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Abstract

In large scale distributed storage systems (DSS) deployed in cloud computing, correlated failures
resulting in simultaneous failure (or, unavailability) of blocks of nodes are common. In such scenarios,
the stored data or a content of a failed node can only be reconstructed from the available live nodes
belonging to available blocks. To analyze the resilience of the system against such block failures, this
work introduces the framework of Block Failure Resilient (BFR) codes, wherein the data (e.g., file in
DSS) can be decoded by reading out from a same number of codeword symbols (nodes) from a subset
of available blocks of the underlying codeword. Further, repairable BFR codes are introduced, wherein
any codeword symbol in a failed block can be repaired by contacting to a subset of remaining blocks in
the system. File size bounds for repairable BFR codes are derived, and the trade-off between per node
storage and repair bandwidth is analyzed, and corresponding minimum storage regenerating (BFR-MSR)
and minimum bandwidth regenerating (BFR-MBR) points are derived. Explicit codes achieving the two
operating points for a special case of parameters are constructed wherein the underlying regenerating
codewords are distributed to BFR codeword symbols according to combinatorial designs. Finally, BFR
locally repairable codes (BFR-LRC) are introduced, an upper bound on the resilience is derived and,
optimal code construction are provided by a concatenation Gabidulin and MDS codes. Repair efficiency
of BFR-LRC is further studied via the use of BFR-MSR/MBR codes as local codes. Code constructions
achieving optimal resilience for BFR-MSR/MBR-LRCs are provided for certain parameter regimes.
Overall, this work introduces the framework of block failures along with optimal code constructions,
and the study of architecture-aware coding for distributed storage systems.

I. INTRODUCTION

A. Background

Increasing demand for storing and analyzing big-data as well as several applications of
cloud computing systems require efficient cloud computing infrastructures. Under today’s cir-
cumstances where the data is growing exponentially, it is crucial to have storage systems that
guarantee no permanent loss of data. However, one inevitable nature of the storage systems is
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2
node failures. In order to provide resilience against such failures, redundancy is introduced in
the storage.

Classical redundancy schemes range from replication to erasure coding. Erasure coding allows
for better performance in terms of reliability and redundancy compared to replication. To increase
repair bandwidth efficiency of erasure coded systems, regenerating codes are proposed in the
seminal work of Dimakis et al. [1]. In such a model of distributed storage systems (DSS), the
file of size M is encoded to n nodes such that any k ≤ n nodes (each with α symbols) allow
for reconstructing the file and any d ≥ k nodes (with β ≤ α symbols from each) reconstruct a
failed node with a repair bandwidth γ = dβ. The trade-off between per node storage (α) and
repair bandwidth (γ) is characterized and two ends of the trade-off curve are named as minimum
storage regenerating (MSR) and minimum bandwidth regenerating (MBR) points [1]. Several
explicit codes have been proposed to achieve these operating points recently [2]–[8].

Another metric for an efficient repair is repair degree d and regenerating codes necessarily have
d ≥ k. Codes with locality and locally repairable codes with regeneration properties [9]–[18]
allow for a small repair degree, wherein a failed node is reconstructed via local connections.
Instances of such codes are recently considered in DSS [19], [20]. Small repair degree has
its benefits in terms of the implementation of DSS since a failed node requires only local
connections. In particular, when more nodes are busy for recovery operations, this in turn creates
additional access cost in the network.

In large-scale distributed storage systems (such as GFS [21]), correlated failures are unavoid-
able. As analyzed in [22], these simultaneous failures of multiple nodes affect the performance
of computing systems severely. The analysis in [22] further shows that these correlated failures
arise due to failure domains. For example, nodes connected to the same power source or nodes
belonging to the same rack exhibit these structured failure bursts. The unavailability periods are
transient, and largest failure bursts almost always have significant rack-correlation. For example,
in Fig. 1 there are three racks in a DSS, each connected to the same switch. Assume that top-
of-rack (TOR) switch of the first rack is failed; hence, all the disks in the rack are assumed
to be failed or unavailable (same failure domain). Now consider that, while the first rack is
unavailable, a user asks for some data D stored in one of the disks in the first rack. If both the
data and its corresponding redundancy were stored all together in the first rack, then the user
would not be able to access the data until the TOR switch works properly. On the other hand,
assume that redundancy is distributed to the other two racks; then, the user could connect to
those two racks in order to reconstruct the data. Furthermore, if the disk storing the data fails in
the first rack, then the repair process could be performed similarly since the failed disk could
connect to other racks to download some amount of data for repair process. This architecture is
also relevant to disk storage, where the disk is divided into sectors, each can be unavailable or
under failure. In order to overcome from failures having such patterns, a different approach is
needed.

In terms of data recovery operations, such an architecture can be considered as a relaxation
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Fig. 1: A data-center architecture where top-of-rack (TOR) switch of the first rack fails

of regenerating coded system. In particular, considering a load balancing property for the racks
utilized in the recovery operations, we focus on the following model. Regenerating codes allow
the failed node to connect any d nodes for repair purposes whereas we consider failed node
connecting to a total of d nodes in some restricted subset of nodes, i.e., any d

2
nodes in the second

and third racks respectively for the example in Fig. 1. Similarly, any k property of regenerating
codes for data-reconstruction is also relaxed i.e., DC can connect to k

3
nodes in each rack in

the example above. The outcome of such a relaxation is directly related to the performance of
the DSS in terms of per node storage and repair bandwidth trade-off. For example, consider
a DSS where a file of size M is stored over n = 10 nodes such that any k = 4 nodes are
enough to reconstruct the data. In addition, any d = 4 nodes are required to regenerate a failed
node. For such a system that uses regenerating code, trade-off curve can be obtained as in
Fig. 2c. Now consider that, n = 10 nodes are distributed into two distinct groups such that each
block has n

2
= 5 nodes. Note that, a failed node in one of the blocks can now be repaired by

connecting any d = 4 nodes in the other block. Also, DC can connect k
2

= 2 nodes per block
to reconstruct the original message M. For such a relaxation, we can obtain the corresponding
trade-off curve between per node storage and repair bandwidth as in Fig. 2c. Observe that the
new MSR point, called BFR-MSR, has significantly lower repair bandwidth than MSR point as a
result of this relaxation. In this paper, we further show that the gap between the repair bandwidth
of BFR-MSR and MBR point can be made arbitrarily small for large systems while keeping
the per node storage of BFR-MSR point same as MSR point. Therefore, such a relaxation of
regenerating codes allow for simultaneous achievability of per-node storage of MSR point and
repair bandwidth of MBR point.

B. Contributions and organization

The contributions of this paper can be summarized as follows:

• We develop a framework to analyze resilience against block failures in DSS with node
repair efficiencies. We consider a DSS with a single failure domain, where nodes belonging
to the same failure group form a block of the codeword.
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Fig. 2: (a) Node repair in regenerating codes. (b) Node repair in relaxation of regenerating codes.
(c) Trade-off curves in toy example.

• We introduce block failure resilient (BFR) codes, which allow for data collection from any
bc = b − ρ blocks, where b is the number of blocks in the system and ρ is the resilience
parameter of the code. Considering a load-balancing among blocks, a same number of nodes
are contacted within these bc blocks. (A total of k = kcbc nodes and downloading α - i.e.,
all - symbols from each.) This constitutes data collection property of BFR codes. (ρ = 0

case can be considered as a special case of batch codes introduced in [23].)
• We introduce repairability in BFR codes, where any node of a failed block can be recon-

structed from any dr nodes of any remaining br = b − σ ≤ b − 1 blocks. (A total of
d = drbr nodes and downloading β symbols from each.) As introduced in [1], we utilize
graph expansion of DSS employing these repairable codes, and derive file size bounds and
characterize BFR-MSR and BFR-MBR points for a wide set of parameter regimes. We
emphasize the relation between dr and kc as well as ρ and σ to differentiate all cases. 1

• We construct explicit codes achieving these points for a set of parameters when dr ≥ kc,
ρ = 0 and σ = 1. For a system with b = 2 blocks case, we show that achieving both MSR
and MBR properties simultaneously is asymptotically possible. (This is somewhat similar
to the property of Twin codes [24], but here the data collection property is different.) Then,
for a system with b ≥ 3 blocks case, we consider utilizing multiple codewords, which are
placed into DSS via a combinatorial design (projective planes) based codeword placement
algorithm.

