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Individual Secrecy for the Broadcast Channel
Yanling Chen, O. Ozan Koyluoglu, and Aydin Sezgin

Abstract

This paper studies the problem of secure communication over broadcast channels under the individual
secrecy constraints. That is, the transmitter wants to send two independent messages to two legitimate
receivers in the presence of an eavesdropper, while keeping the eavesdropper ignorant of each message (i.e.,
the information leakage from each message to the eavesdropper is made vanishing). Building upon Carleial-
Hellman’s secrecy coding, Wyner’s secrecy coding, the frameworks of superposition coding and Marton’s
coding together with techniques such as rate splitting and indirect decoding, achievable rate regions are
developed. The proposed regions are compared with those satisfying joint secrecy and without secrecy
constraints, and the individual secrecy capacity regions for special cases are characterized. In particular,
capacity region for the deterministic case is established, and for the Gaussian model, a constant gap (i.e.,
0.5 bits within the individual secrecy capacity region) result is obtained. Overall, when compared with the
joint secrecy constraint, the results allow for trading-off secrecy level and throughput in the system.

I. Introduction

A. Background

The broadcast channel (BC) involves the simultaneous communication of information from one transmitter

to multiple receivers. The broadcast nature makes the communication susceptible to eavesdropping. There-

fore, it is desirable to offer a reliable communication with a certain level of security guarantee, especially to

ensure that sensitive information is protected from unauthorized parties.

The most fundamental model of the BC is the two-receiver BC with two independent messages. This basic

model and its extensions with or without an external eavesdropper have been well studied [1]–[10]. However,

capacity regions have still remained open for the basic model (i.e., two independent private messages are

dedicated to two legitimate receivers, respectively), and its extension with an external eavesdropper subject

to a joint secrecy constraint (whereby the information leakage from both messages to the eavesdropper is

made vanishing). Nevertheless, in case that the channels to all the receivers (and the eavesdropper) fulfill a

certain degradation order, the capacity regions are characterized and superposition coding is shown to be

optimal in both settings [1]–[3], [7].

This paper was presented in part at IEEE International Symposium on Information Theory, Hong Kong, Jun. 2015.
Y. Chen and A. Sezgin are with the Institute of Digital Communication Systems, Ruhr University Bochum, Germany (e-

mail: yanling.chen-q5g@rub.de, aydin.sezgin@rub.de). O. O. Koyluoglu is with the Department of Electrical and Computer
Engineering, The University of Arizona, Tucson, AZ 85721, USA (e-mail: ozan@email.arizona.edu).

ar
X

iv
:1

51
1.

09
07

0v
1 

 [
cs

.I
T

] 
 2

9 
N

ov
 2

01
5



2

Transmitter

Receiver 1

Receiver 2

Eavesdropper

p(y1, y2, z|x)Xn

Y n
1

Y n
2

Zn

(M1, M2)

M̂1

M̂2

��M1, ��M2

Fig. 1: BC with an external eavesdropper.

In this paper, we primarily focus on the problem of secure communication over the BC subject to the

individual secrecy constraint. The channel model is shown in Fig. 1. Differently from the joint secrecy

constraint, here one aims to minimize the information leakage from each message to the eavesdropper.

Remarkably, the joint secrecy constraint offers a higher secrecy level from the system design perspective (but

unfortunately not always affordable [11]), while the individual secrecy constraint could provide an acceptable

security strength from the end user’s point of view with potential gains in increasing transmission rates.

Therefore, the notion of individual secrecy allows for trading-off of the throughput and secrecy level.

To ensure a pre-specified secrecy level, there are popular cryptographic means as demonstrated by Shannon

[12] that rely on the secret keys shared only between the transmitter and the intended receiver in advance

of the communication. Another well-known information-theoretic means is by Wyner’s secrecy coding intro-

duced in [13], where he proposed the model of the wiretap channel. The main idea is to explore the advantage

of the channel of the legitimate receiver against a degraded eavesdropper by the means of trading rate for

secrecy. More specifically, sufficient randomness is added to the codeword in order to keep the eavesdropper

totally ignorant of the transmitted message. Later on, a sharper result for the wiretap channel is obtained by

Csiszár and Körner [14] by considering a general setup of transmitting the common and confidential messages

over a channel where the eavesdropper’s channel is not necessarily a degraded version of the channel of the

legitimate receiver.

Another secrecy coding method that has not attracted enough attention, but plays an important role in

this paper for the purpose of individual secrecy, is a coding technique introduced by Carleial and Hellman

in [15] for a special case of the wiretap channel, where the channel to the legitimate receiver is noiseless and

the eavesdropper’s channel is a binary symmetric channel (BSC) with cross probability p. It is demonstrated

that it is possible to send message (of length n and divided into n/l pieces each with l bits) at capacity

(i.e., rate 1) over the main channel while still keeping the eavesdropper totally ignorant of each piece of the

message provided that nh(p) ≥ l. The main observation is that message pieces can hide each other without

a need of additional randomness (under this weaker secrecy notion). In this paper, we generalize this coding

idea to the broadcast channel scenarios and refer to it as Carleial-Hellman’s secrecy coding. The goal remains
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the same, i.e., to keep the eavesdropper totally ignorant of each piece of the messages. Differently from the

original proposal in [15], the channel is not restricted to be noiseless or BSC, each piece of the messages are

destined at different receivers, and each piece of the messages are not necessarily of the same length.

B. Contributions

In this paper, we consider the problem of secure communication over the broadcast channel, where the

transmitter wants to send two independent messages to two legitimate receivers in the presence of an external

eavesdropper. (See Fig. 1.) In the following, we summarize the main contributions of the paper:

• The linear deterministic model is studied and corresponding capacity regions under different secrecy

constraints are characterized. Study of this specific model provides insights into the capacity regions

for the Gaussian case under different secrecy constraints, especially in the high SNR regime.

• To investigate the fundamental limits of communication under the individual secrecy constraints, con-

structions building upon Carleial-Hellman’s secrecy coding, Wyner’s secrecy coding, superposition cod-

ing, and Marton’s coding, rate splitting and indirect decoding are proposed for the general discrete

memoryless broadcast channel (DM-BC) with an external eavesdropper.

– First construction, referred to as the primitive approach, utilizes Carleial-Hellman’s secrecy coding

in the sense that it regards one message as (partial) randomness for ensuring the individual secrecy

of the other. This approach is shown to be optimal if the channels to both legitimate receivers are

statistically identical.

– The primitive approach is suboptimal for the case when one legitimate receiver’s channel is less

noisy than the other. To further benefit from the channel advantage of the strong receiver, we

propose the superposition coding scheme by taking the primitive approach as the cloud coding

layer, and adding to it another satellite coding layer. Differently from the cloud layer that employs

Carleial-Hellman’s secrecy coding, we employ Wyner’s secrecy coding in the satellite layer to ensure

the secrecy of the additional message to the strong receiver. This approach is shown to be optimal

for the case of a comparable eavesdropper (compared to the weak legitimate receiver); and the case

that the weak legitimate receiver has a deterministic channel and the eavesdropper’s channel is a

degraded version of it.

– Considering the general case where there may not be less noisiness order between the channels

to the legitimate receivers, we devise a coding scheme by utilizing Marton’s coding. The idea

is to explore the advantage of rate splitting at the encoding phase (with introduction of jointly

distributed satellite codewords that carry independent message pieces intended for each legitimate

receiver); and recovering the individual satellite codewords at the decoding phase. As a result, a

general achievable individual secrecy rate region is established, which includes regions obtained by

the primitive approach and superposition coding approach as special cases.
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• Following the (Marton’s) coding scheme proposed and appropriately modifying its analysis for secrecy,

an achievable joint secrecy rate region is established. This region is contrasted with the previous regions

reported in the literature.

• Gaussian model is studied, and a constant gap result (i.e., 0.5 bits within the individual secrecy

capacity region) is obtained. In particular, the individual secrecy capacity region is characterized for

the comparable eavesdropper case (defined by satisfying σ2
2 ≤ σ2

e ≤ 2σ2
2 for the noise variances of weaker

receiver and eavesdropper). To visualize the impact of different secrecy constraints on the fundamental

limits, comparisons are made among the capacity regions of Gaussian-BC without secrecy constraint,

and with individual and joint secrecy constraints.

C. Related Work

The broadcast channel involves the simultaneous communication of information from one transmitter

to multiple receivers. Generally speaking, the information may be independent or nested. For the general

two-receiver BC with two independent messages, the capacity region is yet unknown. Nevertheless, if one

receiver’s channel is degraded to the other, then the capacity region is fully characterized and it is shown

that superposition coding is optimal [1]–[3]. In general, the best known achievable rate region is obtained by

Marton’s coding in [5]. For the BC with nested information, one instance is the two-receiver BC with one

common and two private messages. The model was first introduced by Körner and Marton in [16], and the

general capacity region still remains as unknown. Nevertheless, in [16], the capacity region was established

for the two-receiver BC with degraded message sets (i.e., when one of the private message has rate zero). In

[8], Nair and El Gamal extended the two-receiver BC with degraded message sets to the three-receiver case.

In particular, they studied the specific case where one common message is sent to all three receivers, while

one private message is sent to only one receiver. They proposed a new coding referred to as indirect decoding

and showed that the resulting region of this technique is strictly greater than the straightforward extension of

the Körner-Marton region for this scenario. Other studies on BC with different message degradation setups

include [8], [17], [18], see also [19] for an overview.

Due to the very broadcast nature of the communications, adversaries may overhear the transmissions,

resulting in data leakage. Secure broadcasting refers to the situation where one transmitter communicates

with several legitimate receivers in the presence of an adversary (external eavesdropper). Inspired by the

pioneering works [12]–[14] that studied the point-to-point secure communication, there has been a growing

body of literature that investigate the problem of secure broadcasting with two or more receivers [7], [9]–[11],

[20]–[22].

The joint secrecy capacity region for some special cases are established in [7], especially for certain

degradation orders among the channels. The results of [7] were extended to the Gaussian scenario in [20];

and to the degraded compound multi-receiver broadcast channel in [21]. Moreover, [10] studied the BC

with two receivers and one eavesdropper, where the transmitter wants to transmit a pair of public and
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confidential messages to each legitimate receiver, and established the joint secrecy capacity for the degraded

channels and when the confidential message to the strong receiver is absent. Nested information transmission

with secrecy constraints were considered in [9]. This work investigated the transmission of one common and

one confidential message over a BC with two receivers and one eavesdropper, where the common message

is to be delivered to both legitimate receivers and the eavesdropper, whilst the confidential message is to

be delivered to both legitimate receivers but kept secret from the eavesdropper. A general achievable rate

region is derived, and the secrecy capacity is established when the two legitimate receivers are less noisy

than the eavesdropper. In some cases, the indirect decoding is shown to provide an inner bound that is

strictly larger than the direct extension of Csiszár and Köner’s approach. Another relevant direction is the

BC with privacy constraints [23]–[25]. The model was first introduced by Cai and Lam in [23], where each

receiver not only should correctly decode its own message but also obtain no information about the message

of the other receiver. In [23], the authors focused on the deterministic BC and established its capacity region.

The general inner and outer bound were established later in [24]. Recently, the authors of [25] considered

an extension of this two-receiver BC model (i.e., BC with one common and two private messages, where

each private message should satisfy a pre-specified constraint measured at the other receiver). The capacity

regions are determined for semi-deterministic and physically degraded BCs and the BC with a degraded

message set.

Consider secure broadcasting when there is no common message or public message involved. In case

that only one confidential message is to be delivered, then at the eavesdropper both the joint secrecy

constraint and the individual secrecy constraint reduce to the same. However, in case that independent

confidential massages are to be delivered to multi-receivers, the two secrecy constraints can be quite different.

By definition, the individual secrecy constraint is weaker than the joint one. The joint secrecy, however, is not

always affordable [11], and satisfying the individual secrecy can provide positive rates under these scenarios.

Especially this secrecy notion offers an acceptable security level (that keeps each message to individually

leak negligible information to eavesdropper), while potentially improving transmission efficiency. In [15], this

notion of secrecy is analyzed for the point-to-point channel, and message pieces can be made individually

secret without any degradation of channel capacity. In [26], we considered the problem of achieving individual

secrecy over a BC with receiver side information (where each receiver has the desired message of the other

receiver as side information). The individual secrecy rate region results are obtained for general models

with full characterization for some special cases (e.g.: of either a strong or weak eavesdropper compared

to both legitimate receivers). More detailed discussion and results on this model are presented in [27]. The

joint secrecy counterpart for this problem is studied in [28] and in [29], where the latter work also considers

nested information models (referred to as cognitive messages therein) under both individual and joint secrecy

constraints. We remark that, in these models with side information, the readily available message of the other

user can serve as secret key (in one-time pad fashion). And, this coding strategy satisfies the individual

secrecy condition as the analysis for secrecy is performed per message basis (i.e., in an individual fashion),
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where each analysis considers the other message as secret key.

In this work, the problem of secure broadcasting subject to the individual secrecy constraints is analyzed.

Wyner’s secrecy coding continues to play an important role. Nevertheless, we find that Carleial-Hellman’s

secrecy coding is also essential for the individual secrecy setting. (As compared to prior works, the side

information is absent at receivers in this model). Using the insights gained from the previous studies, we

construct a superposition coding approach for special class of BCs (e.g., for certain less noisiness/degradation

orders) and utilize Marton’s coding for the general case. Overall, the results here establishes a comparison

between different secrecy notions in BCs, in particular comparing BC with no secrecy constraints, BC with

joint secrecy constraints with that of individual secrecy constraints.

D. Notations and Organization

In this paper, we follow the convention to denote random variables by capital letters, their realizations

by the corresponding lower case letters and their images (or ranges) by calligraphic letters. In addition, we

use Xn to denote the sequence of variables (X1, · · · , Xn), where Xi is the i-th variable in the sequence,

Xi−1 the sequence (X1, · · · , Xi−1) and Xn
i+1 the sequence (Xi+1, · · · , Xn). R+ is used to denote the set of

nonnegative real numbers. [a : b] is used to represent the set of natural numbers between a and b. We use

shorthands [a]+ = max{0, a}, and C(x) = 1
2 log2(1 + x).

The rest of the paper is organized as follows. Section II introduces the system model, and Section III

provides the results for the determistic case. Main results for the discrete memoryless model is given in

Section IV, and for the Gaussian case in Section V. Section VI concludes the paper. To enhance the flow,

details are relegated to appendices.

II. System model

Consider a DM-BC with two legitimate receivers and one passive eavesdropper defined by p(y1, y2, z|x).

The model is shown in Fig. 1. The transmitter aims to send messages m1,m2 to receiver 1, 2, respectively.

Suppose that xn is the channel input, whilst yn1 (at receiver 1), yn2 (at receiver 2) and zn (at eavesdropper),

are the channel outputs. By the discrete memoryless nature of the channel, we have

p(yn1 , yn2 , zn|xn) =
n∏
i=1

p(y1i, y2i, zi|xi). (1)

A (2nR1 , 2nR2 , n) secrecy code for the DM-BC p(y1, y2, z|x) consists of

• Two message setsM1 andM2, where m1 ∈M1 = [1 : 2nR1 ] and m2 ∈M2 = [1 : 2nR2 ];

• a (randomized) encoder that assigns a codeword xn to each message pair (m1,m2); and

• two decoders, where decoder i (at legitimate receiver i) assigns an estimate of mi, say m̂i, or an error

to each received sequence yni .

The messages M1,M2 are assumed to be uniformly distributed over their corresponding message sets.

