By exploiting an erasure dexgdapproach at the receiver, this
scheme utilizes the polarization of degraded binary symmehannels to survive from the
impact of fading. Meanwhile, to combat with eavesdroppiragndom bits are injected into the
encoded symbols. We showed that this proposed coding schehieves the secrecy capacity
when both main and eavesdropper channels experience dookgf simultaneously. For the
scenario of independent block fading model, we showed tietapacity is achieved when the
main channel has always a superior fading realization agpaced to that of the eavesdropper.
For the remaining case of when eavesdropper’s state carrdest than the main receiver, a
gap to secrecy capacity is derived using an upper boundegkefiem a model where the encoder
knows the instantaneous CSI and a lower bound for the speassd of when superior fading
state frequency of the main channel is higher than that okdwesdropper.

Remarkably, for the cases where the proposed coding schelmeves the secrecy capacity,
there is no loss due to statistical CSI knowledge (as condparéenstantaneous CSI knowledge).
For the remaining cases, namely when the eavesdropper elheamm see stronger channel state
than that of the main channel, this conclusion remains am gpeblem, and not only the inner
bound, but also the upper bound we proposed here could be. loaddition, the case where the
superior fading channel frequency of the eavesdropperngias greater than that of the main

channel has resisted our efforts thus far. The hierarclioding scheme proposed here does
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not extend to this case (as the required inclusion of padrichannels is not satisfied for this

scenario), and this case remains as an open problem. Wey firwé that, although we consider

binary symmetric channels in this paper, the hierarchicalirlg scheme can be applied as a

general method to other scenarios (such as fading blocks mitre states) for simultaneously

resolving fading and security problems. In particular,imptthat AWGN channels with BPSK

modulation and demodulation resembles a BSC, the propadezire covers a fairly large set

of practically relevant channel models.
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