• We also provide the code constructions for any σ < b−1 and ρ = 0 by utilizing Duplicated
Combination Block Designs (DCBD). These codes can achieve BFR-MSR and BFR-MBR
points for a wider set of parameters than the codes described above.

• We introduce BFR locally repairable codes (BFR-LRC). We establish an upper bound on the
resilience of such codes (using techniques similar to [12]) and propose resilience-optimal
constructions that use a two step encoding (Gabidulin and MDS) and combinatorial design

1The case with d
b−σ ≥

k
b−ρ and σ > ρ remains open in terms of a general proof for the minimum possible file size bound.

However, the obtain bound is shown to be tight by code constructions for certain parameter regimes.
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placement.

• We also analyze the case where regenerating codes are used to improve repair efficiency
of BFR-LRC codes. These codes are called BFR-MSR/MBR-LRC and they have a better
performance in terms of repair bandwidth. We identify the upper bound on the file size
that can be stored for both cases and also propose a construction that utilizes DCBD based
construction to achieve the studied bound for certain parameter regimes.

• We provide codes with table-based type of relaxation for repairable BFR in order to operate
within wider set of parameters.

The rest of the paper is is organized as follows. In Section II, we introduce BFR codes and
provide preliminaries. Section III focuses on file size bounds for efficient repair where we study
BFR-MSR and BFR-MBR points. In Section IV, we provide explicit code constructions. We
discuss BFR-LRC and local regeneration in BFR-LRC in Section V. We extend our discussion
in Section VI where we analyze repair time of DSS with BFR as well as other codes e.g.,
regenerating codes, and also propose a relaxation for the BFR model, where we provide explicit
codes achieving the performance of BFR-MSR/MBR. Finally we conclude in Section VII.

C. Related Work

In the seminal work of Dimakis et al. [1], regenerating codes are presented, which are proposed
to improve upon classical erasure codes in terms of repair bandwidth. The authors focus on a
setting similar to maximum distance separable (MDS) codes as regenerating codes also have any
k out of n property which allows data collector to connect any k nodes to decode data stored over
n nodes; however, they show that by allowing a failed node to connect d ≥ k nodes, they can
significantly reduce the repair bandwidth. Thus, a trade-off between per node storage and repair
bandwidth for a single node repair is presented. Such a repair process is referred to as functional
repair since the newcomer node may not store the same data as the failed node; however in terms
of functionality, they are equivalent. In [1], [6], [7], functional repair is studied to construct codes
achieving the optimality at the two ends of the trade-off curve. In [3], the focus is on exact repair
where the failed node is repaired such that the newcomer stores exactly same data as the failed
node stored. The proposed code construction is optimal for all parameters (n, k, d) for minimum
bandwidth regeneration (MBR) point as well as optimal for (n, k, d ≥ 2k − 2) for minimum
storage regeneration (MSR) point. It can be deducted that since n − 1 ≥ d necessarily, these
codes’ rate is bounded by 1

2
+ 1

2n
for MSR point. [4] utilizes two parity nodes to construct exact

regeneration codes that are optimal in repair bandwidth, whereas [2], [8] focus on exact-repair
for systematic node repair through permutation-matrix based constructions. Our BFR model here
can be seen as a structured relaxation of the data collection and repair process of regenerating
codes as discussed in the previous subsection.

Combinatorial designs are utilized in constructing fractional repetition codes in [25]. In this
construction, MDS codewords are replicated and these replicated symbols are placed to storage
nodes according to the combinatorial designs. The resulting coding scheme can be viewed as the
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relaxation of regenerating codes where the repairs are performed table-based (instead of “any d”
property). Other works that utilize combinatorial designs include [26]–[28]. For the constructions
proposed in this paper, we consider having (in certain cases precoded versions of) regenerating
codewords placed to storage nodes according to combinatorial designs. As compared to fractional
repetition codes, this allows to have bandwidth efficient repair with“any dr property in the block
failure context studied here. In the last part of the sequel, we revisit and provide codes with a
table-based type of relaxation for repairable BFR model, where instead of “any dr” per helper
block we consider “any d” per helper sub-block.

Proposed recently in [11], local codes operate node repairs within some local group thereby
reducing repair degree. In [9], minimum distance of locally repairable codes are studied for
scalar case only and Pyramid codes are shown to be optimal in terms of minimum distance
[14]. [13] generalizes the bound by allowing multiple local parities per local group for the scalar
linear code. Next, [10] focuses on the minimum distance bound for vector codes which have only
one local parity per group as well as characterize the trade-off between per node storage and
resilience. In [12], [29], the authors generalize the bound on minimum distance for vectors codes
which can have multiple parity nodes per local group and characterize the trade-off between per
node storage and resilience. Recently. [30], has proposed locally repairable codes with small
field sizes by considering polynomial construction of Reed-Solomon codes. For LRCs, when
the number of failures exceed the corresponding minimum distance of the local group, the local
recovery would not be possible. Our BFR model here can be considered as the opposite of
locality property, where non-local nodes have to be contacted for recovery operations.

Recently, another type of erasure codes called Partial-MDS are proposed for RAID systems
to tolerate not just disk failures but also sector failures [31]. Considering a stripe on a disk
system as an r × n array where disks are represented by columns and all disks have r sectors,
PMDS codes tolerate an erasure of any m sectors per row plus any s additional elements. Later,
relaxation of PMDS codes are studied in [32] which allow erasure of any m columns plus any
s additional elements. These codes are called Sector-Disk (SD) codes. Our BFR model can also
be considered as a class of SD codes since BFR construction tolerates ρ block failures which
can be treated as disks (columns) in SD code construction. However, for the full access case,
BFR codes do not have any additional erasure protection beyond m = ρ disk failures. And, for
the partial access case, BFR codes allow additional erasure protection but the code tolerates any
additional c− kc number of erasures per block (disk) rather than s number of erasures that can
occur anywhere over the remaining disks. On the other hand, repair process in SD codes utilize
the row-wise parities (one sector from other disks) to correct the corresponding sectors in the
failed disks, but repairable BFR allows the failed node (sector) in a block (disk) to contact any
set of nodes in other blocks.

We note that the blocks in our model can be used to model racks in DSS. Such a model is
related to the work in [33] which differentiates between within-rack communication and cross-
rack communication. Our focus here would correspond to the case where within the failure
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group, communication is much higher than the cross-group communication, as no nodes from
the failed/unavailable group can be contacted to regenerate a node.

II. BACKGROUND AND PRELIMINARIES

A. Block failure resilient codes and repairability

Consider a code C which mapsM symbols (over Fq) in f (file) to length n codewords (nodes)
c = (c1, . . . , cn) with ci ∈ Fαq for i = 1, . . . , n. These codewords are distributed into b blocks
each with block capacity c = b

n
nodes per block. We have the following definition.

Definition 1 (Block Failure Resilient (BFR) Codes). An (n, b,M, k, ρ, α) block failure resilient
(BFR) code encodesM elements in Fq (f ) to n codeword symbols (each in Fαq ) that are grouped
into b blocks such that f can be decoded by accessing to any k

b−ρ nodes from each of the b− ρ
blocks.

We remark that, in the above, ρ represents the resilience parameter of the BFR code, i.e., the
code can tolerate ρ block erasures. Due to this data collection (file decoding) property of the
code, we denote the number of blocks accessed as bc = b − ρ and number of nodes accessed
per block as kc = k

bc
. Noting that kc ≤ c should be satisfied, we differentiate between partial

block access, kc < c, and full block access kc = c. Throughout the paper, we assume b|n. i.e., c
is integer, and (b− ρ)|k, i.e., kc is integer.