Therefore, we have Ri = 1
nH(Mi), for i = 1, 2. Associated with the (2nR1 , 2nR2 , n) secrecy code, the individual
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information leakage rates are defined as RL,i = 1
nI(Mi;Zn) for i = 1, 2, while the joint information leakage

rate is defined as RL = 1
nI(M1,M2;Zn).

Denote the average probability of decoding error at receiver i as Pne,i = Pr(Mi 6= M̂i). The rate pair

(R1, R2) is said to be individual secrecy achievable, if there exists a sequence of (2nR1 , 2nR2 , n) codes such

that

Pne,i ≤ εn, for i = 1, 2 (2)

RL,i ≤ τn, for i = 1, 2 (3)

lim
n→∞

εn = 0 and lim
n→∞

τn = 0. (4)

Note that, (3) corresponds to the individual secrecy constraints. If the coding schemes fulfill (2), (4) and

RL ≤ τn, (5)

then the rate pair (R1, R2) is said to be achievable under joint secrecy. Clearly, the joint secrecy constraint

(5) implies the individual secrecy (3), and hence the jointly secret achievable rate pairs are by definition

achievable as individually secret.

Two important classes of DM-BC are the classes of less noisy channels and the class of degraded channels,

and will be also addressed in this paper. Given a DM-BC that is defined by p(y1, y2, z|x), formally, Y is said

to be less noisy than Z, if

I(U ;Y ) ≥ I(U ;Z) (6)

holds for any random variable U such that U → X → (Y,Z) forms a Markov chain. And, Z is said to be a

physically degraded version of Y, if

p(y, z|x) = p(y|x)p(z|y), (7)

i.e., X → Y → Z forms a Markov chain for any input random variable X. More generally, Z is said to be

a stochastically degraded (or simply degraded) version of Y, if there exists a random variable Ỹ such that Ỹ

has the same conditional probability mass function as Y (given X), and X → Ỹ → Z forms a Markov chain.

III. A special instance: linear deterministic case

Let us first take a look at the deterministic broadcast channel. In this model, the received signals at the

legitimate receivers and the eavesdropper are given by

Y1 = Dq−n1X; (8)

Y2 = Dq−n2X; (9)

Z = Dq−neX; (10)

where X is the binary input vector of length q = max{n1, n2, ne}; D is the q × q down-shift matrix; n1, n2

and ne are the integer channel gains of the channels from the transmitter to receiver 1, receiver 2, and the
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eavesdropper, respectively. Without loss of generality, we assume that n1 ≥ n2. Under this assumption, Y2

is a degraded version of Y1 according to the channel definition. In this case, we have the following theorem:

Theorem 1. The individual secrecy capacity region of the linear deterministic broadcast channel with an

external eavesdropper is the set of the rate pairs (R1, R2) ∈ R2
+ defined by

R1 ≤ [n1 − ne]+;

R2 ≤ [n2 − ne]+;

R1 +R2 ≤ n1.

(11)

Proof: See Appendix A.

Remark: Note that in our achievability schemes, the elements of the input vector X are i.i.d. Bern( 1
2 )

in all scenarios. That is, Bern( 1
2 ) serves as an optimal input distribution to achieve the individual secrecy

capacity. Nevertheless, this universal choice is not the only optimal one. As an alternative, one can simply

zero-pad those r(k) bits, where random bits are set in our proposals.

Similarly one can derive the following theorems for the linear deterministic broadcast channel: without

secrecy constraint, and under the joint secrecy constraint.

Theorem 2. The capacity region of the linear deterministic broadcast channel is the set of the rate pairs

(R1, R2) ∈ R2
+ defined by

R2 ≤ n2;

R1 +R2 ≤ n1.
(12)

Proof: Under the assumption that n1 ≥ n2, (12) follows directly from the capacity region of the degraded

BC [2], [3], [19].

Theorem 3. The joint secrecy capacity region of the linear deterministic broadcast channel with an external

eavesdropper is the set of the rate pairs (R1, R2) ∈ R2
+ defined by

R2 ≤ [n2 − ne]+;

R1 +R2 ≤ [n1 − ne]+.
(13)

Proof: Under the assumption that n1 ≥ n2, we consider the following different scenarios:

• In case of a more noisy eavesdropper, i.e., as q = n1 ≥ n2 ≥ ne, (13) follows directly from the joint

secrecy capacity region of the degraded BC [7, Corollary 2];

• In other cases (i.e., as q = n1 ≥ ne ≥ n2, or as q = ne ≥ n1 ≥ n2), the channel degenerates to a

degraded wiretap channel as R2 = 0 or R1 = 0. As a direct consequence, its joint secrecy capacity

region (13) reduces to the ones for the wiretap channel [13], [14].
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Fig. 2: Capacity regions of deterministic BC.

For the linear deterministic BC, we note that non-degenerate individual/joint secrecy rate regions are

possible only for the case as n1 ≥ n2 ≥ ne. Its capacity regions under different secrecy constraints are

depicted in Fig. 2.

1) Without any secrecy constraints, the capacity region is a triangle with one missing corner, where the

triangle is caused by the non-negativity of the rates and the upper bound on the sum rate (since two

legitimate receivers share the same transmission channel); while the missing corner is due to the fact

that the transmission rate R2 is upper bounded by its channel capacity (i.e., n2).

2) Under individual secrecy constraint:

• The capacity region is a rectangle in case of ne ≤ n2 ≤ 2ne. In this case, the transmitter could

send messages to both legitimate receivers up to their individual secrecy capacity (n1−ne, n2−ne
bits, respectively) in one channel use (up to n1 bits).

• The capacity region is a rectangle with one missing corner in case of n2 > 2ne. In this case,

the transmitter could not send secret messages to both legitimate receivers up to their individual

secrecy capacity (n1 − ne, n2 − ne bits, respectively) in one channel use (up to n1 bits).

Note that in both cases, receiver 1 could decode the message to receiver 2 (due to the degradedness of

the channel). Thus m2 could be regarded as side information available at receiver 1. This advantage

could be explored in the transmission phase where part of m1 could be secured via one-time pad

[12] with m2 while the rest via Wyner’s secrecy coding [13], [14]. Besides, compared to the capacity

region without any secrecy constraints, there is ne bits loss for the maximal transmission rates R1, R2,

respectively, due to the individual secrecy constraint.

3) Under joint secrecy constraint, the capacity region is a triangle with one missing corner. Compared to
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the capacity region without any secrecy constraints, there is not only a loss of ne bits for the maximal

transmission rates R1, R2, respectively, (as under the individual secrecy constraint), but also ne bits

loss for the sum rate R1 +R2. This additional loss on the sum rate R1 +R2 is due to the fundamental

difference between the joint secrecy (3) and the individual secrecy (5) constraints.

IV. DM-BC with an external eavesdropper

In this section, we investigate the DM-BC with an external eavesdropper where the individual secrecy

constraint is imposed. For this channel model, similar to the discussion in [11], positive rate pairs (i.e.,

(R1, R2) ∈ R2
+) are not possible, if the eavesdropper’s channel is less noisy than either legitimate receiver’s

channel.

A. Primitive approach

A primitive approach is to utilize the secrecy coding while regarding one message as (partial) randomness

for ensuring the individual secrecy of the other. The idea is similar to Carleial-Hellman’s secrecy coding [15],

in the sense that the eavesdropper should be kept totally ignorant of each message individually. Differently

from [15], here two messages are aimed at different destinations. As a direct consequence (if only such a

secrecy coding is employed), the sum rate is limited by the worse channel to the legitimate receivers.

Theorem 4. For the DM-BC with an external eavesdropper, an achievable individual secrecy rate region is

given by the union of the rate pairs (R1, R2) ∈ R2
+ satisfying

R1 +R2 ≤ min{I(U ;Y1), I(U ;Y2)}

max{R1, R2} ≤ min{I(U ;Y1), I(U ;Y2)} − I(U ;Z)
(14)

over all p(u)p(x|u).

Proof: See Appendix B.

An intuitive interpretation of the achievable region in (14) is as follows. The first inequality in (14) imposes

condition on the sum rate R1 + R2, which is due to decodability constraints at both legitimate receivers.

While, the second inequality imposes condition on both individual rates, i.e., R1, R2. This follows from the

spirit of Carleial-Hellman’s secrecy coding for the purpose of individual secrecy. That is, for each message,

at least I(U ;Z) randomness is needed to keep it secret from the eavesdropper.

Note that (14) can be rewritten in a compact form as follows:

max{R1 +R2,max{R1, R2}+ I(U ;Z)} ≤ min{I(U ;Y1), I(U ;Y2)}. (15)

Remarkably, in the case that the left-hand side (LHS) of (15) equals to R1 +R2, we have R1, R2 ≥ I(U ;Z)

and it implies that Un codewords are fully employed to carry the individually secured messages. (That

is, each message plays also the role of randomness to ensure the secrecy of the other and no additional
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randomness is needed since Ri = H(Mi)/n ≥ I(U ;Z)). In the other case, additional randomness is needed

to ensure the individual secrecy of both messages.

This primitive approach is optimal if the channels to both legitimate receivers are statistically identical.

However, it is not optimal in general, since both rates are limited by the worse legitimate receiver. For

instance, suppose that Y1 is strictly less noisy than Y2 = Z (i.e., I(U ;Y1) > I(U ;Y2) = I(U ;Z) for any

p(u, x).) Then, employing this primitive approach will convey no secret information to either legitimate

receiver. On the other hand, positive secret rate (i.e., R1 ∈ R+) is clearly possible by ignoring the worse

legitimate receiver, and employing Wyner’s secrecy coding for the resulting wiretap channel [13].

In order to further employ the channel advantage of the strong legitimate receiver against the eavesdropper,

we propose the following superposition coding approach.

B. Superposition coding approach

It is well-known that superposition coding is optimal for a degraded broadcast channel whereX → Y1 → Y2

forms a Markov chain, wherein the weak receiver could decode the cloud center whilst the strong receiver

could decode both the cloud center and satellite codewords [19]. Such a coding scheme explores the channel

advantage of the stronger legitimate receiver, so that the messages conveyed are not bounded by the worse

channel. Utilizing such a superposition coding framework with embedded Carleial-Hellman’s secrecy coding

in the layer of cloud codeword and Wyner’s secrecy coding in the layer of the satellite codeword, we have

the following achievable individual secrecy rate region.

Theorem 5. For the DM-BC with an external eavesdropper, an achievable individual secrecy rate region is

given by the union of rate pairs (R1, R2) ∈ R2
+ with R1 = R1s +R1k, where (R1s, R1k) ∈ R2

+, that satisfies

Rk ≤I(U ;Y2)

R1s ≤I(V1;Y1|U)− I(V1;Z|U)

Rk +R1s ≤I(U, V1;Y1)− I(V1;Z|U)

(16)

with

Rk = max {R1k +R2,max{R1k, R2}+ I(U ;Z)} (17)

Or, equivalently in terms of (R1, R2),

R2 ≤ I(U ;Y2)− I(U ;Z),

R1 ≤ [I(V ;Y1|U)− I(V ;Z|U)]+ + I(U ;Y2)− I(U ;Z)

max{R1, R2} ≤ [I(V ;Y1|U)− I(V ;Z|U)]+ + I(U ;Y1)− I(U ;Z)

R1 +R2 ≤ [I(V ;Y1|U)− I(V ;Z|U)]+ + min{I(U ;Y1), I(U ;Y2)}

(18)

over all p(u)p(v|u)p(x|v).

Proof: See Appendix C.



12

Our proposed superposition coding scheme consists of two coding layers. In particular, m2 and part of

m1 (say m1k) are conveyed via the first layer by employing Carleial-Hellman’s secrecy coding, where each

message not only plays the role of being the information to be destined to a different legitimate but also the

(partial) randomness for the other message to be (individually) secured from the eavesdropper. In the second

layer, extra information is conveyed via the satellite codewords to one of the receivers (assumed receiver 1

here), in which an extra part of the message (say m1s) is secured by employing Wyner’s secrecy coding.

Applying this superposition coding with embedded different secrecy coding in two coding layers, one readily

achieves the individual secrecy rate region as provided in Theorem 5. We note that Theorem 5 does not

require any less noisiness order between the legitimate receivers.
We note that, the first inequality (i.e., the bound on Rk) in (16) is contributed by the cloud codewords

in the first coding layer for (m1k,m2) and the fact that the cloud codewords will be decoded at receiver

2; whilst the second inequality in (16) gives the extra secret information (if any) for the receiver 1, i.e.,

achievable R1s, that is carried by the satellite codewords in the second coding layer for m1s (just as for

a classical wiretap channel); the third inequality in (16) comes from the fact that receiver 1 uses indirect

decoding to decode m1 = (m1k,m1s) and there is a rate loss of I(V1;Z|U) for the sake of the individual

secrecy of the message.
Such a superposition coding scheme explores not only the advantage of Carleial-Hellman’s secrecy coding

for the purpose of individual secrecy that is discussed in the primitive approach, but also the channel

advantage of the strong receiver (since he/she may decode both the cloud and satellite codewords) to obtain

extra gains in the secret rate, i.e., R1s. Assuming that Y1 is less noisy than Y2, Theorem 5 reduces to the

following.

Corollary 6. For the DM-BC with an external eavesdropper such that Y1 is less noisy than Y2, an achievable

individual secrecy rate region is given by the union of rate pairs (R1, R2) ∈ R2
+ with R1 = R1s +R1k, where

(R1s, R1k) ∈ R2
+, that satisfies

Rk ≤ I(U ;Y2)

R1s ≤ I(V ;Y1|U)− I(V ;Z|U)
(19)

with Rk as defined in (17). Or, equivalently in terms of (R1, R2),

R2 ≤ I(U ;Y2)− I(U ;Z),

R1 ≤ [I(V ;Y1|U)− I(V ;Z|U)]+ + I(U ;Y2)− I(U ;Z)

R1 +R2 ≤ [I(V ;Y1|U)− I(V ;Z|U)]+ + I(U ;Y2)

(20)

over all p(u)p(v|u)p(x|v).

Remark: We have the following interesting observations:

• Setting U = ∅, i.e., R2 = R1k = 0, the region (19) of R1 = R1s coincides with the secrecy capacity

region of the wiretap channel [13], [14];
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• If we let Z = ∅, and R1k = 0, the region (19) reduces to the capacity region of the degraded broadcast

channel, as established in [1]–[3].

• If we let R1k = 0, then the region (19) reduces to the joint secrecy capacity region of the degraded

broadcast channel [7], [30]. The proof follows when the individual secrecy constraints (i.e., (3)), are

replaced with joint secrecy constraints (i.e., (5)), for which the resulting coding scheme, as shown in

[7], [30], achieves the joint secrecy capacity region for the degraded broadcast channel.

Theorem 7. For the DM-BC with an external eavesdropper such that

1) Y1 is less noisy than Y2;

2) Y2 is a deterministic function of X; and

3) Z is a degraded version of Y2,

the individual secrecy capacity region is given by the union of rate pairs (R1, R2) ∈ R2
+ satisfying

R2 ≤ H(Y2|Z)

R1 ≤ I(X;Y1)− I(X;Z)

R1 +R2 ≤ I(X;Y1)

(21)

over all p(x).

Proof: The achievability follows directly from Corollary 6 by taking U = Y2 and V = X. (Note that

in case that Y2 is a deterministic function of X, and X → Y2 → Z forms a Markov chain, we have

I(X;Z|Y2) = 0, H(Y2) = I(X;Y2) and I(Y2;Z) = I(X;Z).) For the converse, the first two inequalities

for R1, R2, respectively, follow directly from the classical results of wiretap channel by simply ignoring the

other legitimate receiver [14]. And, the last inequality follows directly from the upper bound on the sum

rate for the relaxed setting of without any secrecy constraints.

In the following, we provide an upper bound on the individual secrecy capacity region, that will be used

to derive a special case secrecy capacity result in the sequel.

Theorem 8. For the DM-BC with an external eavesdropper such that

1) Y2 is a degraded version of Y1; and

2) Y2 is less noisy than Z,

the individual secrecy capacity region is upper bounded by the union of rate pairs (R1, R2) ∈ R2
+ satisfying

R2 ≤ I(U ;Y2)− I(U ;Z)

R1 ≤ I(V ;Y1|U)− I(V ;Z|U) + I(U ;Y2)− I(U ;Z)

R1 +R2 ≤I(V ;Y1|U) + I(U ;Y2)

(22)

over all p(u)p(v|u)p(x|v).

Proof: See Appendix D.
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Theorem 9. For the DM-BC with an external eavesdropper such that

1) Y2 is a degraded version of Y1;

2) Y2 is less noisy than Z; and

3) I(U ;Z) ≤ I(U ;Y2) ≤ 2I(U ;Z) holds for any p(u, v, x),

the individual secrecy capacity region is given by the union of rate pairs (R1, R2) ∈ R2
+ satisfying

R2 ≤ I(U ;Y2)− I(U ;Z),

R1 ≤ I(V ;Y1|U)− I(V ;Z|U) + I(U ;Y2)− I(U ;Z)
(23)

over all p(u)p(v|u)p(x|v).

Proof: The achievability follows from Corollary 6 when the channel fulfills the conditions 1), 2) and 3).

In particular, the sum rate condition becomes redundant due to condition 3). Since the derived region in

this case coincides with the upper bound in Theorem 8, it gives the individual secrecy capacity region.

Remark: One can recall the linear deterministic BC with an external eavesdropper. In particular, it is an

instance of Theorem 7 in case of n1 ≥ n2 ≥ ne; and an instance of Theorem 9 in case of ne ≤ n2 ≤ 2ne.

Its individual secrecy capacity is shown in Fig. 2, and can be obtained by taking U = Y2 = Dn1−n2X (it is

assumed that n2 ≤ n1) and V = X in the superposition coding as described in Theorem 5.

C. Marton’s coding approach

In the previous subsection, the superposition coding approach is shown to be optimal for some special

cases if the receivers and the eavesdropper fulfill a certain degradation/less noisiness order.

Here, we consider the general case where there may not be degradation/less noisiness order between the

legitimate receivers, and devise a coding scheme by utilizing Marton’s coding, attempting to send extra secret

information to both legitimate receivers. In particular, the common message extended version of Marton’s

coding approach allows for a transmission of a cloud center to both receivers. In addition to this cloud center,

two separate codewords can be formed via the Marton’s coding. We have the following result.

Theorem 10. For the DM-BC with an external eavesdropper, an achievable individual secrecy rate region

is given by the union of rate pairs (R1, R2) ∈ R2
+ with R1 = R1s + R1k and R2 = R2s + R2k, where

(R1k, R1s, R2k, R2s) ∈ R4
+, that satisfies

R1s ≤I(V1;Y1|U)− I(V1;Z|U)

R2s ≤I(V2;Y2|U)− I(V2;Z|U)

Rk +R1s ≤I(U, V1;Y1)− I(V1;Z|U)

Rk +R2s ≤I(U, V2;Y2)− I(V2;Z|U)

(24)

with

Rk = max {R1k +R2k,max{R1k, R2k}+ I(U ;Z)} (25)
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over all p(u)p(v1, v2|u)p(x|v1, v2) subject to I(V1;V2|U) + I(V1, V2;Z|U) ≤ I(V1;Z|U) + I(V2;Z|U);

Or, equivalently in terms of (R1, R2),

R2 ≤ [I(V2;Y2|U)− I(V2;Z|U)]+ + I(U ;Y2)− I(U ;Z)

R2 ≤
2∑
i=1

[I(Vi;Yi|U)− I(Vi;Z|U)]+ + I(U ;Y1)− I(U ;Z)

R1 ≤ [I(V1;Y1|U)− I(V1;Z|U)]+ + I(U ;Y1)− I(U ;Z)

R1 ≤
2∑
i=1

[I(Vi;Yi|U)− I(Vi;Z|U)]+ + I(U ;Y2)− I(U ;Z)

R1 +R2 ≤
2∑
i=1

[I(Vi;Yi|U)− I(Vi;Z|U)]+ + min{I(U ;Y1), I(U ;Y2)}

(26)

over all p(u)p(v1, v2|u)p(x|v1, v2) subject to I(V1;V2|U) + I(V1, V2;Z|U) ≤ I(V1;Z|U) + I(V2;Z|U).

Proof: See Appendix E.

The coding approach we develop here is built on the aforementioned primitive approach and superposition

approach, but with the framework of Marton’s coding. That is, we splitMi intoMi = (Mik,Mis), for i = 1, 2.

In particular, (M1k,M2k) are encoded into the cloud codeword Un (as in the primitive approach), where

individual secrecy is guaranteed by employing Carleial-Hellman’s secrecy coding; moreover, additional infor-

mation M1s,M2s are carried by individual satellite codewords V n1 , V n2 , respectively, (as in the superposition

approach for each legitimate receiver). Note that, the secrecy of Mis for i = 1, 2, is ensured by employing

Wyner’s secrecy coding. Finally, following the spirit of Marton’s coding, (V n1 , V n2 ) is chosen jointly, and

corresponding codeword Xn is sent to the channel.

As reflected in the obtained region in (24), Rk (as defined in (25)) is contributed by applying Carleial-

Hellman’s secrecy coding in the cloud layer on (M1k,M2k) to obtain their individual secrecy; the first two

inequalities are contributed by employing Wyner’s secrecy coding in the individual satellite layer to ensure

the secrecy of the extra message Mis to each legitimate receiver i. The last two inequalities in (24) come

from the fact that receiver i, i = 1, 2, uses indirect decoding to decode mi = (mik,mis) and there is a rate

loss of I(Vi;Z|U) for the sake of the individual secrecy.

Remark: We report the following observations:

• Setting V1, V2, X = U, i.e., R1s = R2s = 0, the region reduces to the one in (14) by the primitive

approach.

• If we let V2 = U and X = V1, i.e., R2s = 0, the region reduces to the one in (16) by the superposition

approach.

D. Joint secrecy rate region

Revising the secrecy proofs by fulfilling the joint secrecy constraints (5) (instead of the individual secrecy

constraints (3) as considered in previous subsections), we obtain achievable joint secrecy rate region by utiliz-
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ing the aforementioned coding approaches. We note that both the primitive approach and the superposition

approach serve as underneath coding layers for the Marton’s coding approach. Therefore, their resultant

rate regions are also included as special cases of the region derived by the Marton’s coding approach, which

is given as follows.

Theorem 11. (Achievable joint secrecy rate region via Marton’s coding) For the DM-BC with an external

eavesdropper, an achievable joint secrecy rate region obtained by Marton’s coding is the union of the rate pairs

(R1, R2) ∈ R2
+ satisfying

R1 ≤ [I(V1;Y1|U)− I(V1;Z|U)]+ + I(U ;Y1)− I(U ;Z)

R2 ≤ [I(V2;Y2|U)− I(V2;Z|U)]+ + I(U ;Y2)− I(U ;Z)

R1 +R2 ≤
2∑
i=1

[I(Vi;Yi|U)− I(Vi;Z|U)]+ + min{I(U ;Y1), I(U ;Y2)} − I(U ;Z)

(27)

over any p(u, v1, v2, x) = p(u)p(v1, v2|u)p(x|v1, v2) subject to I(V1, V2;Z|U) ≤ I(V1;Z|U) + I(V2;Z|U) −
I(V1;V2|U).

Proof: See Appendix G.

Remark: We have the following observations:

• In case that Y1 is less noisy than Y2, one can take U = V2, then the region (27) reduces to

R2 ≤ I(U ;Y2)− I(U ;Z)

R1 +R2 ≤ [I(V1;Y1|U)− I(V1;Z|U)]+ + I(U ;Y2)− I(U ;Z).
(28)

As shown in [7], [30], (28) is the joint secrecy capacity region of the degraded broadcast channel.

Interestingly, comparing (28) with (23), the only difference is that the term [I(V1;Y1|U)−I(V1;Z|U)]++

I(U ;Y2)− I(U ;Z) upper bounds the sum rate R1 +R2 in (28) under the joint secrecy constraint, while

it upper bounds R1 in (23) under the individual secrecy constraint. This implies that in case of a

comparable eavesdropper (i.e., I(U ;Z) ≤ I(U ;Y2) ≤ 2I(U ;Z) holds for any p(u, v, x)), the strong

receiver could gain in the transmission rate up to that of the weak receiver when a weaker (individual)

secrecy constraint is imposed.

• Compare (27) with the individual secrecy achievable region in (26). There is a gain of I(U ;Z) bits on

the sum transmission rate R1 +R2 as a trade for having a weaker notion of security.

• [10, Theorem 1] gives an achievable rate region of the BC with two receivers and one eavesdropper,

where the transmitter wants to transmit a pair of public and confidential messages to each legitimate

receiver. (No secrecy constraints on the public messages, but two confidential messages are required to

fulfill the joint secrecy constraint at the eavesdropper.) Setting both rates for two public messages to
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Fig. 3: Gaussian BC with an external eavesdropper.

be zero in [10, Theorem 1], one can obtain the following achievable joint secrecy rate region:

R1 ≤ [I(V1;Y1|U)− I(V1;Z|U)]+ + min{I(U ;Y1), I(U ;Y2)} − I(U ;Z)

R2 ≤ [I(V2;Y2|U)− I(V2;Z|U)]+ + min{I(U ;Y1), I(U ;Y2)} − I(U ;Z)

R1 +R2 ≤
2∑
i=1

I(Vi;Yi|U) + min{I(U ;Y1), I(U ;Y2)} − I(V1;V2|U)− I(U, V1, V2;Z)

(29)

over any p(u, v1, v2, x) = p(u)p(v1, v2|u)p(x|v1, v2) subject to I(V1, V2;Z|U) ≤ I(V1;Z|U)+I(V2;Z|U)−
I(V1;V2|U) and I(U ;Z) ≤ I(U ;Yi), I(Vi;Z|U) ≤ I(Vi;Yi|U) for i = 1, 2.

Comparing (29) with our joint secrecy rate region result in (27), we see that our upper bounds on R1, R2

are potentially greater while the upper bound on R1 + R2 is potentially smaller. The reason is caused

by the fact that in our achievablility scheme, indirect decoding is applied at each legitimate receiver

(note that joint unique decoding works the same here without any potential rate loss); while in [10],

sequential decoding is employed at both legitimate receivers (i.e., decode Un first, then V ni . This also

results in an additional constraint on U, i.e., I(U ;Z) ≤ I(U ;Yi) for i = 1, 2). Besides, the difference on

the sum rate bound is due to the fact that in our joint secrecy proof, V n1 , V n2 , are processed individually,

whereas in [10, Theorem 1] (V n1 , V n2 ) as jointly.

V. Gaussian BC with an external eavesdropper

The Gaussian BC with an external eavesdropper is shown in Fig. 3. Suppose X is the channel input with

a power constraint P on it and the signals received by both receivers and the eavesdropper are given by

Y1 = X +N1;

Y2 = X +N2;

Z = X +Ne,
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where N1, N2 and Ne are additive white Gaussian noise (AWGN) independent of X, where N1 ∼ N (0, σ2
1),

N2 ∼ N (0, σ2
2) and Ne ∼ N (0, σ2

e), respectively.

According to the noise level in the channels to both receivers and the eavesdropper, the overall channel

can be regarded to be stochastically degraded. For simplicity, we only consider its corresponding physically

degraded instances. The reason is that the same analysis can be easily extended to the stochastically degraded

case. That is, the scenario: σ2
e ≥ σ2

2 ≥ σ2
1 , as X → Y1 → Y2 → Z forms a Markov chain, is of our interest.

In the previous section, single-letter expressions for the achievable individual secrecy rate regions and

upper bounds have been proposed for the DM-BC, which involve auxiliary variable U and V . Applying

the standard discretization procedure [19], one can extend these results to the Gaussian case. However, it

is in general not clear what would be the optimal choice of (U, V ). In this section, we are going to derive

computable inner and outer bounds on the individual secrecy capacity region of the Gaussian BC with an

external eavesdropper. Interestingly, we show that our inner bound (by employing the superposition coding)

approaches the individual secrecy capacity region within a constant gap (i.e., 0.5 bits).

A. An outer bound

Theorem 12. An outer bound to the individual secrecy capacity region for the Gaussian BC with an external

eavesdropper (where X → Y1 → Y2 → Z forms a Markov chain) is given by the union of the rate pairs

(R1, R2) ∈ R2
+ satisfying

R1 ≤C
(
α(1− γ)P
γαP + σ2

1

)
− C

(
α(1− γ)P
γαP + σ2

e

)
+ min

{
R2, C

(
(1− γα)P
γαP + σ2

e

)}
(30)

R2 ≤C
(

(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
, (31)

where α, γ ∈ [0, 1].

Proof: First let us consider R2.

nR2 = H(M2)
(a)
≤ I(M2;Y n2 ) + nλ2(εn)

(b)
≤ I(M2;Y n2 )− I(M2;Zn) + nλ2(εn, τn)

=h(Y n2 )− h(Zn)︸ ︷︷ ︸
nR1

2

−(h(Y n2 |M2)− h(Zn|M2)︸ ︷︷ ︸
nR2

2

) + nλ2(εn, τn),

where (a) is due to the reliability constraint (2), Fano’s inequality and by taking λ2(εn) = 1/n+ εnR2; (b)

is due to the individual secrecy constraint (3) and by taking λ2(εn, τn) = τn + λ2(εn).

Note that according to [31, Lemma 10 and equation (75)], nR1
2 can be bounded by:

nR1
2 = h(Y n2 )− h(Zn) ≤ n

2 log P + σ2
2

P + σ2
e

. (32)
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Further, due to the channel degradedness, we have for nR2
2 :

nR2
2 ≥ h(Y n2 |Xn)− h(Zn|Xn) = n

2 log σ
2
2
σ2
e

;

nR2
2 ≤ h(Y n2 )− h(Zn) ≤ n

2 log P + σ2
2

P + σ2
e

.

Hence, there exists an α ∈ [0, 1] such that

nR2
2 = h(Y n2 |M2)− h(Zn|M2) = n

2 log αP + σ2
2

αP + σ2
e

. (33)

Combining (32) and (33), we have

nR2 = nR1
2 − nR2

2 + nλ2(εn, τn)

≤ n

2 log P + σ2
2

P + σ2
e

− n

2 log αP + σ2
2

αP + σ2
e

+ nλ2(εn, τn)

= n

2 log (P + σ2
2)(αP + σ2

e)
(αP + σ2

2)(P + σ2
e) + nλ2(εn, τn).