Remarkably, any MDS array code [34] can be utilized as BFR codes for the full access case.
In fact, such an approach will be optimal in terms of minimum distance, and therefore for
resilience ρ. However, for kc < c, MDS array codes may not result in an optimal code in terms
of the trade-off between resilience ρ and code rate M

nα
. Concatenation of Gabidulin codes and

MDS codes as originally proposed in [12] gives optimal BFR codes for for all parameters. For
completeness, we provide this coding technique adapted to generate BFR codes in Appendix
A. We remark that this concatenation approach is used for locally repairable codes in [12], for
locally repairable codes with minimum bandwidth node repairs in [16], thwarting adversarial
errors in [35], [36], cooperative regenerating codes with built-in security mechanisms against
node capture attacks in [37] and for constructing PMDS codes in [38]. In this work, we focus
on repairable BFR codes, as defined in the following.

Definition 2 (Block Failure Resilient Regenerating Codes (BFR-RC)). An (n, b,M, k, ρ, α,

d, σ, β) block failure resilient regenerating code (BFR-RC) is an (n, b,M, k, ρ, α) BFR code
(data collection property) with the following repair property: Any node of a failed block can be
reconstructed by accessing to any dr = d

b−σ nodes of any br = b− σ blocks and downloading β
symbols from each of these d = brdr nodes.

We assume (b− σ)|d, i.e., dr is integer. (Note that dr should necessarily satisfy d
b−σ = dr ≤

c = n
b

in our model.) We consider the trade-off between the repair bandwidth γ = dβ and
per node storage α similar to the seminal work of Dimakis et al. [1]. In particular, we define
May 18, 2016 DRAFT
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αBFR-MSR = M

k
as the minimum per node storage and γBFR-MBR = αBFR-MBR as the minimum

repair bandwidth for an (n, b,M, k, ρ, α, d, σ, β) BFR-RC.

B. Information flow graph

The operation of a DSS employing such codes can be modeled by a multicasting scenario over
an information flow graph [1], which has three types of nodes: 1) Source node (S): Contains
original file f . 2) Storage nodes, each represented as xi with two sub-nodes((xin

i , x
out
i )), where

xin is the sub-node having the connections from the live nodes, and xout is the storage sub-node,
which stores the data and is contacted for node repair or data collection (edges between each xin

i

and xout
i has α-link capacity). 3) Data collector (DC) which contacts xout sub-nodes of k live

nodes (with edges each having ∞-link capacity). (As described above, for BFR codes these k
nodes can be any k

b−ρ nodes from each of the b− ρ blocks.) Then, for a given graph G and DCs
DCi, the file size can be bounded using the max flow-min cut theorem for multicasting utilized
in network coding [1], [39].

Lemma 3 (Max flow-min cut theorem for multicasting).

M≤ min
G

min
DCi

maxflow(S→ DCi,G),

where flow(S→ DCi,G) represents the flow from the source node S to DCi over the graph G.

Therefore, M symbol long file can be delivered to a DC, only if the min cut is at least M.
In the next section, similar to Dimakis et al., [1], we consider k successive node failures and
evaluate the min-cut over possible graphs, and obtain file size bounds for DSS operating with
BFR-RC.

C. Vector codes

An (n,M, dmin, α)q vector code C ⊆ (Fαq )n is a collection of M vectors of length nα over
Fq. A codeword c ∈ C consists of n blocks, each of size α over Fq. We can replace each α-
long block with an element in Fqα to obtain a vector c = (c1, c2, . . . , cn) ∈ Fnqα . The minimum
distance, dmin, of C is defined as minimum Hamming distance between any two codewords in
C.

Definition 4. Let c be a codeword in C selected uniformly at random from M codewords. The
minimum distance of C is defined as

dmin = n− max
A⊆[n]:H(cA)<logqM

|A|,

where A =
{
i1, . . . , i|A|

}
⊆ [n], cA = (ci1 , . . . , ci|A|), and H(·) denotes q-entropy.

A vector code is said to be maximum distance separable (MDS) code if α | logqM and
dmin = n − logqM

α
+ 1. A linear (n,M, dmin, α)q vector code is a linear subspace of Fαnq of
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dimension M = logqM . An [n,M, dmin, α]q array code is called MDS array code if α | M
and dmin = n− M

α
+ 1.

The encoding process of an (n,M = qM, dmin, α)q vector code can be summarized by

G : FMq →
(
Fαq
)n
. (1)

The encoding function is defined by an M× nα generator matrix G = [g1
1, . . . ,g

α
1 | · · · |

g1
n, . . . ,g

α
n ] over Fq.

D. Maximum rank distance codes

Gabidulin codes [40], are an example of class of rank-metric codes, called maximum rank
distance (MRD) codes. (These codes will be utilized later in the sequel.)

Let Fqm be an extension field of Fq. An element v ∈ Fqm can be represented as the vector
v = (v1, . . . , vm)T ∈ Fmq , such that v =

∑m
i=1 vibi, for a fixed basis {b1, . . . , bm} of the extension

field Fqm . Using this, a vector v = (v1, . . . , vN) ∈ FNqm can be represented by an m×N matrix
V = [vi,j] over Fq, which is obtained by replacing each vi of v by its vector representation
(vi,1, . . . , vi,m)T .

Definition 5. The rank of a vector v ∈ FNqm , rank(v), is defined as the rank of its m×N matrix
representation V (over Fq). Then, rank distance is given by

dR(v,u) = rank(V− U).

An [N,K,D]qm rank-metric code C ⊆ FNqm is a linear block code over Fqm of length N

with dimension K and minimum rank distance D. A rank-metric code that attains the Singleton
bound D ≤ N −K+ 1 in rank-metric is called maximum rank distance (MRD) code. Gabidulin
codes can be described by evaluation of linearized polynomials.

Definition 6. A linearized polynomial f(y) over Fqm of q-degree t has the form

f(y) =
t∑
i=0

aiy
q

where ai ∈ Fqm , and at 6= 0.

Process of encoding a message (f1, f2, . . . , fK) to a codeword of an [N,K,D = N −K + 1]

Gabidulin code over Fqm has two steps:

• Step 1: Construct a data polynomial f(y) =
∑K

i=1 fiy
qi−1 over Fqm .

• Step 2: Evaluate f(y) at {y1, y2, . . . , yn} where each yi ∈ Fqm , to obtain a codeword c =

(f(y1), . . . , f(yN)) ∈ FN
qm .

Remark 7. For any a, b ∈ Fq and v1, v2 ∈ Fqm , we have

f(av1 + bv2) = af(v1) + bf(v2).

May 18, 2016 DRAFT
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Remark 8. Given evaluations of f(·) at any K linearly independent (over Fq) points in Fqm ,
one can reconstruct the message vector. Therefore, an [N,K,D] Gabidulin code is an MDS code
and can correct any D − 1 = N −K erasures.

E. Locally repairable codes

Recently introduced locally repairable codes reduce repair degree by recovering a symbol via
contacting small number of helper nodes for repair.

Definition 9 (Punctured Vector Codes). Given an (n,M, dmin, α)q vector code C and a set
S ⊂ [n], C|S is used to denote the code obtained by puncturing C on [n]\S. In other words,
codewords of C|S are obtained by keeping those vector symbols in c = (c1, . . . , cn) ∈ C which
have their indices in set S.

Definition 10. An (n,M, dmin, α)q vector code C is said to have (r, δ) locality if for each vector
symbol ci ∈ Fnq , i ∈ [n], of codeword c = (c1, . . . , cn) ∈ C, there exists a set of indices Γ(i)

such that

• i ∈ Γ(i)

• |Γ(i)| ≤ r + δ − 1

• Minimum distance of C|Γ(i) is at least δ.

Remark 11. The last requirement in Definition 10 implies that each element j ∈ Γ(i) can be
written as a function of any set of r elements in Γ(i)\ {j}.

III. FILE SIZE BOUND FOR REPAIRABLE BFR CODES

In this section, we perform analysis to obtain file size bounds for repairable BFR codes. We
will focus on different cases in order to cover all possible values of parameters dr, kc, ρ and σ.

We denote the whole set of blocks in a DSS by B, where |B| = b. A failed node in block i

can be recovered from any b − σ blocks. Denoting an instance of such blocks by Bri , we have
|Bri | = b − σ and i /∈ Bri . This repair process requires a total number of d nodes and equal
number of nodes from each block in Bri , dr = d

b−σ is contacted. Data collector, on the other
hand, connects to b− ρ blocks represented by Bc to reconstruct the stored data. In this process,
total number of k nodes are connected to retrieve the stored data and the same number of nodes
from each block in Bc, kc = k

b−ρ are connected.
In the following, we analyze the information flow graph for a total number of kc(b−ρ) failures

and repairs and characterize the min-cut for the corresponding graphs to upper bound the file
size that can be stored in DSS.

Our analysis here differs from the classical setup considered in [1], in the sense that the
scenarios considered here require analysis of different cases (different min-cuts in information
flow graph) depending on the relation between dr and kc (dr ≥ kc vs. dr < kc). Before detailing
the analysis for each case (in Section III-A and III-B), we here point out why this phenomenon
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11
occurs. First, consider the case dr ≥ kc, a failed node in block i requires connections from the
blocks j ∈ Bri and that are previously failed and repaired and connected to DC. At this point,
block i needs to contact some additional nodes in block j (dr − kc number of nodes) that may
not be connected to DC. On the other hand, when dr < kc, then, for the min-cut, any failed
node in block i would contact to dr nodes in block j, which are already connected to DC.
Therefore, the storage systems exhibits different min-cuts depending on the values of dr, kc, ρ
and σ. In the following, we will analyze each case separately, obtain the min-cuts as well as
corresponding corner points in per-node storage and repair bandwidth trade-off. Section III-A
focuses on dr ≥ kc case, where the number of helper nodes from each block is greater than
or equal to the number of nodes connected to DC from each block. Section III-B details the
remaining case, i.e., dr < kc.

A. Case I: dr ≥ kc

We first note that d ≥ k. (This follows similarly to the analysis for regenerating codes, as
otherwise one can regenerate each node by contacting d < k nodes, and obtain the stored data
with less than k nodes.) Having d ≥ k implies dr(b − σ) ≥ kc(b − ρ). Since we only assume
that dr ≥ kc, no relation between ρ and σ can be concluded. Accordingly, we further split our
analysis into two cases as follows.

1) Case I.A: σ ≤ ρ: The first case we focus on is having σ ≤ ρ, which implies that the
number of blocks participating to the repair process is greater than or equal to the number of
blocks that are connected to DC, i.e., b− σ ≥ b− ρ.

Theorem 12. The upper bound on the file size when dr ≥ kc and σ ≤ ρ is given by

M≤
b−ρ∑
i=1

kc min {α, (d− (i− 1)kc)β} . (2)

for α = M
k

or α = dβ.

Proof: Denote the order of node repairs with corresponding (node) indices in the ordered
set O, where |O| = kc(b − ρ). We will show that any order of failures results in the same cut
value. We have CO =

∑b−ρ
i=1 kc min {α, (d− (i− 1)kcβ)}. This follows by considering that block

i connects to i− 1 blocks, each having kc nodes that are repaired and connected to DC, which
makes the cut value of (d− (i− 1)kc)β. We denote the stored data of node j in block l as Xl,j
and downloaded data to this node as Rl,j . The set O includes an ordered set of node incides
(i, j) contacted by DC, where the order indicates the sequence of failed&repaired process. (For
instance, O = {(1, 1), (1, 2), (2, 3), · · · } refers to a scenario in which third node of second blocks
is repaired after second node of first block.) We consider DC connecting to the nodes in

O = {(1, 1), (1, 2), · · · , (1, kc), (2, 1), (2, 2), · · · , (2, kc), · · · , (b− ρ, 1), · · · , (b− ρ, kc)} ,
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where each block has repairs sequentially. Due to data reconstruction property, it follows that
H(F|XO) = 0. Accordingly, we have

M = H(F) = H(F)−H(F|XO) = I(F ;XO) ≤ H(XO).

We consider the following bound on the latter term H(XO) to obtain CO, i.e., “cut value” for
the repair order given by O. (Note that the bounds given below correspond to introducing “cuts”
in the corresponding information flow graph.) We denote

O(i) , {(i, 1), (i, 2), · · · , (i, kc)}

as the nodes contacted in i-th block. We consider each repaired node contacts the previously
repaired nodes in O. Accordingly, we consider the entropy calculation given by

H(XO) =

b−ρ∑
i=1

H(XO(i)|XO(1), · · · ,XO(i−1)
) ≤

b−ρ∑
i=1

∑
(i,j)∈O(i)

H(X(i,j)|XO(1), · · · ,XO(i−1)
) (3)

(a)

≤
b−ρ∑
i=1

∑
(i,j)∈O(i)

min {α, (d− (i− 1)kc)β}
(b)
=

b−ρ∑
i=1

kc min {α, (d− (i− 1)kc)β} , CO

where (a) follows as H(X(i,j)|XO(1), · · · ,XO(i−1)) ≤ H(X(i,j)) ≤ α and

H(X(i,j)|XO(1), · · · ,XO(i−1)) ≤ H(R(i,j)|XO(1), · · · ,XO(i−1)) ≤ (d− (i− 1)kc)β,

as i− 1 blocks containing previously repaired nodes contributes to (i− 1)kcβ symbols in R(i,j).
Therefore, as the bound on H(X(i,j)) above holds for any j such that (i, j) ∈ O(i), we have (b),
from which we obtain the following bound on file size M

M≤
b−ρ∑
i=1

kc min {α, (d− (i− 1)kc)β} .

Interchanging the failure order in O at indices kc and kc + 1, we obtain another order O∗. Using
the same bounding technique above, the resulting cut value can be calculated as CO∗ = (kc −
1) min {α, dβ}+ min {α, (d− (kc − 1))β}+ min {α, (d− 1)β}+ (kc− 1) min {α, (d− kc)β}+∑b−ρ

i=3 kc min {α, (d− (i− 1)kc)β}. Note that the first term here corresponds to the first set of
kc− 1 nodes in the first blocks, second term corresponds to the first node repaired in the second
block, third term corresponds to the remaining node in the first block, fourth terms corresponds
to remaining kc − 1 nodes in the second block, and the last term corresponds to the remaining
blocks. We observe that CO = CO∗ , i.e., the total cut values induced by O and O∗ are the same.
Consider CO∗ − CO, which evaluates to

CO∗−CO = min {α, (d− 1)β}−min {α, dβ}+min {α, (d− (kc − 1))β}−min {α, (d− kc)β} .

We observe that CO∗ − CO = 0 at both α = M
k

and α = dβ operating points. (For α = M
k

, all
min {} terms result in α and cancel each other. For the α = dβ point, min {} terms remove α
(as α = dβ) and remaining terms cancel each other.)
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The equivalence analysis above can be extended to any pair of orders. In the following, we

show this through the following lemmas. We first observe that any order can be obtained from
another by swapping adjacent failures.

Lemma 13. Any given failure order O∗ can be obtained by permuting the elements in the order
O, and the underlying permutation πO→O∗ operation can be decomposed into stages of swapping
of adjacent elements.

We provide an example here, the lemma above generalizes this argument to any pair of
orders. Consider O = (1, 2, 3) and O∗ = (3, 2, 1), the permutation πO→O∗ is given by position
mappings {1→ 3, 2→ 2, 3→ 1}. This can be obtained by composition of three permutations
{1→ 1, 2→ 3, 3→ 2}, for swapping 2 and 3, {1→ 2, 2→ 1, 3→ 3}, for swapping 1 and 3,
and {1→ 1, 2→ 3, 3→ 2}, for swapping 1 and 2.