That is,

R2 ≤ C
(

(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
+ λ2(εn, τn). (34)

Now we proceed to bound R1.

nR1 = H(M1) = H(M1|M2)
(c)
≤ I(M1;Y n1 |M2) + nλ1(εn)

= I(M1;Y n1 |M2)− I(M1;Zn|M2) + I(M1;Zn|M2) + nλ1(εn)

= h(Y n1 |M2)− h(Zn|M2)︸ ︷︷ ︸
nR1

1

−(h(Y n1 |M1,M2)− h(Zn|M1,M2)︸ ︷︷ ︸
nR2

1

) + I(M1;Zn|M2)︸ ︷︷ ︸
nR3

1

+nλ1(εn), (35)

where (c) is due to the reliability constraint (2), Fano’s inequality and by taking λ1(εn) = 1/n+ εnR1.

Applying Costa’s entropy power inequality (EPI) [32, Theorem 1] and using (33), we obtain

nR1
1 = h(Y n1 |M2)− h(Zn|M2) ≤ n

2 log αP + σ2
1

αP + σ2
e

. (36)

(A more detailed proof of (36) is given in Appendix H.)

For nR2
1, due to the channel degradedness, we have

nR2
1 ≥ h(Y n1 |Xn)− h(Zn|Xn) = n

2 log σ
2
1
σ2
e

;

nR2
1 ≤ h(Y n1 |M2)− h(Zn|M2) ≤ n

2 log αP + σ2
1

αP + σ2
e

.

Hence, there exists a γ ∈ [0, 1] such that

nR2
1 = h(Y n1 |M1,M2)− h(Zn|M1,M2)

= n

2 log γαP + σ2
1

γαP + σ2
e

. (37)
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Applying the entropy power inequality (EPI) [33] and using (37) for h(Y n1 |M1,M2)−h(Zn|M1,M2), we can

bound h(Zn|M1,M2) by

h(Zn|M1,M2) ≥ n

2 log 2πe(γαP + σ2
e). (38)

(A more detailed proof of (38) is given in Appendix I.)

For nR3
1, we observe that

nR3
1 = I(M1;Zn|M2) = I(M1,M2;Zn)− I(M2;Zn)

= I(M2;Zn|M1) + I(M1;Zn)− I(M2;Zn)
(d)
≤ nR2 + nτn,

where (d) is due to the individual secrecy constraint (3).

Moreover, we can bound nR3
1 as follows

nR3
1 = I(M1;Zn|M2) = h(Zn|M2)− h(Zn|M1,M2)

≤ h(Zn)− h(Zn|M1,M2)

≤ n

2 log P + σ2
e

γαP + σ2
e

.

Therefore, we have so far

nR1 = nR1
1 − nR2

1 + nR3
1 + nλ1(εn)

≤ n

2 log αP + σ2
1

αP + σ2
e

− n

2 log γαP + σ2
1

γαP + σ2
e

+ min
{
nR2,

n

2 log P + σ2
e

γαP + σ2
e

}
+ nλ1(τn, εn)

= n

2 log αP + σ2
1

γαP + σ2
1
− n

2 log αP + σ2
e

γαP + σ2
e

+ min
{
nR2,

n

2 log P + σ2
e

γαP + σ2
e

}
+ nλ1(τn, εn),

where λ1(τn, εn) = τn + λ1(εn). That is,

R1 ≤ C
(
α(1− γ)P
γαP + σ2

1

)
− C

(
α(1− γ)P
γαP + σ2

e

)
+ min

{
R2, C

(
(1− γα)P
γαP + σ2

e

)}
+ λ1(τn, εn). (39)

Letting n → ∞, τn, εn → 0, we have λ1(τn, εn), λ2(τn, εn) → 0; and (39), (34) reduce to (30), (31),

respectively. This completes our proof.

By Theorem 12, we easily obtain a looser outer bound as described in the following corollary.

Corollary 13. An outer bound to the individual secrecy capacity region for the Gaussian BC with an external

eavesdropper (where X → Y1 → Y2 → Z forms a Markov chain) is given by the union of the rate pairs

(R1, R2) ∈ R2
+ satisfying

R1 ≤C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
R2 ≤C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
R1 +R2 ≤C

(
αP

σ2
1

)
+ C

(
(1− α)P
αP + σ2

2

)
,

(40)
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where α ∈ [0, 1].

Proof: See Appendix J

B. An inner bound

Theorem 14. An inner bound of the individual secrecy capacity region for the Gaussian BC with an external

eavesdropper (where X → Y1 → Y2 → Z forms a Markov chain) is given by the union of the rate pairs

(R1, R2) ∈ R2
+ satisfying

R1 ≤C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
R2 ≤C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
R1 +R2 ≤C

(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)
,

(41)

where α ∈ [0, 1].

Proof: The region is obtained from Theorem 5 by using jointly Gaussian (U, V ) with U ∼ N (0, (1−α)P ),

V ∼ N (0, αP ), X = U + V , where U and V are independent and α ∈ [0, 1].

C. Individual secrecy capacity region

Theorem 15. As σ2
e ≥ σ2

2 ≥ σ2
1 and P ≥ σ2

e(σ2
e − 2σ2

2)/σ2
2 , the individual secrecy capacity region for the

Gaussian BC with an external eavesdropper is given by the union of the rate pairs (R1, R2) ∈ R2
+ satisfying

R1 ≤C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
R2 ≤C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
,

where α ∈ [0, 1]. In particular when σ2
1 ≤ σ2

2 ≤ σ2
e ≤ 2σ2

2 , the above region serves as the individual secrecy

capacity region for all power levels.

Proof: Consider the inner bound (41). We see that when R2 ≤ C
(

(1−α)P
αP+σ2

e

)
holds, then the sum rate

bound in (41) becomes redundant. In the case that it holds for any α ∈ [0, 1], the inner bound (41) coincides

with the outer bound (40). This happens if maxR2 ≤ C
(

(1−α)P
αP+σ2

e

)
, i.e.,

C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
≤ C

(
(1− α)P
αP + σ2

e

)
. (42)

Under the stated conditions σ2
e ≥ σ2

2 ≥ σ2
1 and P ≥ σ2

e(σ2
e−2σ2

2)/σ2
2 , the inequality above, (42), holds if and

only if α ≥ (σ2
e−σ

2
2)2

P (P+σ2
2) −

σ2
2
P =. (A detailed calculation is given in Appendix L.) As α ≥ 0, (42) holds regardless

of the value of α, if (σ2
e−σ

2
2)2

P (P+σ2
2) −

σ2
2
P ≤ 0 which hold as P ≥ σ2

e(σ2
e − 2σ2

2)/σ2
2 . Finally, we note that this last

condition always holds if σ2
2 ≤ σ2

e ≤ 2σ2
2 as P ≥ 0.

Remark: Theorem 15 establishes the individual secrecy capacity region for all power levels for the com-

parable eavesdropper channel scenario (i.e., having σ2
2 ≤ σ2

e ≤ 2σ2
2). This is the counterpart of Theorem 9



22

for the Gaussian scenario: We have I(U ;Y2) ≤ 2I(U ;Z) for any U ∼ N (0, (1−α)P ), α ∈ [0, 1]. In this case,

the superposition coding is optimal to achieve the individual secrecy capacity region.

For the scenarios where the condition in Theorem 15 does not hold, i.e., when P < σ2
e(σ2

e − 2σ2
2)/σ2

2 , we

note that the same achievable scheme achieves the capacity region in an approximate manner (within half

a bit) as established in the following result.

Theorem 16. The achievable individual secrecy rate region as described in Theorem 14, i.e., the set of

(R1, R2) ∈ R2
+ satisfying (41), approaches the individual secrecy capacity region of the Gaussian BC within

0.5 bits.

Proof: See Appendix K

D. Numerical results with different secrecy constraints

In this subsection, we provide the capacity region results for the Gaussian BC without secrecy constraint

and under the joint secrecy constraint, and make comparisons with our results on the individual secrecy

capacity region that are derived in the previous subsection.

Theorem 17. [19, Theorem 5.3] The capacity region of the Gaussian BC without secrecy constraint is given

by the union of the rate pairs (R1, R2) ∈ R2
+ satisfying

R1 ≤ C
(

(1− α)P
αP + σ2

2

)
R2 ≤ C

(
αP

σ2
1

)
,

(43)

where α ∈ [0, 1].

Theorem 18. [20, Theorem 5] The joint secrecy capacity region of the Gaussian BC with an external

eavesdropper is given by the union of the rate pairs (R1, R2) ∈ R2
+ satisfying

R1 ≤ C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
R2 ≤ C

(
(1− α)P
αP + σ2

1

)
− C

(
(1− α)P
αP + σ2

e

)
,

(44)

where α ∈ [0, 1].

For the Gaussian BC, its capacity regions (or bounds) under different secrecy constraints are depicted in

Fig. 4 (non-trivial case of σ2
1 ≤ σ2

2 ≤ σ2
e is assumed as detailed earlier). The capacity region without secrecy

constraint is enclosed by (green) dashed lines; the joint secrecy capacity region is enclosed by (red) solid

lines; whilst the individual secrecy capacity region or its inner bound are enclosed by (blue) dash-dotted

lines, and the outer bound by (magenta) dotted lines. We observe the followings.

In Fig. 4a and Fig. 4b, we plot capacity regions under different secrecy constraints for some special cases

that satisfy the condition requested in Theorem 15, in which, we have for any joint secrecy achievable
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Fig. 4: Capacity regions of Gaussian BC, where the parameters are chosen such that the following inequalities

are satisfied, in (a)-(b): P ≥ σ2
e(σ2

e − 2σ2
2)/σ2

2 , further in (a): σ2
1 = σ2

2 and (b): σ2
1 < σ2

2 ; in (c)-(d): P <

σ2
e(σ2

e − 2σ2
2)/σ2

2 , further in (c): 2σ2
2 ≤ σ2

e ≤ P + 2σ2
2 and in (d): σ2

e ≥ P + 2σ2
2 , respectively.

(R1, R2), that (R1 +R2, R2) is achievable with individual secrecy. More specifically, Fig. 4a depicts a special

case where both legitimate receivers experience the same noise level. In this case, both the capacity regions

without secrecy constraint and under joint secrecy constraint, are right angled isosceles triangles; while

the capacity region under the individual secrecy constraint is a square, area of which doubles that of the

joint secrecy case. Fig. 4b depicts a more general case where both legitimate receivers experience different

noise levels. The maximum marginal transmission rates (say R∗1, R∗2, respectively) to both receivers are the

same under either joint or individual secrecy constraints, which are strictly smaller than the ones for the

scenario without any secrecy constraints. However, a distinct behavior for the individual secrecy capacity

region is that, if the weak receiver operates at its maximum transmission rate, then the strong receiver

can be still active (unlike the scenarios without secrecy constraint and under joint secrecy constraint). This
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can be visualized by the top-left part of the blue dash-dotted curve, as a straight line. Especially, for this

special case as depicted in Fig. 4b, we have (R∗2, R∗2) pair as individually secret. We note that, form Theorem

15, superposition coding is optimal and I(U ;Y2) − I(U ;Z) ≤ I(U ;Z) holds for any U ∼ N (0, (1 − α)P ),

α ∈ [0, 1]. As receiver 2 operates at rate R2 ≤ RU with RU = I(U ;Y2)− I(U ;Z), the information (say m1k)

up to RU could be carried to receiver 1 via the cloud codeword U while maintaining the individual secrecy

of m2 and m1k. Additional secret information to receiver 1 will be conveyed by the satellite codeword V,

similar to the joint secrecy scenario.

In Fig. 4c and Fig. 4d, the parameters are chosen such that P < σ2
e(σ2

e − 2σ2
2)/σ2

2 , which does not satisfy

the condition given in Theorem 15. Therefore, we use the inner bound (as given in Theorem 14) and the

outer bound (as given in Corollary 13). More specifically, Fig. 4c depicts a case where 2σ2
2 ≤ σ2

e ≤ P + 2σ2
2

(i.e., satisfying (114)). In this case, there exists an α0 = (σ2
e−σ

2
2)2

P (P+σ2
2) −

σ2
2
P , such that a gap between the inner

and outer bound occurs as 0 < α ≤ α0. For the chosen parameter set, we have α0 = 5/12. That is, the

inner bound is tight for α = 0 and α ∈ [5/12, 1], which corresponds to the region where R2 = R∗2 (here

R∗2 = 0.7075) and R2 ∈ [0, 0.2075], respectively. Fig. 4d depicts a case where σ2
e ≥ P + 2σ2

2 (i.e., satisfying

(113)). In this case, the inner and outer bound coincide at α = 0 but not for 0 < α < 1. This indicates

that the top-left part of the (blue) dash-dotted curve, as a straight line, is tight for the individual secrecy.

Differently from the scenarios in Fig. 4a and Fig. 4b, we notice that in Fig. 4c and Fig. 4d, (R∗2, R∗2) pair is

not individually secret. The underlying reason is that I(U ;Y2) − I(U ;Z) ≤ I(U ;Z) does not hold for any

U ∼ N (0, (1−α)P ), α ∈ [0, 1] in this case. In particular, in Fig. 4d, as α = 0 (i.e., all the power is assigned

to the U codeword), we have R∗2 = I(U ;Y2)−I(U ;Z) = 0.7075 and I(U ;Z) = 0.2925. As receiver 2 operates

m2 at rate R∗2 = 0.7075, the maximal information m1 that could be carried to receiver 1 via the codeword U

will be bounded by I(U ;Z) = 0.2925 (according to (41) and (40)) while maintaining the individual secrecy

of m2 and m1.

VI. Conclusion

In this paper, we studied the problem of secure communication over degraded broadcast channel under

the individual secrecy constraint. Compared to the joint secrecy constraint, this relaxed setting allows for

higher secure communication rates at the expense of having a weaker notion of security. As a general result,

we derived several achievable rate regions and characterized the individual secrecy capacity region for some

special cases. In addition, we also investigated the linear deterministic model and the Gaussian model. For

the linear deterministic model, the capacity regions are fully characterized for the cases without secrecy

constraint, under joint and individual secrecy constraint; while for the Gaussian model, a constant gap (i.e.,

0.5 bits within the individual secrecy capacity region) result is obtained. Comparisons are made among the

capacity regions for both models with different secrecy constraints (under no/individual/joint secrecy cases).
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Appendix A

Proof of Theorem 1

The converse can be shown as follows: The first two inequalities for R1, R2, respectively, follow from the

classical results of wiretap channel by simply ignoring the other legitimate receiver. And, the last inequality

follows directly from the upper bound on the sum rate for the relaxed case of without any secrecy constraints.

The achievability can be shown by considering different scenarios, which is classified according to the rela-

tion between the channel gains n1, n2, ne, and the relation between the rates R1, R2. Under the assumption

that n1 ≥ n2, for both cases of q = n1 ≥ ne ≥ n2 and ne ≥ n1 ≥ n2, the individual secrecy capacity region

reduces to the one for the wiretap channel [13], [14] and the achievability follows therein. Here we only need

to consider the rest case q = n1 ≥ n2 ≥ ne. The detailed achievability proof is given as follows.

• If R2 ≤ ne, we have two scenarios:

1) R1 ≤ R2. For this scenario, (11) reduces to the following:

R1 ≤ R2 ≤ min{n2 − ne, ne}.

For its achievability, given m1,m2 with m1 = [m1(1), · · · ,m1(R1)] and m2 = [m2(1), · · · ,m2(R2)],

we send X = [x(1), x(2), · · · , x(n1)]T such that

x(k) =



m1(k)⊕m2(k) 1 ≤ k ≤ R1

r(k) R1 < k ≤ ne
m2(k − ne) ne < k ≤ ne +R2

r(k) ne +R2 < k ≤ n1

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 5.

m1 : m1(1), · · · ,m1(R1)

m2 : m2(1), · · · ,m2(R1), · · · ,m2(R2)

XT :

R1︷ ︸︸ ︷
m1(k)⊕m2(k) r(k)︸ ︷︷ ︸

ne

R2︷ ︸︸ ︷
m2(k − ne)

︸ ︷︷ ︸
≤n2

r(k)

︸ ︷︷ ︸
n1

Fig. 5: Codeword X for a) R1 ≤ R2 ≤ ne.

2) R1 ≥ R2. For this scenario, (11) reduces to the following:

R2 ≤ R1 ≤ n1 − ne; R2 ≤ min{ne, n2 − ne}.
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For its achievability, given m1,m2 with m1 = [m1(1), · · · ,m1(R1)] and m2 = [m2(1), · · · ,m2(R2)],

we send X = [x(1), x(2), · · · , x(n1)]T such that

x(k) =



m1(k)⊕m2(k) 1 ≤ k ≤ R2

r(k) R2 < k ≤ ne
m2(k − ne) ne < k ≤ ne +R2

m1(k − ne −R2) ne +R2 < k ≤ ne +R1

r(k) ne +R1 < k ≤ n1

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 6.

m1 : m1(1), · · · ,m1(R2), · · · ,m1(R1)

m2 : m2(1), · · · ,m2(R2)

XT :

R2︷ ︸︸ ︷
m1(k)⊕m2(k) r(k)︸ ︷︷ ︸

ne

R2︷ ︸︸ ︷
m2(k − ne)

︸ ︷︷ ︸
≤n2

R1−R2︷ ︸︸ ︷
m1(k − ne −R2) r(k)

︸ ︷︷ ︸
n1

Fig. 6: Codeword X for b) R2 ≤ ne and R2 ≤ R1.

• If R2 ≥ ne, we also have two scenarios:

1) R1 ≤ ne. For this scenario, (11) reduces to the following:

R1 ≤ ne ≤ R2 ≤ n2 − ne.

Note that this scenario is possible only when n2 ≥ 2ne. For its achievability, given m1,m2 with

m1 = [m1(1), · · · ,m1(R1)] and m2 = [m2(1), · · · ,m2(R2)], we send X = [x(1), x(2), · · · , x(n1)]T

such that

x(k) =



m1(k)⊕m2(k) 1 ≤ k ≤ R1

r(k) R1 < k ≤ ne
m2(k − ne) ne + 1 ≤ k ≤ ne +R2

r(k) ne +R2 < k ≤ n1

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 7.

2) R1 ≥ ne. For this scenario, (11) reduces to the following:

ne ≤ R1 ≤ n1 − ne; ne ≤ R2 ≤ n2 − ne.

For its achievability, given m1,m2 with m1 = [m1(1), · · · ,m1(R1)] and m2 = [m2(1), · · · ,m2(R2)],
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m1 : m1(1), · · · ,m1(R1)

m2 : m2(1), · · · ,m2(R1), · · · ,m2(R2)

XT :

R1︷ ︸︸ ︷
m1(k)⊕m2(k) r(k)︸ ︷︷ ︸

ne

R2︷ ︸︸ ︷
m2(k − ne)

︸ ︷︷ ︸
≤n2

r(k)

︸ ︷︷ ︸
n1

Fig. 7: Codeword X for c) R1 ≤ ne ≤ R2.

we send X = [x(1), x(2), · · · , x(n1)]T such that

x(k) =



m1(k)⊕m2(k) 1 ≤ k ≤ ne
m2(k − ne) ne < k ≤ ne +R2

m1(k −R2) ne +R2 < k ≤ R1 +R2

r(k) R1 +R2 < k ≤ n1

where r(k) is randomly chosen from {0, 1}. The construction of X is illustrated in Fig. 8.

m1 : m1(1), · · · ,m1(R1)

m2 : m2(1), · · · ,m2(R1), · · · ,m2(R2)

XT : m1(k)⊕m2(k)︸ ︷︷ ︸
ne

R2︷ ︸︸ ︷
m2(k − ne)

︸ ︷︷ ︸
≤n2

R1−ne︷ ︸︸ ︷
m1(k −R2) r(k)

︸ ︷︷ ︸
n1

Fig. 8: Codeword X for d) R1 ≥ ne and R2 ≥ ne.

Note that in all scenarios, receiver 1 gets the first n1 bits of X; receiver 2 gets the first n2 bits of X; while

the eavesdropper gets the first ne bits of X. Receiver 2 can obtain the desired message m2; and receiver

1 obtains the message m2 first and then could decode its desired message m1 with the help of m2; whilst

the eavesdropper gets only m1(k)⊕m2(k) for 1 ≤ k ≤ min{ne, R1, R2} and some other random bits, which

gives no information on m1, m2 individually.

Appendix B

Proof of Theorem 4

In the following, we provide the detailed achievability proof for a given p(u, x).
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Codebook generation: Fix p(u). Randomly generate 2n(R1+R2+Rr) i.i.d sequences un(m1,m2,mr), with

(m1,m2,mr) ∈ [1 : 2nR1 ]× [1 : 2nR2 ]× [1 : 2nRr ], according to p(u).

Encoding: To send messages (m1,m2), randomly choose mr ∈ [1 : 2nRr ] and find un(m1,m2,mr). Given

un(m1,m2,mr), generate xn according to p(x|u), and transmit it to the channel. The choice of un is

illustrated in Fig. 9.

un(m1,m2,mr) :

nR1︷ ︸︸ ︷
m1

nR2︷ ︸︸ ︷
m2

nRr︷ ︸︸ ︷
mr

Fig. 9: Encoding

Decoding: Receiver 2, upon receiving yn2 , finds un(m̂1, m̂2, m̂r) such that (un(m̂1, m̂2, m̂r), yn2 ) is jointly

typical. Receiver 1, upon receiving yn1 , finds un(m̃1, m̃2, m̃r) such that (un(m̃1, m̃2, m̃r), yn1 ) is jointly typical.

Analysis of the error probability of decoding: Assume that (M1,M2) = (m1,m2) is sent.

First we consider Pe,2 at receiver 2. A decoding error happens iff one or both of the following events occur:

E21 ={(un(m1,m2,mr), yn2 ) /∈ T (n)
ε },

E22 ={(un(m̂1, m̂2, m̂r), yn2 ) ∈ T (n)
ε for some m̂2 6= m2}.

Thus, Pe,2 can be upper bounded as

Pe,2 ≤ Pr(E21) + Pr(E22).

By the LLN, Pr(E21) tends to zero as n→∞. For Pr(E22), since un(m̂1, m̂2, m̂r) is independent of (un(m1,m2,mr),

yn2 ) for m̂2 6= m2, by the packing lemma [19], Pr(E22) tends to zero as n→∞ if

R1 +R2 +Rr ≤ I(U ;Y2)− δn(εn). (45)

Similarly, at receiver 1, the average probability of decoding error Pe,2, can be made arbitrarily small as

n→∞ if

R1 +R2 +Rr ≤ I(U ;Y1)− δn(εn). (46)

Analysis of individual secrecy: For the individual secrecy (3), i.e., RL,i ≤ τn, for i = 1, 2, it is equivalent

to show that H(Mi|Zn) ≥ H(Mi)− nτn = nRi − nτn. First we consider H(M2|Zn).

H(M2|Zn) =H(M2, Z
n)−H(Zn)

=H(Un,M2, Z
n)−H(Un|M2, Z

n)−H(Zn)

=H(Un) +H(Zn|Un)−H(Un|M2, Z
n)−H(Zn)

(a)=n[R1 +R2 +Rr] + nH(Z|U)−H(Un|M2, Z
n)−H(Zn)

(b)
≥n[R1 +R2 +Rr]− nI(U ;Z)−H(Un|M2, Z

n)
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(c)
≥n[R1 +R2 +Rr]− nI(U ;Z)− n[R1 +Rr − I(U ;Z)]− nτn

=nR2 − nτn

=H(M2)− nτn,

where (a) follows from the codebook construction thatH(Un) = n[R1+R2k+Rr] and the discrete memoryless

of the channel; (b) is due to the fact that H(Zn) =
n∑
i=1

H(Zi|Zi−1) ≤
n∑
i=1

H(Zi) = nH(Z); and (c) follows

from [9, Lemma 1] that H(Un|M2, Z
n) ≤ n[R1 +Rr − I(U ;Z)] + nτn if taking

R1 +Rr ≥ I(U ;Z) + δn(τn). (47)

A similar proof can be applied to show that H(M1|Zn) ≥ H(M1)− nτn if taking

R2 +Rr ≥ I(U ;Z) + δn(τn). (48)

Achievable individual secrecy rate region: The resulting region has the following constraints: the non-

negativity for rates, i.e., R1, R2, Rr ≥ 0, the conditions for a reliable communication, i.e., (45), (46), and the

conditions for individual secrecy, i.e., (47), (48). Eliminating Rr here by applying Fourier-Motzkin procedure

[19], we get the desired rate region as given in (14).

Appendix C

Proof of Theorem 5

For a given input probability distribution p(u, v, x), let I1 = I(V ;Y1|U)−I(V ;Z|U). If I1 ≤ 0, the claimed

region reduces to (14), which is achievable by taking the primitive approach as described in Section IV-A, or

more specifically, by employing Carleial-Hellman’s secrecy coding. In the following, we provide the detailed

achievability proof for the remaining case, i.e., if I1 > 0 for a given p(u, v, x).

Rate splitting: As illustrated in Fig. 10, we splitM1 into (M1k,M1s). In particular,M1k,M1s are of entropy

nR1k and nR1s, respectively; and M2 is of entropy nR2. That is,

R1 = R1k +R1s. (49)

m1 :

nR1k︷ ︸︸ ︷
m1k

nR1s︷ ︸︸ ︷
m1s︸ ︷︷ ︸

nR1

m2 : m2︸ ︷︷ ︸
nR2

Fig. 10: Rate splitting

Codebook generation: Fix p(u), p(v|u). First, randomly generate 2n(R2+R1k+Rr) i.i.d. sequences un(m2,m1k,

mr), with (m2,m1k,mr) ∈ [1 : 2nR2 ] × [1 : 2nR1k ] × [1 : 2nRr ], according to p(u). Secondly, for each
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un(m2,m1k,mr), randomly generate i.i.d. sequences vn(m2,m1k,mr,m1s,m1r) with (m1s,m1r) ∈ [1 : 2nR1s ]×
[1 : 2nR1r ], according to p(v|u).

Encoding: To send messages (m1,m2) with m1 = (m1k,m1s), randomly choose mr ∈ [1 : 2nRr ] and find

un(m2,m1k,mr). Given un(m2,m1k,mr), randomly choose m1r ∈ [1 : 2nR1r ], further find the corresponding

vn(m2,m1k,mr,m1s,m1r). Generate xn according to p(x|v), and transmit it to the channel. The choice of

un, vn is illustrated in Fig. 11.

un(m2,m1k,mr) :

nR2︷ ︸︸ ︷
m2

nR1k︷ ︸︸ ︷
m1k

nRr︷ ︸︸ ︷
mr

vn(m2,m1k,mr,m1s,m1r) : m1s︸ ︷︷ ︸
nR1s

m1r︸ ︷︷ ︸
nR1r

Fig. 11: Encoding

Decoding: Receiver 2, upon receiving yn2 , finds un(m̂2, m̂1k, m̂r) such that (un(m̂2, m̂1k, m̂r), yn2 ) is jointly

typical.

Receiver 1, upon receiving yn1 , finds a unique tuple (m̃2, m̃1k, m̃r, m̃1s) un(m̃2, m̃1k, m̃r) such that

(un(m̃2, m̃1k, m̃r), vn(m̃2, m̃1k, m̃r, m̃1s, m̃1r), yn1 ) is jointly typical for some m̃1r. Finally, decode m̃1 =

(m̃1k, m̃1s).

Analysis of the error probability of decoding: Assume that (M1,M2) = (m1,m2) with m1 = (m1k,m1s) is

sent.

First we consider Pe,2 at receiver 2. A decoding error happens iff one or both of the following events occur:

E21 ={(un(m2,m1k,mr), yn2 ) /∈ T (n)
ε },

E22 ={(un(m̂2, m̂1k, m̂r), yn2 ) ∈ T (n)
ε for some m̂2 6= m2}.

Thus, Pe,2 can be upper bounded as

Pe,2 ≤ Pr(E21) + Pr(E22).

By the LLN, Pr(E21) tends to zero as n → ∞. For Pr(E22), since un(m̂2, m̂1k, m̂r) is independent of

(un(m2,m1k,mr), yn2 ) for m̂2 6= m2, by the packing lemma [19], Pr(E22) tends to zero as n→∞ if

R2 +R1k +Rr ≤ I(U ;Y2)− δn(εn). (50)

At receiver 1, the decoder makes an error iff one or more of the following events occur:

E11 ={(un(m2,m1k,mr), vn(m2,m1k,mr,m1s,m1r), yn1 ) /∈ T (n)
ε },

E12 ={(un(m̃2, m̃1k, m̃r), vn(m̃2, m̃1k, m̃r, m̃1s, m̃1r), yn1 ) ∈ T (n)
ε for some (m̃2, m̃1k, m̃r) 6= (m2,m1k,mr)},

E13 ={(un(m2,m1k,mr), vn(m2,m1k,mr, m̃1s, m̃1r), yn1 ) ∈ T (n)
ε for some m̃1s 6= m1s}.
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So Pe,1 can be upper bounded by

Pe,1 ≤ Pr(E11) + Pr(E12) + Pr(E13).

By the LLN, Pr(E11) tends to zero as n → ∞. For Pr(E12), since un(m̃2, m̃1k, m̃r) is independent of

(un(m2,m1k,mr), yn1 ) for (m̃2, m̃1k) 6= (m2,m1k), by the packing lemma [19], Pr(E12) tends to zero as

n→∞ if

R2 +R1k +Rr +R1s +R1r ≤ I(U, V1;Y1)− δn(εn). (51)

For Pr(E13), note that if (m̃1s, m̃1r) 6= (m1s,m1r), then for a given un(m2,m1k,mr), vn(m2,m1k,mr, m̃1s, m̃1r)

is independent of (vn(m2,m1k,mr,m1s,m1r), yn1 ). By the packing lemma [19], Pr(E13) tends to zero as

n→∞ if

R1s +R1r ≤ I(V ;Y1|U)− δn(εn). (52)

Analysis of individual secrecy: For the individual secrecy (3), i.e., RL,i ≤ τn, for i = 1, 2, we show in the

following its equivalent form that H(Mi|Zn) ≥ nRi − nτn.
First consider H(M2|Zn). We have

H(M2|Zn) =H(M2, Z
n)−H(Zn)

=H(Un,M2, Z
n)−H(Un|M2, Z

n)−H(Zn)

=H(Un) +H(Zn|Un)−H(Un|M2, Z
n)−H(Zn)

(a)
≥H(Un) +H(Zn|Un)− n[R1k +Rr − I(U ;Z)]−H(Zn)− nτn/2
(b)=n[R2 +R1k +Rr]− n[R1k +Rr − I(U ;Z)]− I(Un;Zn)− nτn/2

=nR2 + nI(U ;Z)− I(Un;Zn)− nτn/2
(c)
≥nR2 − nτn

where (a) follows from [9, Lemma 1] that H(Un|M2, Z
n) ≤ n[R1k +Rr − I(U ;Z)] + nτn/2, if taking

R1k +Rr ≥ I(U ;Z) + δn(τn); (53)

(b) follows from the codebook construction that H(Un) = n[R2 +R1k +Rr]; and (c) is due to the fact that

I(Un;Zn) ≤ nI(U ;Z) + nτn/2, the proof of which is given as follows.