Utilizing Lemma 13, it remains to show that the cut value remains the same if we interchange
adjacent failures in any failure order O. We show that this holds in the following lemma.

Lemma 14. For any order O swapping any adjacent failures does not result in min-cut value
CO to change.

To show this, consider two orders O1 and O2, where O2 is obtained by swapping order of
failures at locations j and j + 1, O2 = π(O1). Then, we can say that the cut values up to j − 1

and the cut values after j+ 1 individually same for both O1 and O2. Furthermore, there are two
possible cases for swapped failures j and j+1; i) either both are from the same block, ii) they are
from different blocks. For the former case, the swapping does not affect the cut values for failures
j and j+1. In the latter, first note that when α = M

k
, there is no change in cut value, CO1 = CO2 ,

hence we’ll only focus on α = dβ case. Assume for the O1 we have (d−i)β for ith and (d−i∗)β
for (i+ 1)th failures. Then, O2 should have (d− (i∗−1))β and (d− (i+ 1))β respectively. Note
that the sums are still the same, (d− i)β + (d− i∗)β = (d− (i∗ − 1))β + (d− (i+ 1))β, hence
we can conclude that swapping any two adjacent failures does not change the min-cut value,
CO1 = CO2 .

Combining two lemmas, we conclude that every order of failures has the same cut value as
O, which is CO.

The key distinction to be made in our scenario is that all of the nodes that are failed and
repaired are utilized in the repair process of the later failures, which is why the order of failures
does not matter. Note that for the special case of kc = 1, the above bound reduces to the classical
bound given in [1]. We obtain the following corner points in the trade-off region.

Corollary 15. For dr ≥ kc and σ ≤ ρ, corresponding BFR-MSR and BFR-MBR points can be
found as follows.

(αBFR-MSR, γBFR-MSR) =

(
M
k
,

Md

kd− k2(b−ρ−1)
b−ρ

)
, (4)
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(αBFR-MBR, γBFR-MBR) =

(
Md

kd− k2(b−ρ−1)
2(b−ρ)

,
Md

kd− k2(b−ρ−1)
2(b−ρ)

)
. (5)

Proof: For BFR-MSR point, we set α = M
k

in (2) and obtain the requirements [d − (b −
ρ− 1)kcβ ≥ α] from which we obtain that minimum γ occurs at γBFR-MSR = α

d−(b−ρ−1)kc
d as β

is lower bounded by α
d−(b−ρ−1)kc

. BFR-MBR point, on the other hand, follows from the bound
M≤∑b−ρ

i=1 kc[d−(i−1)kc]β as α = dβ at the minimum bandwidth. More specifically, minimum
β is given by β = M∑b−ρ

i=1 kc[d−(i−1)kc]
and γBFR-MBR = αBFR-MSR = dβ.

Remark 16. When b = ρ+ 1, observe that αBFR-MSR = γBFR-MSR = αBFR-MBR = γBFR-MBR = M
k

.

2) Case I.B: σ > ρ: For the case of having σ > ρ, we have |Bc| = b − ρ > |Br| = b − σ.
Noting that the helper nodes are chosen from the ones that are already connected to DC, we
consider that Bc ⊃ Br. Here, the min-cut analysis similar to the one given in the proof of Lemma
17 is same as having a system with b̄ = b−ρ, ρ̄ = 0, σ̄ = σ−ρ since the analysis for the file size
bound only utilizes b−ρ blocks and repairs occur by connecting to a subset of these b−ρ blocks.
That is, the remaining ρ blocks do not contribute to the cut value. Therefore, we conclude that
C (b, ρ, σ) = C (b− ρ, 0, σ − ρ) when σ > ρ.

Lemma 17. The upper bound on the file size when dr ≥ kc and σ > ρ is given by

M≤
b−σ∑
i=1

kc min {α, β(d− (i− 1)kc)}+

b−ρ∑
i=b−σ+1

kc min {α, β(d− (b− σ)kc)} . (6)

Proof: Let O be an order such that first kc failures occur in the first block, next kc failures
occur in the second block and so on. Denote by CO the total cut value induced by O. (The
analysis detailed in the proof of Theorem 12 is followed here.) Consider the node indexed by
i = kc(b−σ) so that order O can be split into two parts as Oi− and Oi+, where Oi− represents
the failures up to (and including) the node i, and Oi+ represents the remaining set of failures.

Since any node failure contacts to b − σ blocks and noting that Oi− includes exactly b − σ
blocks, any node failure in Oi+ would contribute to the cut value as min {α, (d− (b− σ)kc)β}.
On the other hand, COi− follows from Theorem 12. Combining COi− and COi+ , we get (6).

Remark 18. We conjecture that the order given in the proof above corresponds to the order
producing the min-cut. We verified this with numerical analysis for systems having small n
values. Although a general proof of this conjecture is not established yet 2, we were able to

2The main difficulty for this case is having σ > ρ, which makes some failed nodes not being utilized in the repair process.
That is why the proposed order is constructed such a way that we try to maximize the use of failed nodes in the repair process
of subsequent nodes.
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construct codes achieving the stated bound. Therefore we conjecture the following MSR/MBR
points for this case.

Utilizing the bound given in Lemma 17, we obtain following result (proof is similar to
Corollary 15 and omitted for brevity).

Conjecture 19. For dr ≥ kc and σ > ρ, corresponding BFR-MSR and BFR-MBR points can be
found as follows.

(αBFR-MSR, γBFR-MSR) =

(
M
k
,

Md

kd− k2(b−σ)
b−ρ

)
, (7)

(αBFR-MBR, γBFR-MBR) =

(
Md

kd− k2(b−σ)(b+σ−2ρ−1)
2(b−ρ)2

,
Md

kd− k2(b−σ)(b+σ−2ρ−1)
2(b−ρ)2

)
. (8)

B. Case II: dr < kc

In this case, having dr < kc necessarily implies b − σ > b − ρ ⇐⇒ ρ > σ, as d ≥ k for
regenerating codes (as discussed in previous section). Therefore, we only focus on ρ > σ case
in this section.

Theorem 20. The optimal file size when dr < kc and ρ > σ is given by

M≤
b−ρ∑
i=1

dr min {α, (d− (i− 1)dr)β}+

b−ρ∑
i=1

(kc − dr) min {α, (d− (b− ρ− 1)dr)β} . (9)

Proof: Let O be an order and let index i = dr(b− ρ) so that order O can be split into two
parts as Oi− and Oi+ where Oi− represents the failures up to (and including) index i and Oi+
represents the remaining set of failures. For index i, COi− takes its minimum possible value if
Oi− contains exactly dr failures from each of b − ρ blocks. We show this by a contradiction.
Assume that Oi− contains dr failures from each of b− ρ blocks but corresponding COi− is not
the minimum. We have already shown that the failure order among the nodes in Oi− does not
matter as long as the list contains dr failures from b− ρ blocks. This follows from dr = kc case
analyzed in Theorem 12. Assume an order spanning b−ρ+t blocks for t > 0. This ordering will
include nodes that are not connected to DC and can be omitted. This means that an order that
minimizes the cut value needs to contain a block that has at least dr + 1 failures. Denote such
an ordering by Oi−−, assume without loss of generality that this block j has t ≥ 1 additional
failures. In such a case, we observe that the cut value for failed nodes in other blocks would
not be affected by this change since each such node is already connected to dr nodes of block
j. Furthermore, by removing a failed node of some other block (other than j) from Oi−, the cut
values corresponding to other nodes in the list would only increase since the failures can benefit
at most dr − 1 nodes of that block as opposed to dr in Oi−. Hence, in order to minimize COi− ,
Oi− needs to include exactly dr failures from each of b − ρ blocks. Also, it can be observed
May 18, 2016 DRAFT
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n1,2

n1,1

n2,n2

n2,2

n2,1

n1,i1
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n1,i2
n2,i2
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dβ

(d− 1)β

(d− 2)β

(d− 1)β

(d− k
2 + 1)β

(d− k
2)β

Fig. 3: Repair process for b = 2 (two blocks) case.

that, when Oi− is constructed as above, then Oi+ also takes its minimum possible value, since
any failure in Oi+ utilizes maximum possible number of repaired nodes (dr nodes from each of
the b− ρ− 1 blocks) that are connected to DC hence it only needs to contact ρ− σ + 1 blocks
that are not connected to DC. Therefore, both COi− and COi+ are minimized individually with
Oi−. Therefore, for a fixed threshold i = dr(b− ρ), we obtain the min-cut.