I(Un;Zn) =H(Zn)−H(Zn|Un)

=H(Zn)−H(Zn|Un, V n)− I(V n;Zn|Un)
(d)=H(Zn)− nH(Z|U, V )−H(V n|Un) +H(V n|Un, Zn)
(e)
≤H(Zn)− nH(Z|U, V )−H(V n|Un) + n[R1s +R1r − I(V ;Z|U)] + nτn/2

(f)
≤nH(Z)− nH(Z|U, V )− n[R1s +R1r] + n[R1s +R1r − I(V ;Z|U)] + nτn/2
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=nI(U ;Z) + nτn/2,

where (d) is due to the discrete memoryless of the channel; (e) follows from [9, Lemma 1] thatH(V n|Un, Zn) ≤
n[R1s +R1r − I(V ;Z|U)] + nτn/2, if taking

R1s +R1r ≥ I(V ;Z|U) + δn(τn); (54)

(f) follows from the fact that H(Zn) =
∑n
i=1 H(Zi|Zi−1) ≤ ∑n

i=1 H(Zi) = nH(Z) and by the codebook

construction H(V n|Un) = n[R1s +R1r].

For H(M1|Zn), we have

H(M1|Zn) =H(M1k,M1s|Zn)

=H(M2,M1k,Mr,M1s|Zn)−H(M2,Mr|M1k,M1s, Z
n)

=H(Un,M1s|Zn)−H(Un|M1k,M1s, Z
n)

(g)
≥H(Un|Zn) +H(M1s|Un, Zn)−H(Un|M1k, Z

n)

=H(Un|Zn) +H(V n|Un, Zn)−H(V n|M1s, U
n, Zn)−H(Un|M1k, Z

n)
(h)
≥H(Un, V n|Zn)− n[R1r − I(V ;Z|U)]− n[R2 +Rr − I(U ;Z)]− nτn

=H(Un, V n)− I(Un, V n;Zn)− n[R1r +R2 +Rr] + nI(U, V ;Z)− nτn
(i)
≥n[R2 +R1k +Rr +R1s +R1r]− I(Un, V n;Zn)− n[R1r +R2 +Rr] + nI(U, V ;Z)− nτn

=nR1 − I(Un, V n;Zn) + nI(U, V ;Z)− nτn
(j)
≥nR1 − nτn,

where (g) is due to the fact that conditioning reduces entropy; (h) follows from [9, Lemma 1] that by taking

R2 +Rr ≥ I(U ;Z) + δn(τn), (55)

we have H(Un|M1k, Z
n) ≤ n[R2 +Rr − I(U ;Z)] + nτn/2; and by taking

R1r ≥ I(V ;Z|U) + δn(τn), (56)

we have H(V n|M1s, U
n, Zn) ≤ n[R1r − I(V ;Z|U)] + nτn/2; (i) is by the codebook construction that

H(Un, V n) = n[R2 + R1k + Rr + R1s + R1r]; (j) is due to the fact that I(Un, V n;Zn) ≤ nI(U, V ;Z),

the proof of which is given as follows:

I(Un, V n;Zn) =H(Zn)−H(Zn|Un, V n)
(k)=H(Zn)− nH(Z|U, V )
(l)
≤nH(Z)− nH(Z|U, V )

=nI(U, V ;Z),
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where (k) is due to the discrete memoryless of the channel; and (l) follows from the fact that H(Zn) =∑n
i=1 H(Zi|Zi−1) ≤∑n

i=1 H(Zi) = nH(Z).

Achievable rate region: The resulting region has the following constraints: the non-negativity for rates,

i.e., R1k, R1s, Rr, R1r ≥ 0, the rate relations imposed by rate splitting as specified in (49), the conditions

for a reliable communication, i.e., (50), (51), (52), and the conditions for individual secrecy of the messages

at the eavesdropper, i.e., (53), (54), (55), (56). Eliminating R1r, Rr by applying Fourier-Motzkin procedure

[19], we get the desired rate region as defined in (16); further eliminating R1s, R1k, we obtain (18).

Appendix D

Proof of Theorem 8

Consider a DM-BC with an external eavesdropper such that Y2 is a degraded version of Y1 and Y2 is less

noisy than Z. For a reliable communication under individual secrecy constraint, we have

nR2 = H(M2) = I(M2;Y n2 ) +H(M2|Y n2 )
(a)
≤ I(M2;Y n2 )− I(M2;Zn) + nλ2(εn, τn) (57)

where (a) is due to the reliability constraint (2) and individual secrecy constraint (3) and by taking λ2(εn, τn) =

τn + 1/n+ εnR2.

Moreover, we have

nR1 =H(M1) = H(M1|M2)

=I(M1;Y n1 |M2) +H(M1|M2, Y
n

1 )
(c)
≤ I(M1;Y n1 |M2)− I(M1;Zn|M2)︸ ︷︷ ︸

nRs
1

+ I(M1;Zn|M2)︸ ︷︷ ︸
nRk

1

+nλ1(εn) (58)

where (c) is due to the reliability constraint (2) and Fano’s inequality, the fact that H(M1|M2, Y
n

1 ) ≤
H(M1|Y n1 ), and by taking λ1(εn) = 1/n+ εnR1.

Note that for nRk1 in (58), we have

nRk1 =I(M1;Zn|M2)

=I(M1;Y n2 |M2)− I(M1;Y n2 |M2) + I(M1;Zn|M2)

=I(M1,M2;Y n2 )− I(M2;Y n2 )− I(M1;Y n2 |M2) + I(M1;Zn|M2)
(d)
≤I(M1,M2;Y n2 )− I(M1,M2;Zn)− I(M1;Y n2 |M2) + I(M1;Zn|M2) + nλ2(εn, τn)

=I(M2;Y n2 )− I(M2;Zn) + nλ2(εn, τn) (59)

where (d) follows that I(M2;Y n2 ) ≥ I(M1,M2;Zn)− nλ2(εn, τn), which proof is provided as follows:

I(M2;Y n2 ) =H(M2)−H(M2|Y n2 )
(f)
≥ H(M2)− nλ2(εn)
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=H(M2|M1)− nλ2(εn) ≥ I(M2;Zn|M1)− nλ2(εn)

=I(M1,M2;Zn)− I(M1;Zn)− nλ2(εn)
(g)
≥I(M1,M2;Zn)− nλ2(εn, τn)

where (f) is due to the reliability constraint(2) and Fano’s inequality and by taking λ2(εn) = 1/n + εnR2;

and (g) is due to the individual secrecy constraint (3) and by taking λ2(εn, τn) = τn + λ2(εn).

For I(M2;Y n2 )− I(M2;Zn) in (57) and (59), we have

I(M2;Y n2 )− I(M2;Zn) =
n∑
i=1

[
I(M2;Y2i|Y i−1

2 )− I(M2;Zi|Zni+1)
]

(h)=
n∑
i=1

[
I(M2;Y2i|Y i−1

2 )− I(M2;Zi|Zni+1)
]

+
n∑
i=1

[
I(Zni+1;Y2i|M2, Y

i−1
2 )− I(Y i−1

2 ;Zi|M2, Z
n
i+1)

]
=

n∑
i=1

[
I(M2, Z

n
i+1;Y2i|Y i−1

2 )− I(M2, Y
i−1

2 ;Zi|Zni+1)
]

=
n∑
i=1

[
I(M2;Y2i|Y i−1

2 , Zni+1)− I(M2;Zi|Y i−1
2 , Zni+1)

]
+

n∑
i=1

[
I(Zni+1;Y2i|Y i−1

2 )− I(Y i−1
2 ;Zi|Zni+1)

]
(h)=

n∑
i=1

[
I(M2;Y2i|Y i−1

2 , Zni+1)− I(M2;Zi|Y i−1
2 , Zni+1)

]
=

n∑
i=1

[
I(M2, Y

i−1
2 , Zni+1;Y2i)− I(M2, Y

i−1
2 , Zni+1;Zi)

]
−

n∑
i=1

[
I(Y i−1

2 , Zni+1;Y2i)− I(Y i−1
2 , Zni+1;Zi)

]
(i)
≤

n∑
i=1

[
I(M2, Y

i−1
2 , Zni+1;Y2i)− I(M2, Y

i−1
2 , Zni+1;Zi)

]
=

n∑
i=1

[
I(M2, Y

i−1
1 , Y i−1

2 , Zni+1;Y2i)− I(M2, Y
i−1

1 , Y i−1
2 , Zni+1;Zi)

]
−

n∑
i=1

[
I(Y i−1

1 ;Y2i|M2, Y
i−1

2 , Zni+1)− I(Y i−1
1 ;Zi|M2, Y

i−1
2 , Zni+1)

]
(i)
≤

n∑
i=1

[
I(M2, Y

i−1
1 , Y i−1

2 , Zni+1;Y2i)− I(M2, Y
i−1

1 , Y i−1
2 , Zni+1;Zi)

]
(j)=

n∑
i=1

[I(Ui;Y2i)− I(Ui;Zi)] , (60)

where (h) is due to the Csiszár sum identity; (i) is due to the fact that the channel to legitimate receiver 2

is less noisy than the one to the eavesdropper; and (j) is by setting Ui = (M2, Y
i−1

1 , Y i−1
2 , Zni+1).

Replacing (60) in (57) and (59), respectively, we obtain

nR2 ≤
n∑
i=1

I(Ui;Y2i)− I(Ui;Zi) + nλ2(εn, τn); (61)

nRk1 ≤
n∑
i=1

I(Ui;Y2i)− I(Ui;Zi) + nλ2(εn, τn). (62)
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Similarly we bound Rs1 in (58) as follows:

nRs1 =I(M1;Y n1 |M2)− I(M1;Zn|M2)

(k)=
n∑
i=1

[
I(M1;Y1i|M2, Y

i−1
1 , Zni+1)− I(M1;Zi|M2, Y

i−1
1 , Zni+1)

]
=

n∑
i=1

[
I(M1, Y

i−1
2 ;Y1i|M2, Y

i−1
1 , Zni+1)− I(M1, Y

i−1
2 ;Zi|M2, Y

i−1
1 , Zni+1)

]
−

n∑
i=1

[
I(Y i−1

2 ;Y1i|M1,M2, Y
i−1

1 , Zni+1)− I(Y i−1
2 ;Zi|M1,M2, Y

i−1
1 , Zni+1)

]
≤

n∑
i=1

[
I(M1, Y

i−1
2 ;Y1i|M2, Y

i−1
1 , Zni+1)− I(M1, Y

i−1
2 ;Zi|M2, Y

i−1
1 , Zni+1)

]
=

n∑
i=1

[
I(M1;Y1i|M2, Y

i−1
1 , Y i−1

2 , Zni+1)− I(M1;Zi|M2, Y
i−1

1 , Y i−1
2 , Zni+1)

]
+

n∑
i=1

[
I(Y i−1

2 ;Y1i|M2, Y
i−1

1 , Zni+1)− I(Y i−1
2 ;Zi|M2, Y

i−1
1 , Zni+1)

]
(l)=

n∑
i=1

[
I(M1;Y1i|M2, Y

i−1
1 , Y i−1

2 , Zni+1)− I(M1;Zi|M2, Y
i−1

1 , Y i−1
2 , Zni+1)

]
(m)
≤

n∑
i=1

[I(Vi;Y1i|Ui)− I(Vi;Zi|Ui)] (63)

where (k) is obtained by applying the Csiszár sum identity twice; (l) is due to the channel degradedness

that implies the Markov chains Y i−1
2 → (M2, Y

i−1
1 , Zni+1) → (Y1i, Zi); and (m) follows by the fact Ui =

(M2, Y
i−1

1 , Y i−1
2 , Zni+1) and further setting Vi = (M1, Ui).

Replacing Rk1 and Rs1 in (58) by (62) and (63), respectively, we obtain

nR1 ≤nRk1 + nRs1 + nλ1(εn)
(n)
≤

n∑
i=1

[I(Vi;Y1i|Ui)− I(Vi;Zi|Ui)] +
n∑
i=1

[I(Ui;Y2i)− I(Ui;Zi)] + nλ(εn, τn) (64)

where (n) is by taking λ(εn, τn) = λ1(εn) + λ2(εn, τn).

Now we proceed to bound R1 +R2.

n(R1 +R2) =H(M1|M2) +H(M2)

=I(M1;Y n1 |M2) + I(M2;Y n2 ) +H(M1|M2, Y
n

1 ) +H(M2|Y n2 )
(o)
≤I(M1;Y n1 |M2) + I(M2;Y n2 ) + nλ(εn)

=I(M1;Y n1 |M2)− I(M1;Zn|M2) + I(M2;Y n2 )− I(M2;Zn) + I(M1,M2;Zn) + nλ(εn)
(p)
≤

n∑
i=1

[I(Vi;Y1i|Ui)− I(Vi;Zi|Ui)] +
n∑
i=1

[I(Ui;Y2i)− I(Ui;Zi)] +
n∑
i=1

I(M1,M2;Zi|Zni+1) + nλ(εn)

(q)
≤

n∑
i=1

[I(Vi;Y1i|Ui)− I(Vi;Zi|Ui)] +
n∑
i=1

[I(Ui;Y2i)− I(Ui;Zi)] +
n∑
i=1

I(Ui, Vi;Zi) + nλ(εn)
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=
n∑
i=1

[I(Vi;Y1i|Ui) + I(Ui;Y2i)] + nλ(εn) (65)

where (o) is due to the reliability constraint (2) and Fano’s inequality, the fact that H(M1|M2, Y
n

1 ) ≤
H(M1|Y n1 ) and by taking λ(εn) = 2/n + εn(R1 + R2); (p) is due to (60) and (63); and (q) is due to the

definition of Ui and Vi, i.e., Ui = (M2, Y
i−1

1 , Y i−1
2 , Zni+1) and Vi = (M1, Ui).

Introducing a time-sharing random variableQ which is uniform over 1, 2 · · · , n and taking U = (UQ, Q), V =

VQ, Y1 = Y1,Q, Y2 = Y2,Q, Z = ZQ, we proceed on (61), (64) and (65) as follows:

R2 ≤I(U ;Y2)− I(U ;Z) + λ2(εn, τn)

R1 ≤I(V ;Y1|U)− I(V ;Z|U) + I(U ;Y2)− I(U ;Z) + λ(εn, τn)

R1 +R2 ≤I(V ;Y1|U) + I(U ;Y2) + λ(εn)

Taking the limit as n → ∞ such that λ2(εn, τn), λ(εn, τn), λ(εn) → 0, we conclude our proof of the upper

bound.

Appendix E

Proof of Theorem 10

For a given input probability distribution p(u, v1, v2, x), let I1 = I(V ;Y1|U) − I(V ;Z|U) and I2 =

I(V ;Y2|U)− I(V ;Z|U). If I1, I2 ≤ 0, the claimed region (26) reduces to (14), which is achievable by taking

the primitive approach as described in Section IV-A. We assume I1 > 0. Now, if I2 ≤ 0, the claimed region

(26) reduces to (18), which is achievable by employing the superposition approach as described in Section

IV-B. A similar proof applies to the case of I1 ≤ 0 and I2 > 0. In the following, we provide the detailed

achievability proof for the remaining case, i.e., if I1 > 0 and I2 > 0 for a given p(u, v1, v2, x).

Rate splitting: As illustrated in Fig. 12, we represent M1,M2 by M1 = (M1k,M1s) and M2 = (M2k,M2s)

with M1k,M2k of entropy nR1k, nR2k, respectively; while M1s,M2s of entropy nR1s, nR2s, respectively.