Corollary 21. For dr < kc, corresponding BFR-MSR and BFR-MBR points can be found as
follows.

(αBFR-MSR, γBFR-MSR) =

(
M
k
,
Md

kd(ρ−σ+1)
b−σ

)
, (10)

(αBFR-MBR, γBFR-MBR) =

(
Md

kd(ρ−σ+1)
b−σ + d2(b−ρ)(b−ρ−1)

2(b−σ)2

,
Md

kd(ρ−σ+1)
b−σ + d2(b−ρ)(b−ρ−1)

2(b−σ)2

)
. (11)

C. BFR-MSR and BFR-MBR Points for Special Cases

The general case is analyzed in the previous section, and we here focus on special cases
for BFR-MSR and BFR-MBR points. The first case analyzed below has the property that
corresponding BFR-MSR codes, achieves both per-node storage point of MSR codes and repair
bandwidth of MBR codes simultaneously when 2d� k.

1) Special Case for I.B: ρ = 0, σ = 1, dr ≥ kc and b = 2: Consider the 2-block case
(b = 2) as in Fig. 3, and assume 2|k. The file size M can be upper bounded with the repair
procedure shown in Fig. 3, which displays one of the “minimum-cut” scenarios, wherein any
two consecutive node failures belong to different blocks. Assuming d ≥ k

2
, we obtain

M≤
k
2
−1∑
i=0

min(α, (d− i)β) +

k
2∑
i=1

min(α, (d− i)β). (12)
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Achieving this upper bound (12) with equality would yield maximum possible file size. One

particular repair instance is shown in Fig. 3, and we note that the order of node repairs does
not matter as the sum of the corresponding cut values would be the same with different order
of failures as long as we consider connection from data collector to k

2
repaired nodes from each

block.
For BFR-MSR point, α = αBFR-MSR = M

k
. In the bound (12), we then have αBFR-MSR ≤

(d − k
2
)βBFR-MSR. Achieving equality would give the minimum repair bandwidth for the MSR

case. Hence, BFR-MSR point is given by

(αBFR-MSR, γBFR-MSR) =

(M
k
,

2Md

2kd− k2

)
. (13)

Note that, this coincides with that of (7) where we set b = 2, ρ = 0 and σ = 1 therein.
BFR-MBR codes, on the other hand, have the property that dβ = α with minimum possible

dβ while achieving the equality in (12). Inserting dβ = α in (12), we obtain that

(αBFR-MBR, γBFR-MBR) =

(
4Md

4dk − k2
,

4Md

4dk − k2

)
. (14)

This coincides with that of (8) where we set b = 2, ρ = 0 and σ = 1 therein.
We now consider the case where 2 - k (as compared to previous section where we assumed

kc = k
b−ρ ), and characterize trade-off points for all possible system parameters in this special

case. First consider the special case of k = 3 and two different order of failures, one with first
failure in first block, second failure in second block, third failure in first block and the other
one with first and second failures from first block, third failure from second block. Accordingly,
observe that the cuts as min(α, dβ) + 2 min(α, (d− 1)β) and 2 min(α, dβ) + min(α, (d− 2)β)

respectively. For MSR case, first sum would require α = (d−1)β, whereas second sum requires
α = (d − 2)β, resulting in higher repair bandwidth. Henceforth, one needs to be careful even
though cut values are same for both orders of failures in both MSR (3α) and MBR ((3d− 2)β)
cases.

M≤
b k2c+1∑
i=1

min(α, dβ) +

b k2c∑
i=1

min(α, (d−
⌊
k

2

⌋
− 1)β) (15)

The corresponding trade-off point are summarized below by following analysis similar to the
one above.

(αBFR-MSR, γBFR-MSR) =

(M
k
, 2Md

2kd−k2−k ), if k is odd

(M
k
, 2Md

2kd−k2 ), o.w.
(16)

(αBFR-MBR, γBFR-MBR) =

( 4Md
4dk−k2+1

, 4Md
4dk−k2+1

), if k is odd

( 4Md
4dk−k2 ,

4Md
4dk−k2 ), o.w.

(17)
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Here, we compare γBFR-MSR and γMBR. We have min(γk-odd

BFR-MSR, γ
k-even
BFR-MSR) ≥ γMBR = 2Md

k(2d−k+1)
,

and, if we have 2d − k � 1, then γk-odd
BFR-MSR ≈ γk-even

BFR-MSR ≈ γMBR. This implies that BFR-MSR
codes with b = 2 achieves repair bandwidth of MBR and per-node storage of MSR codes
simultaneously for systems with d� 1. On Fig. 4a and 4b, we depict the ratio of γk-odd

BFR-MSR and
γk-even

BFR-MSR to γMBR respectively, where we keep k constant and vary d as 2k ≥ d ≥ k. Also, we
only even d values are shown in both figures. It can be observed that ratio gets closer to 1 as we
increase k. Next, we provide the generalization of critical points to b ≥ 2 case in the following.
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Fig. 4: (a) Ratio γk-odd
BFR-MSR
γMBR

vs. d. (b) Ratio γk-even
BFR-MSR
γMBR

vs. d.

2) Special Case for Case I.B: ρ = 0, σ = 1, dr ≥ kc and b ≥ 2: From Corollary 19, we
obtain the corresponding MSR and MBR points in this special case.

Corollary 22. For ρ = 0, σ = 1, dr ≥ kc and b ≥ 2 BFR-MSR and BFR-MBR points are as
follows.

(αBFR-MSR, γBFR-MSR) =

(
M
k
,

Md

kd− k2(b−1)
b

)
(18)

(αBFR-MBR, γBFR-MBR) =

(
Md

kd− k2(b−1)
2b

,
Md

kd− k2(b−1)
2b

)
(19)

We observe that γBFR-MSR ≤ γMSR = Md
k(d−k+1)

for b ≤ k, which is the case here as we assume

b | k. Also, we have γBFR-MSR
γMBR

=
d− k−1

2

d−k b−1
b

≥ 1 when b ≥ 2k
k+1

which is always true. Hence, γBFR-MSR

is between γMSR and γMBR, see Fig. 2.

IV. BFR-MSR AND BFR-MBR CODE CONSTRUCTIONS

A. Transpose code: b=2

Construction I (Transpose code): Consider α = d = n
2
, and placement of nα

2
symbols denoted

by
{
xi,j : i, j ∈

{
1, 2, · · · , n

2
= α

}}
for b = 2 blocks according to the following rule: Node i in
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xn
2 ,1
, ..., xn

2 ,α
...x2,1, ..., x2,αx1,1, ..., x1,α

c1 c2 cn
2

x1,α, ..., xn
2 ,α

...x1,2, ..., xn
2 ,2

x1,1, ..., xn
2 ,1

cn
2+1

cn
2+2 cn

Block 1

Block 2

Fig. 5: Transpose code is a two-block BFR-MBR code.

(in block b = 1) stores symbols {xi,j : j ∈ {1, 2, · · · , α}}, whereas node i+ n
2

(in block b = 2)
stores symbols {xj,i : j ∈ {1, 2, · · · , α}} for i = 1, 2, · · · , n

2
. Note that, when the stored symbols

in nodes of block 1 is represented as a matrix, the symbols in block 2 corresponds to transpose
of that matrix. (We therefore refer to this code as transpose code.)

Due to this transpose property, the repair of a failed node i in the first block can be performed
by connecting all the nodes in the second block and downloading only 1 symbol from each node.
That is, we have dβ = α. Consider now that the file sizeM = kd− (k

2
)2, and an [N = α2, K =

M] MDS code is used to encode file f into symbols denoted with xi,j , i, j = 1, . . . , α. Here, BFR
data collection property for reconstructing the file is satisfied, as connecting any kc = k

2
nodes

from each block assures at least K distinct symbols. This can be shown as follows: Consider
α×α matrix X , where i-throw, j-th column has the element xi,j . Rows of X correspond to nodes
of block 1, and columns of X correspond to nodes of block 2. Any k

2
rows (or any k

2
columns)

provide total of kα
2

symbols. And k
2

rows and k
2

columns intersect at
(
k
2

)
symbols. Therefore,

total number of symbols from any k
2

rows and k
2

columns isM. Note that the remaining system
parameters are dr = n

2
≥ kc, ρ = 0 and σ = 1. Henceforth, this code is a BFR-MBR code as the

operating point in (19), is achieved with M = kd− (k
2
)2 and dβ = α for β = 1 (scalar code).

A similar code to this construction is Twin codes introduced in [24], where the nodes are
split into two types and a failed node of a a given type is regenerated by connecting to nodes
only in the other type. During construction of Twin codes, the message is first transposed and
two different codes are applied to both original message and it’s transposed version separately
to obtain code symbols. On the other hand, we apply one code to the message and transpose
resulting symbols during placement. Also, Twin codes, as opposed to our model, do not have
balanced node connection for data collection. In particular, DC connects to only (a subset of
k nodes from) a single type and repairs are conducted from k nodes. On the other hand, BFR
codes, for b = 2 case, connects to k

2
nodes from each block and repairs are from any d nodes

in other block.
This construction, however, is limited to b = 2 and in the following section we propose

utilization of block designs to construct BFR codes for b > 2.
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Fig. 6: (a) Matrix representation of block design. (b) Three-block BFR-RC.

B. Projective plane based placement of regenerating codewords (ρ = 0, σ = 1)

Consider that the file f of sizeM is partitioned into 3 parts f1, f2 and f3 each of size M̃ = M
3

.
Each partition fi is encoded with an [ñ = 10, k̃ = 4, d̃ = 5, α̃, β̃] regenerating code C̃, where
the resulting partition codewords are represented with P1 = {p1,1:ñ} for f1, P2 = {p2,1:ñ} for f2,
and P3 = {p3,1:ñ} for f3. These symbols are grouped in a specific way and placed into nodes
within blocks as represented in Fig. 6b, where each node contains two symbols each coming
from two different partitions. We set the BFR code parameters as [M = 3M̃, k = 3

2
k̃, d =

2d̃, α = 2α̃, β = β̃].
Assume block b = 1 (denoted as Block 1) is unavailable and its first node, which contains

codeword c1, has to be reconstructed. Due to underlying regenerating code, contacting 5 nodes
of Block 2 and accessing to p1,6:10 regenerates p1,1. Similarly, p2,1 can be reconstructed from
Block 3. Any node reconstruction can be handled similarly, by connecting to remaining 2 blocks
and repairing each symbol of the failed node by corresponding d̃ nodes in each block. As we
have k = 6, DC, by connecting to 2 nodes from each block, obtains a total of 12 symbols, which
consist of 4 different symbols from each of P1, P2 and P3. As the embedded regenerating code
has k̃ = 4, all 3 partitions (f1, f2 and f3) can be recovered, from which f can be reconstructed.

In the following construction, we generalize the BFR-RC construction above utilizing pro-
jective planes for the case of having ρ = 0, σ = 1. As defined in Section III, this necessarily
requires dr > kc.) We first introduce projective planes in the following and then detail the code
construction.

Definition 23 (Balanced incomplete block design [41]). A (v, κ, λ)-BIBD has v points distributed
into blocks of size κ such that any pair of points are contained in λ blocks.

Corollary 24. For a (v, κ, λ)-BIBD,

• Every point occurs in r = λ(v−1)
κ−1

blocks.
• The design has exactly b = vr

κ
= λ(v2−v)

κ2−κ blocks.

In the achievable schemes of this work, we utilize a special class of block designs that are
called projective planes [41].

Definition 25. A (v = p2 + p + 1, κ = p + 1, λ = 1)-BIBD with p ≥ 2 is called a projective
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+2, . . . , pv,2

p1,2 ñ
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Fig. 7: Illustrating the construction of BFR codes using projective plane based placement of
regenerating codes. (n′ = ñ− ñ

r
+ 1.)

plane of order p.

Projective planes have the property that every pair of blocks intersect at a unique point (as
λ = 1). In addition, due to Corollary 24, in projective planes, every point occurs in r = p + 1

blocks, and there are b = v = p2 + p+ 1 blocks.
Construction II (Projective plane based placement of regenerating codes): The file f of size
M is partitioned into v parts, f1, f2, · · · , fv. Each part, of size M̃ = M

v
, is then encoded using

[ñ, k̃, d̃, α̃, β̃] regenerating code C̃. We represent the resulting partition codewords with Pi = pi,1:ñ

for i = 1, . . . , v. We then consider index of each partition as a point in a (v = p2 + p + 1, κ =

p + 1, λ = 1) projective plane. (Indices of symbol sets PJ and points J of the projective
plane are used interchangeably in the following.) We perform the placement of each symbol to
the system using this projective plane mapping. (The setup in Fig. 6b can be considered as a
toy model. Although the combinatorial design with blocks given by {p1, p2}, {p3, p1}, {p3, p2}
has projective plane properties with p = 1, it is not considered as an instance of a projective
plane [41].) In this placement, total of ñ symbols from each partition Pi are distributed to r

blocks evenly such that each block contains ñ
r

nodes where each node stores α = κα̃ symbols.
Note that blocks of projective plane give the indices of partitions Pi stored in the nodes of the
corresponding block in DSS. That is, all nodes in a block stores symbols from unique subset of
P = {P1, . . . ,Pv} of size κ. (For instance, in Fig. 6b, the first block of the block design has
part {p1, p2}, and accordingly symbols from partitions P1 and P2 are placed into node of Block
1.) Here, as each point in the block design is repeated in r blocks, the partition codewords span
r blocks. Overall, the system can store a file of size M = vM̃ with b = v blocks. (Note that,
r = κ = p + 1 and b = v = p2 + p = 1 for projective planes. See Definition 25.) We set the
parameters as

M = vM̃, k =
b

r
k̃, d = κd̃, α = κα̃, β = β̃ (20)

where we choose parameters to satisfy r−1 | d̃, r | ñ (for splitting partition codewords evenly to r
blocks) and r | k̃ (for data collection as detailed below). We have dr = d̃

r−1
= d

b−1
> kc = k̃

r
= k

b

as d ≥ k and hence the required condition dr > kc is satisfied
Node Repair: Consider that one of the nodes in a block is to be repaired. Note that the failed
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node contains κ symbols, each coming from a distinct partition. Using the property of projective
planes that any 2 blocks has only 1 point in common, any remaining block can help for in the
regeneration of 1 symbol of the failed node. Furthermore, as any point in the block design has a
repetition degree of r, one can connect to r− 1 blocks, dr = d̃

r−1
nodes per block, to repair one

symbol of a failed node. Combining these two observations; we observe that node regeneration
can be performed by connecting (r − 1)κ blocks. In particular, substituting r = κ = p + 1, we
see that connecting to p2 + p = b − 1 blocks allows for reconstructing of any node of a failed
block.