Therefore, we have

R1 = R1k +R1s; (66)

R2 = R2k +R2s. (67)

m1 :

nR1k︷ ︸︸ ︷
m1k

nR1s︷ ︸︸ ︷
m1s

m2 : m2k︸ ︷︷ ︸
nR2k

m2s︸ ︷︷ ︸
nR2s

Fig. 12: Marton’s coding: Rate splitting.

Codebook generation: Fix p(u), p(v1, v2|u).
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First, randomly generate 2n(R1k+R2k+Rr) i.i.d. sequences un(m2k,m1k,mr), with (m2k,m1k,mr) ∈ [1 :

2nR2k ]× [1 : 2nR1k ]× [1 : 2nRr ], according to p(u).

For each fixed un(m2k,m1k,mr), randomly generate 2n(R1s+R1r+R1c) i.i.d. sequences vn1 (m2k,m1k,mr,m1s,

m1r,m1c) with (m1s,m1r,m1c) ∈ [1 : 2nR1s ]× [1 : 2nR1r ]× [1 : 2nR1c ], according to p(v1|u); and similarly gen-

erate 2n(R2s+R2r+R2c) i.i.d. sequences vn2 (m2k,m1k,mr,m2s,m2r,m2c) with (m2s,m2r,m2c) ∈ [1 : 2nR2s ]×[1 :

2nR2r ]× [1 : 2nR2c ], according to p(v2|u).

Encoding: To send messages (m1,m2), with m1 = (m1k,m1s), m2 = (m2k,m2s), randomly choose mr ∈
[1 : 2nRr ] and find un(m2k,m1k,mr).

Given un(m2k,m1k,mr), randomly choose (m1r,m2r) ∈ [1 : 2nR1r ] × [1 : 2nR2r ], and pick (m1c,m2c)

such that vn1 (m2k,m1k,mr,m1s,m1r,m1c) and vn1 (m2k,m1k,mr,m2s,m2r,m2c) are jointly typical. (If there

is more than one such jointly typical pair, choose one of them uniformly at random.) This is possible with

high probability, if

R1c +R2c > I(V1;V2|U) (68)

(refer to [6] for the proof).

Finally, for the chosen jointly typical pair (vn1 , vn2 ), generate a codeword xn at random according to

p(x|v1, v2) and transmit it.

The choice of un, vn1 , vn2 , xn for given (m1,m2) is illustrated in Fig. 13.

un(m2k,m1k,mr) :

nR2k︷ ︸︸ ︷
m2k

nR1k︷ ︸︸ ︷
m1k

nRr︷ ︸︸ ︷
mr

vn1 (m2k,m1k,mr,m1s,m1r,m1c) : m1s︸ ︷︷ ︸
nR1s

nR1r︷ ︸︸ ︷
m1r

nR1c︷ ︸︸ ︷
m1c ;

vn2 (m2k,m1k,mr,m2s,m2r,m2c) : m2s︸ ︷︷ ︸
nR2s

nR2r︷ ︸︸ ︷
m2r

nR2c︷ ︸︸ ︷
m2c

xn(m2k,m1k,mr,m1s,m1r,m2s,m2r) : m1s︸ ︷︷ ︸
nR1s

nR1r︷ ︸︸ ︷
m1r m2s︸ ︷︷ ︸

nR2s

nR2r︷ ︸︸ ︷
m2r

Fig. 13: Marton’s coding: Encoding.

Decoding: Receiver 1, upon receiving yn1 , finds a unique tuple (m̂2k, m̂1k, m̂r, m̂1s) such that (un(m̂2k, m̂1k, m̂r),

vn1 (m̂2k, m̂1k, m̂r, m̂1s, m̂1r, m̂1c) is jointly typical with yn1 for some (m̂1r, m̂1c). And, receiver 2, upon receiv-

ing yn2 , finds a unique tuple (m̃2k, m̃1k, m̃r, m̃2s) such that (un(m̃2k, m̃1k, m̃r), vn2 (m̃2k, m̃1k, m̃r, m̃2s, m̃2r, m̃2c))

is jointly typical with yn2 for some (m̃2r, m̃2c).

Analysis of the error probability of decoding: Assume that m1 = (m1k,m1s), m2 = (m2k,m2s) is sent.
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For Pe,1, a decoding error happens if receiver 1’s estimate is (un(m̂2k, m̂1k, m̂r), vn1 (m̂2k, m̂1k, m̂r, m̂1s, m̂1r,

m̂1c)) with (m̂2k, m̂1k, m̂r, m̂1s) 6= (m2k,m1k,mr,m1s). In more details, the error event can be partitioned

into the followings:

1) Error event corresponds to (m̂2k, m̂1k, m̂r) 6= (m2k,m1k,mr). Note that this event occurs with arbi-

trarily small probability (e.g.: εn/2) if

R1k +R2k +Rr +R1s +R1r +R1c ≤ I(U, V1;Y1)− δn(εn). (69)

2) Error event corresponds to (m̂2k, m̂1k, m̂r) = (m2k,m1k,mr) but m̂1s 6= m1s. Note that this event

occurs with arbitrarily small probability (e.g.: εn/2) if

R1s +R1r +R1c ≤ I(V1;Y1|U)− δn(εn). (70)

Similar analysis can be done at the receiver 2, from which the decoding error probability Pe,2 can be made

arbitrarily small (e.g.: εn) if

R1k +R2k +Rr +R2s +R2r +R2c ≤ I(U, V2;Y2)− δn(εn); (71)

R2s +R2r +R2c ≤ I(V2;Y2|U)− δn(εn). (72)

Analysis of individual secrecy: For the individual secrecy (3), i.e., RL,i ≤ τn, for i = 1, 2, it suffices to show

that H(M1|Zn) +H(M2|Zn) ≥ H(M1) +H(M2)− nτn = n(R1 +R2)− nτn.
First consider H(M1|Zn), we have

H(M1|Zn) =H(M1k,M1s|Zn)

=H(M1k,M2k,Mr,M1s|Zn)−H(M2k,Mr|M1k,M1s, Z
n)

=H(Un,M1s|Zn)−H(Un|M1k,M1s, Z
n)

(a)
≥H(Un|Zn) +H(M1s|Un, Zn)−H(Un|M1k, Z

n)
(b)
≥H(Un|Zn) +H(M1s|Un, Zn)− n[R2k +Rr − I(U ;Z)]− nτn/6

=H(Un|Zn) +H(V n1 ,M1s|Un, Zn)−H(V n1 |M1s, U
n, Zn)− n[R2k +Rr − I(U ;Z)]− nτn/6

(b)
≥H(Un|Zn) +H(V n1 |Un, Zn)− n[R1r +R1c − I(V1;Z|U)]− n[R2k +Rr − I(U ;Z)]− nτn/3

=H(Un, V n1 |Zn)− n[R1r +R1c − I(V1;Z|U)]− n[R2k +Rr − I(U ;Z)]− nτn/3 (73)

where (a) is due to the fact that conditioning reduces entropy; (b) follows from [9, Lemma 1] that we have

• H(Un|M1k, Z
n) ≤ n[R2k +Rr − I(U ;Z)] + nτn/6 if taking

R2k +Rr ≥ I(U ;Z) + δn(τn); (74)

• H(V n1 |M1s, U
n, Zn) ≤ n[R1r +R1c − I(V1;Z|U)] + nτn/6 if taking

R1r +R1c ≥ I(V1;Z|U) + δn(τn). (75)
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Similarly, we could show that

H(M2|Zn) =H(M2k,M2s|Zn)

≥H(Un, V n2 |Zn)− n[R2r +R2c − I(V2;Z|U)]− n[R1k +Rr − I(U ;Z)]− nτn/3 (76)

if taking

R1k +Rr ≥ I(U ;Z) + δn(τn); (77)

R2r +R2c ≥ I(V2;Z|U) + δn(τn). (78)

Note that

H(Un, V n1 |Zn) +H(Un, V n2 |Zn)

= 2H(Un|Zn) +H(V n1 |Un, Zn) +H(V n2 |Un, Zn)

≥ 2H(Un|Zn) +H(V n1 , V n2 |Un, Zn)

= 2H(Un)− 2I(Un;Zn) +H(V n1 , V n2 , Zn|Un)−H(Zn|Un)

= 2H(Un)− 2I(Un;Zn) +H(V n1 , V n2 |Un) +H(Zn|Un, V n1 , V n2 )−H(Zn|Un)
(d)
≥ 2H(Un)− 2I(Un;Zn) +H(V n1 , V n2 |Un)− nI(V1, V2;Z|U)
(e)
≥ 2n[R2k +R1k +Rr] + n[R1s +R1r +R2s +R2r]− 2I(Un;Zn)− nI(V1, V2;Z|U)
(f)
≥ 2n[R2k +R1k +Rr] + n[R1s +R1r +R2s +R2r]− 2nI(U ;Z)− nI(V1, V2;Z|U)− nτn/3 (79)

where (d) follows from the fact that H(Zn|Un, V n1 , V n2 ) = nH(Z|U, V1, V2) due to the discrete memoryless

of the channel and H(Zn|Un) =
∑n
i=1 H(Zi|Un, Zi−1) ≤ ∑n

i=1 H(Zi|Ui) = nH(Z|U); (e) follows from the

codebook construction that H(Un) = n[R2k + R1k + Rr] and H(V n1 , V n2 |Un) ≥ n[R1s + R1r + R2s + R2r];

and (f) is due to the fact that I(Un;Zn) ≤ nI(U ;Z) + nτn/6, the proof of which is given as follows:

I(Un;Zn) =H(Zn)−H(Zn|Un)

=H(Zn)−H(Zn|Un, V n1 , V n2 )− I(V n1 , V n2 ;Zn|Un)
(g)=H(Zn)− nH(Z|U, V1, V2)−H(V n1 , V n2 |Un) +H(V n1 , V n2 |Un, Zn)
(h)
≤H(Zn)− nH(Z|U, V1, V2)−H(V n1 , V n2 |Un) +H(V n1 |Un, Zn) +H(V n2 |Un, Zn)
(i)
≤H(Zn)− nH(Z|U, V1, V2)−H(V n1 , V n2 |Un)

+ n[R1s +R1r +R1c − I(V1;Z|U)] + n[R2s +R2r +R2c − I(V2;Z|U)] + nτn/6
(j)
≤nH(Z)− nH(Z|U, V1, V2)− n[R1s +R1r +R2s +R2r]

+ n[R1s +R1r +R1c − I(V1;Z|U)] + n[R2s +R2r +R2c − I(V2;Z|U)] + nτn/6

=nI(U ;Z) + n[R1c +R2c + I(V1;V2;Z|U)− I(V1;Z|U)− I(V2;Z|U)] + nτn/6
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(k)
≤nI(U ;Z) + nτn/6

where (g) is due to the discrete memoryless of the channel; (h) follows the fact that H(A,B|C) ≤ H(A|C)+

H(B|C); (i) follows from [9, Lemma 1] that we have

• H(V n1 |Un, Zn) ≤ n[R1s +R1r +R1c − I(V1;Z|U)] + nτn/12 if taking

R1s +R1r +R1c ≥ I(V1;Z|U) + δn(τn). (80)

(Note that (80) holds if (75) holds.)

• H(V n2 |Un, Zn) ≤ n[R2s +R2r +R2c − I(V2;Z|U)] + nτn/12 if taking

R2s +R2r +R2c ≥ I(V2;Z|U) + δn(τn). (81)

(Note that (81) holds if (78) holds.)

(j) follows from the fact that H(Zn) =
∑n
i=1 H(Zi|Zi−1) ≤ ∑n

i=1 H(Zi) = nH(Z) and by the codebook

construction H(V n1 , V n2 |Un) ≥ n[R1s +R1r +R2s +R2r]; and (k) is by taking

R1c +R2c ≤ I(V1;Z|U) + I(V2;Z|U)− I(V1, V2;Z|U). (82)

Combining (73) and (76), we obtain

H(M1|Zn) +H(M2|Zn)
(l)
≥ H(Un, V n1 |Zn)− n[R1r +R1c − I(V1;Z|U)]− n[R2k +Rr − I(U ;Z)]− nτn/3

+H(Un, V n2 |Zn)− n[R2r +R2c − I(V2;Z|U)]− n[R1k +Rr − I(U ;Z)]− nτn/3
(m)
≥ n[R1 +R2]− n[R1c +R2c] + n[I(V1;Z|U) + I(V2;Z|U)− I(V1, V2;Z|U)]− nτn

(n)
≥ n[R1 +R2]− nτn,

where (l) is due to (73) and (76); (m) is according to (79) and the fact that R1 = R1k+R1s and R2 = R2k+R2s

as defined in (66) and (67), respectively; and (n) is due to (82).

Achievable rate region:We summarize the rate requirements in order to guarantee a reliable communication

to both legitimate receivers and satisfy the individual secrecy constraints at the eavesdropper as follows:

• the non-negativity for rates, i.e.,

R1k, R2k, R1s, R2s, Rr, R1r, R2r, R1c, R2c ≥ 0;

• the rate relations imposed by rate splitting as specified in (66) and (67), i.e.,

R1 = R1k +R1s;

R2 = R2k +R2s.

• the conditions for a reliable communication to both legitimate receivers, i.e., (68), (69), (70), (71), (72):

R1c +R2c > I(V1;V2|U) (83)

R1k +R2k +Rr +R1s +R1r +R1c ≤ I(U, V1;Y1) (84)
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R1s +R1r +R1c ≤ I(V1;Y1|U) (85)

R1k +R2k +Rr +R2s +R2r +R2c ≤ I(U, V2;Y2) (86)

R2s +R2r +R2c ≤ I(V2;Y2|U) (87)

• the conditions for individual secrecy of the messages at the eavesdropper, i.e., (74), (75), (77), (78),

(82):

R2k +Rr ≥ I(U ;Z) (88)

R1r +R1c ≥ I(V1;Z|U) (89)

R1k +Rr ≥ I(U ;Z) (90)

R2r +R2c ≥ I(V2;Z|U) (91)

R1c +R2c ≤ I(V1;Z|U) + I(V2;Z|U)− I(V1, V2;Z|U) (92)

Note that (88) and (90) can be replaced by the following inequality

min{R1k, R2k}+Rr ≥ I(U ;Z). (93)

Eliminating Rr, R1r, R2r, R1c, R2c by applying Fourier-Motzkin procedure [19], we obtain the region of

(R1, R2) = (R1k+R1s, R2k+R2s) in terms of (R1k, R1s, R2k, R2s) as given in (24) in Theorem 10. Note that

a sketch of this Fourier-Motzkin procedure is provided in Appendix F. Further eliminate R1k, R1s, R2k, R2s,

one can derive the same region in terms of (R1, R2) as given in (26) in Theorem 10.

Appendix F

Fourier-Motzkin Elimination for Theorem 10

Here we briefly outline the Fourier-Motzkin procedure in the proof of Theorem 10.

• To eliminate Rr, we consider the non-negativity of the rate Rr and the inequalities (84), (86) and (93)

which involve Rr. We end up with

Rk +R1s +R1r +R1c ≤ I(U, V1;Y1) (94)

Rk +R2s +R2r +R2c ≤ I(U, V2;Y2), (95)

where Rk = max {R1k +R2k,max{R1k, R2k}+ I(U ;Z)} .
• To eliminate R1r, we consider the non-negativity of the rate R1r and the inequalities (85), (89) and

(94) which involve R1r. We end up with

R1s +R1c ≤ I(V1;Y1|U) (96)

Rk +R1s +R1c ≤ I(U, V1;Y1) (97)

R1s ≤ I(V1;Y1|U)− I(V1;Z|U) (98)
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Rk +R1s ≤ I(U, V1;Y1)− I(V1;Z|U) (99)

• To eliminate R2r, we consider the non-negativity of the rate R2r and the inequalities (87), (91) and

(95) which involve R2r. We end up with

R2s +R2c ≤ I(V2;Y2|U) (100)

Rk +R2s +R2c ≤ I(U, V2;Y2) (101)

R2s ≤ I(V2;Y2|U)− I(V2;Z|U) (102)

Rk +R2s ≤ I(U, V2;Y2)− I(V2;Z|U) (103)

• To eliminate R1c, we consider the non-negativity of the rate R1c and the inequalities (83), (92), (96)

and (97) which involve R1c. We end up with the following inequalities after canceling the redundant

ones.

I(V1;V2|U) ≤ I(V1;Z|U) + I(V2;Z|U)− I(V1, V2;Z|U) (104)

R2c ≤ I(V1;Z|U) + I(V2;Z|U)− I(V1, V2;Z|U) (105)

R2c −R1s ≥ I(V1;V2|U)− I(V1;Y1|U) (106)

R2c −Rk −R1s ≥ I(V1;V2|U)− I(U, V1;Y1) (107)

• To eliminate R2c, we consider the non-negativity of the rate R2c and the inequalities (100), (101), (105),

(106) and (107) which involve R2c. All the resulting inequalities are redundant (i.e., they all can be

derived by combinations of other existing inequalities). Thus no new inequalities are introduced.

So far, we have for R1s, R2s the inequalities (98) and (102), respectively; and for their combinations with

R1k, R2k (implied by Rk) the inequalities (99) and (103). Additionally, the inequality (104) need to be

fulfilled by the choices of (U, V1, V2). This yields the desired region in terms of (R1k, R1s, R2k, R2s) as given

in (24) in Theorem 10.

Appendix G

Proof of Theorem 11

In this appendix, we establish the rate region as given in Theorem 11 under the joint secrecy constraint.

To this end, we utilize the same encoding and decoding schemes as described in Appendix E. As a direct

consequence, the reliability proof (i.e., analysis of the error probability of decoding) remains the same.

However, we need to revise the secrecy analysis under the joint secrecy constraint. That is, the achievability

scheme needs to fulfill the joint secrecy constraint (5), unlike the analysis given in Appendix E, in which

the individual secrecy constraint (3) is satisfied.
Analysis of joint secrecy: For the joint secrecy (5), i.e., RL ≤ τn, it is equivalent to show thatH(M1,M2|Zn) ≥

H(M1,M2)− nτn = n(R1 +R2)− nτn.

H(M1,M2|Zn) =H(M1k,M2k,M1s,M2s|Zn)
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=H(M1k,M2k,M1s,M2s,Mr|Zn)−H(Mr|M1k,M2k,M1s,M2s, Z
n)

=H(Un,M1s,M2s|Zn)−H(Un|M1k,M2k,M1s,M2s, Z
n)

≥H(Un,M1s,M2s|Zn)−H(Un|M1k,M2k, Z
n)

=H(Un, V n1 , V n2 |Zn)−H(M1r,M1c,M2r,M2c|Un,M1s,M2s, Z
n)−H(Un|M1k,M2k, Z

n)
(a)
≥H(Un, V n1 , V n2 |Zn)−H(Un|M1k,M2k, Z

n)

−H(M1r,M1c|Un,M1s,M2s, Z
n)−H(M2r,M2c|Un,M1s,M2s, Z

n)
(b)
≥H(Un, V n1 , V n2 |Zn)−H(Un|M1k,M2k, Z

n)

−H(M1r,M1c|Un,M1s, Z
n)−H(M2r,M2c|Un,M2s, Z

n)

=H(U, V n1 , V n2 )−H(Zn) +H(Zn|Un, V n1 , V n2 )−H(Un|M1k,M2k, Z
n)

−H(V n1 |Un,M1s, Z
n)−H(V n2 |Un,M2s, Z

n)
(c)
≥n[R1k +R2k +Rr +R1s +R2s +R1r +R2r]− nI(U, V1, V2;Z)− n[Rr − I(U ;Z)]

− n[R1r +R1c − I(V1;Z|U)]− n[R2r +R2c − I(V2;Z|U)]− nτn
(d)
≥n[R1 +R2]− nτn

where (a) follows from the fact that H(A,B|C) ≤ H(A|C)+H(B|C); (b) is due to the fact that conditioning

reduces entropy; (c) follows from that

1) H(Un) = n[R2k+R1k+Rr] andH(V n1 , V n2 |Un) ≥ n[R1s+R1r+R2s+R2r] by the codebook construction;

2) H(Zn) =
∑n
i=1 H(Zi|Zi−1) ≤∑n

i=1 H(Zi) = nH(Z|U);

3) H(Zn|Un, V n1 , V n2 ) = nH(Z|U, V1, V2) due to the discrete memoryless of the channel;

4) applying [9, Lemma 1], we have that

• H(Un|M1k,M2k, Z
n) ≤ n[Rr − I(U ;Z)] + nτn/3 if taking

Rr ≥ I(U ;Z) + δn(τn); (108)

• H(V n1 |M1s, U
n, Zn) ≤ n[R1r +R1c − I(V1;Z|U)] + nτn/3 if taking (75), i.e.,

R1r +R1c ≥ I(V1;Z|U) + δn(τn);

• H(V n2 |M2s, U
n, Zn) ≤ n[R2r +R2c − I(V1;Z|U)] + nτn/3 if taking (78), i.e.,

R2r +R2c ≥ I(V2;Z|U) + δn(τn);

(d) is by taking (82), i.e.,

R1c +R2c ≤ I(V1;Z|U) + I(V2;Z|U)− I(V1, V2;Z|U).

We note that a stronger constraint (108) is imposed on Rr in order to guarantee the joint secrecy, instead

of the (74) and (77) for the case of individual secrecy.
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Achievable rate region: The resulting region has the following constraints: the non-negativity for rates,

i.e., R1k, R2k, R1s, R2s, Rr, R1r, R2r, R1c, R2c ≥ 0, the rate relations imposed by rate splitting as specified in

(66) and (67), the conditions for a reliable communication to both legitimate receivers, i.e., (68), (69), (70),

(71), (72), and the conditions for joint secrecy of the messages at the eavesdropper, i.e., (108), (75), (78),

(82). Eliminating R1k, R2k, R1s, R2s, R1c, R2c, R1r, R2r, Rr by applying Fourier-Motzkin procedure [19], we

obtain the region of (R1, R2) as given in (27) in Theorem 11.

Appendix H

Proof of (36)

Recall Costa’s EPI as described in the following.

Lemma 19. [32, Theorem 1] Let X be an arbitrarily distributed n-dimensional random variable. Let N be

a n-dimensional Gaussian vector, independent of X, and with covariance matrix proportional to the identity

matrix, then

e
2
nh(X+βN) ≥ (1− β2)e 2

nh(X) + β2e
2
nh(X+N), (109)

where β ∈ [0, 1].

Consider the Gaussian DBC under our investigation. Due to the degradedness order Y n1 → Y n2 → Zn, we

could write

Y n2 = Y n1 + β(Nn
12 +Nn

2e),

Zn = Y n1 +Nn
12 +Nn

2e,

where Nn
12 ∼ N (0, (σ2

2 − σ2
1)I) and N2e ∼ N (0, (σ2

2 − σ2
1)I), and

β =

√
σ2

2 − σ2
1

σ2
e − σ2

1
. (110)

Note that Nn
12, N

n
2e are independent of Y n1 and M2.

Now applying Costa’s EPI as described in (109), we have

e
2
nh(Y n

2 |M2) ≥ (1− β2)e 2
nh(Y n

1 |M2) + β2e
2
nh(Zn).

Dividing both sides by e 2
nh(Zn), we obtain

e
2
n [h(Y n

2 |M2)−h(Zn|M2)] ≥ (1− β2)e 2
n [h(Y n

1 |M2)−h(Zn|M2)] + β2.

Replacing h(Y n2 |M2)− h(Zn|M2) and β by their realizations as specified in (33) and (110), respectively, we

obtain
αP + σ2

2
αP + σ2

e

≥ σ2
e − σ2

2
σ2
e − σ2

1
e

2
n [h(Y n

1 |M2)−h(Zn|M2)] + σ2
2 − σ2

1
σ2
e − σ2

1
.

Easy calculation gives

h(Y n1 |M2)− h(Zn|M2) ≤ n

2 log αP + σ2
1

αP + σ2
e

,

i.e., (36). This concludes our proof.
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Appendix I

Proof of (38)

Recall Shannon’s EPI as described in the following.

Lemma 20. [33] For any two independent, n-dimensional random variable X and N,

e
2
nh(X+N) ≥ e 2

nh(X) + e
2
nh(N). (111)

Consider the Gaussian DBC under our investigation. We could write

Zn = Y n1 +Nn
1e,

where Nn
1e ∼ N (0, (σ2

e − σ2
1)I) and Nn

1e is independent of Y n1 and (M1,M2). Therefore, applying EPI as

described in (111), we have

e
2
nh(Zn|M1,M2) ≥ e 2

nh(Y n
1 |M1,M2) + e

2
nh(Nn

1e).

That is,

e
2
nh(Zn|M1,M2) ≥ e 2

n [h(Y n
1 |M1,M2)−h(Zn|M1,M2)] · e 2

nh(Zn|M1,M2) + e
2
nh(Nn

1e).

Replacing h(Y n1 |M1,M2)− h(Zn|M1,M2) by its realization as specified in (37) and h(Nn
1e) by

h(Nn
1e) = n

2 log 2πe(σ2
e − σ2

1),

we obtain

e
2
nh(Zn|M1,M2) ≥ γαP + σ2

1
γαP + σ2

e

e
2
nh(Zn|M1,M2) + 2πe(σ2

e − σ2
1).

Easy calculation gives

h(Zn|M1,M2) ≥ n

2 log 2πe(γαP + σ2
e).

i.e., (38). This concludes our proof.

Appendix J

Proof of Corollary 13

Proof: The upper bound on R2 remains the same to (31); while the upper bounds on R1 and R1 +R2

are obtained by combining (30) and (31). In more details, we have

R1
(a)
≤C

(
α(1− γ)P
γαP + σ2

1

)
− C

(
α(1− γ)P
γαP + σ2

e

)
+R2

≤C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+R2

(b)
≤C

(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
where (a) is according to (30); (b) is via replacing R2 by its upper bound as given in (31).
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On the other hand, according to (30), we have

R1 ≤ C
(
α(1− γ)P
γαP + σ2

1

)
− C

(
α(1− γ)P
γαP + σ2

e

)
+ C

(
(1− γα)P
γαP + σ2

e

)
= C

(
α(1− γ)P
γαP + σ2

1

)
+ C

(
(1− α)P
αP + σ2

e

)
≤ C

(
αP

σ2
1

)
+ C

(
(1− α)P
αP + σ2

e

)
.

Summing it up with R2 which is upper bounded by (31), we get the desired upper bound on R1 +R2. This

concludes our proof.

Appendix K

Proof of Theorem 16

Proof: Consider the gap between the inner and outer bounds as specified in (41) and (40), respectively.

If we take the same choice of α in both bounds, the gap may occur only in the R1 +R2 term that is upper

bounded by[
C

(
αP

σ2
1

)
+ C

(
(1− α)P
αP + σ2

2

)]
−
[
C

(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)]
= C

(
αP

σ2
e

)
.

A first observation is that both bounds coincide at α = 0. Furthermore, we consider their subregions in the

following two cases for comparison.

• Consider the case as R2 ≤ C
(

(1−α)P
αP+σ2

e

)
. The corresponding subregions of (R1, R2) in the inner and

outer bound are the same, i.e.,

R1 ≤C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
R2 ≤min

{
C

(
(1− α)P
αP + σ2

e

)
, C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)}
• Consider the other case as C

(
(1−α)P
αP+σ2

e

)
< R2 ≤ C

(
(1−α)P
αP+σ2

2

)
− C

(
(1−α)P
αP+σ2

e

)
. Note that this case is

possible only if

C

(
(1− α)P
αP + σ2

e

)
< C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
. (112)

The above inequality holds for

0 < α < 1 as σ2
e ≥ P + 2σ2

2 ; (113)

or

0 < α <
(σ2
e − σ2

2)2

P (P + σ2
2) −

σ2
2
P

as σ2
e ≤ P + 2σ2

2 . (114)

(The calculation of (113) and (114) is similar to the one given in Appendix L.)

Recall that the gap occurs only in the R1 +R2 term that is upper bounded by C(αPσ2
e

). More specifically,

1) as σ2
e ≥ P + 2σ2

2 , we have for 0 < α < 1,

C

(
αP

σ2
e

)
(a)
< C

(
P

σ2
e

) (b)
≤ C

(
P

P + 2σ2
2

)
≤ C(1) = 0.5
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where (a) is by the fact that C(x) is an increasing function with respect to x and α is upper

bounded by 1; (b) is due to the fact that σ2
e ≥ P + 2σ2

2 .

2) as σ2
e ≤ P + 2σ2

2 , we have for 0 < α <
(σ2

e−σ
2
2)2

P (P+σ2
2) −

σ2
2
P ,

C

(
αP

σ2
e

)
(c)
< C

(
σ2
e − σ2

2
P + σ2

2
− σ2

2(P + σ2
e)

σ2
e(P + σ2

2)

) (d)
≤ C

(
1− σ2

2(P + σ2
e)

σ2
e(P + σ2

2)

)
≤ C(1) = 0.5

where (c) is by the fact that C(x) is an increasing function with respect to x and α is upper

bounded by (σ2
e−σ

2
2)2

P (P+σ2
2) −

σ2
2
P ; (d) is due to the fact that (σ2

e − σ2
2)/(P + σ2

2) ≤ 1 since σ2
e ≤ P + 2σ2

2 .

This concludes our proof.

Appendix L

Calculation for (42)

To find α such that (42) holds, we consider

C

(
(1− α)P
αP + σ2

2

)
− 2C

(
(1− α)P
αP + σ2

e

)
≤ 0

which is equivalent to having

1
2 log (P + σ2

2)(αP + σ2
e)2

(αP + σ2
2)(P + σ2

e)2 ≤ 0, i.e., (P + σ2
2)

(P + σ2
e)2 (αP + σ2

e)2 ≤ (αP + σ2
e)− (σ2

e − σ2
2).

Note that this inequality can be formulated as a quadratic inequality with respect to αP + σ2
e . Accordingly,

denoting x = αP + σ2
e , A = (P+σ2

2)
(P+σ2

e)2 , and C = σ2
e − σ2

2 , we represent the inequality above by f(x) =

Ax2 − x+ C ≤ 0. Here, as A ≥ 0, f(x) is convex and this inequality holds when

1− T
2A ≤ x ≤ 1 + T

2A , where T =
√

1− 4AC = P + 2σ2
2 − σ2

e

P + σ2
e

.

Here, T ≥ 0 as the assumptions in the theorem implies that P ≥ σ2
e

σ2
2
(σ2
e − 2σ2

2) ≥ (σ2
e − 2σ2

2), where the last

inequality is due to σ2
e ≥ σ2

2 . Using the values of T , A, and x in this last condition, we obtain that f(x) ≥ 0

if and only if
(σ2
e − σ2

2)2

P (P + σ2
2) −

σ2
2
P
≤ α ≤ 1.
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