Data Collection: DC connects to kc = k̃
r

nodes per block from all bc = b blocks, i.e., a total
of k = b

r
k̃ = v

r
k̃ nodes each having encoded symbols of κ = r partitions. These total of vk̃

symbols include k̃ symbols from each partition, from which all partitions can be decoded, and
hence the file f , can be reconstructed.

Remark 26. We note that, when ñ = r in Construction II, each node in the system stores
different partition subsets of P = {P1, · · · ,Pv}. This translates into having c = 1 node per
block. This special case of proposed construction is equivalent to layered codes studied in [26].
In that work, layering helps to construct codes with exact repair properties. In Construction II,
on the other hand, multiple nodes in the system can have the same type (representing the same
subset of partitions), and this enables to achieve different operating points for the block failure
model.

1) BFR-MSR: To construct a BFR-MSR code, we set each sub-code C̃ in Construction II as
an MSR code, which has

α̃ =
M̃
k̃
, d̃β̃ =

M̃d̃

k̃(d̃− k̃ + 1)
. (21)

This, together with (20), results in the following parameters of our BFR-MSR construction

α = α̃κ =
M
k
, dβ = κd̃β̃ =

Md

k(d− k(p+1)2

p2+p+1
+ p+ 1)

. (22)

We remark that if we utilize ZigZag codes [2] as the sub-code C̃ above, we have [ñ, k̃, d̃ =

ñ − 1, α̃ = r̃k̃−1, β̃ = r̃k̃−2, r̃ = ñ − k̃], and having d̃ = ñ − 1 requires connecting to 1 node
per block for repairs in our block model. In addition, product matrix MSR codes [3] require
d̃ ≥ 2k̃ − 2, and they can be used as the sub-code C̃, for which we do not necessarily have
d̃ = r − 1. We observe from (18) and (22) that the BFR-MSR point is achieved for k̃ = p+ 1,
implying k = b, i.e. DC connects necessarily 1 node per block for data reconstruction when our
Construction II gives BFR-MSR code.

2) BFR-MBR: To construct a BFR-MBR code, we set each sub-code C̃ in Construction II as
a product matrix MBR code [3], which has

α̃ = d̃β̃ =
2M̃d̃

k̃(2d̃− k̃ + 1)
. (23)
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This, together with (20), results in the following parameters of our BFR-MBR construction

α = dβ =
2Md

k(2d− k(p+1)2

p2+p+1
+ p+ 1)

. (24)

From (19) and (24), we observe that the BFR-MBR point is achieved for k̃ = p+ 1.

C. Duplicated Block Design Based BFR Codes (ρ = 0 and σ < b− 1)

In this section, BFR codes for special case of having ρ = 0 is constructed. We note that
ρ = 0 implies that DC contact all b blocks to retrieve the stored data. Before detailing the
code construction, we first introduce a block design referred to as duplicated combination block
design [26].

Definition 27 (DCBD). Let (κ̃, ṽ) denote the parameters for a block design, where ṽ points
from all possible sets of blocks each with κ̃ points. Then, duplicated combination block design
(DCBD) (with repetition r̃ ) is a block design where the given block design is duplicated r̃ times
with different labeling points. (Here, total of v = r̃ṽ points are splitted into r̃ groups of ṽ points,
where each group generates sub-blocks according to the given block design.)

Example 28. DCBD with ṽ = 5, κ̃ = 4 and r̃ = 3 is given below.
1 3 4 5 6 8 9 10 11 13 14 15

1 2 4 5 6 7 9 10 11 12 14 15

1 2 3 5 6 7 8 10 11 12 13 15

1 2 3 4 6 7 8 9 11 12 13 14

2 3 4 5 7 8 9 10 12 13 14 15

 (25)

It can be observed that each sub-block consists
(
ṽ
κ̃

)
blocks, each containing a different set of

κ̃ points. Also, the same combination is repeated r̃ times (with different labels for points, namely
{6, 7, 8, 9, 10} and {11, 12, 13, 14, 15}). Each row here corresponds to a block of DCBD, where
sub-blocks aligned similarly in columns represent the underlying (κ̃, ṽ) block design. We refer
to the sub-blocks as repetition groups in the following.

Construction III (DCBD based BFR-RC): Consider a file f of size M.

• Divide M into (b− σ)
(
b
b−1

)
parts of equal size M̃, i.e., M̃(b− σ)b =M.

• Encode each part fi using an [ñ, k̃ = M̃, d̃] regenerating code (referred to as the sub-code
C̃).

• Place the resulting partition codewords according to DCBD design (with ṽ = b, κ̃ = b− 1

and r̃ = b − σ) such that each block has c = ñ
b−1

nodes, where each node stores κ = κ̃r̃

symbols, each coming from a different partition.

Overall, the system stores a file of sizeM = b(b−σ)M̃ over b blocks. We set the parameters
as

M = b(b−σ)M̃, k =
bk̃

b− 1
, d =

d̃(b− σ)

b− σ − 1
, α = (b−1)(b−σ)α̃, β = (b−σ−1)(b−1)β̃ (26)
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where we consider σ < b− 1.

The following example (with b = 5 and σ = 2) illustrates a repair scenario. Assume that the
failed node is in the first block and it will be regenerated by blocks 2,3 and 4 (as b − σ = 3).
Considering the first repetition group, it can be observed that symbols of each of b − σ = 3

partitions (P3,P4 and P5) can be found in b−σ− 1 = 2 of these blocks, whereas the remaining
σ − 1 = 1 partition (P1) can be found in in all b − σ blocks. (In the representation below,
numbers represent the indices for partitions Pi. And, the three highlighted rows for the first
repetition group includes partitions P1,P3,P4,P5 that are relevant to the symbols stored in the
block corresponding to the first row below.)

1 3 4 5 6 8 9 10 11 13 14 15

1 2 4 5 6 7 9 10 11 12 14 15
1 2 3 5 6 7 8 10 11 12 13 15
1 2 3 4 6 7 8 9 11 12 13 14
2 3 4 5 7 8 9 10 12 13 14 15

 (27)

Node Repair: Generalizing above argument, consider that one of the nodes in a block is to
be repaired by contacting to b− σ blocks. A failed node contains κ = (b− 1)(b− σ) symbols,
each coming from a distinct partition codeword. The properties of underlying (DCBD) block
design, (considering the first repetition group), implies that there exists b − σ partitions of the
failed node that are contained only in b−σ−1 of the blocks contacted for repair. The remaining
b− 1− (b−σ) = σ− 1 partitions (of each repetition group) are contained in all of the contacted
b− σ blocks. These partitions are referred to as the common partitions of a repetition group in
b− σ contacted blocks. (In the example above, partitions P1,P6,P11 are the common partitions
for the first, second and third repetition group respectively.)

Using this observation for DCBD based construction, (i.e., considering all repetition groups),
consider obtaining σ − 1 common partitions from b − σ − 1 blocks of each of the r̃ = b − σ
repetition groups. In addition, consider obtaining remaining relevant partitions (b− σ partitions
per repetition group) from these r̃ = b−σ partition groups (total of r̃(b−σ)(b−σ−1) partitions).

These σ − 1 common partitions per repetition group over r̃ = b − σ repetition groups are
contacted evenly. Namely, each other relevant partition are contacted from only b−σ−1 blocks,
the common partitions among b − σ blocks are contacted only b − σ − 1 times (i.e., by not
contacting to any common point at all in only one repetition group from a block and since there
are b − σ repetition groups and b − σ contacted blocks, we can do this process evenly for all
blocks). Henceforth, from each block same amount of symbols (and same amount of symbols
from each partition) is downloaded. In total, there are (σ− 1)(b−σ)(b−σ− 1) common points
and each block contributes the transmission of (σ − 1)(b − σ − 1) common partitions. Hence,
β = [(σ − 1)(b− σ − 1) + (b− σ − 1)(b− σ)]β̃ = (b− σ − 1)(b− 1)β̃.

In order to have a successful regeneration for each node to be regenerated, we also require
the following condition in this construction.
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Lemma 29. Construction III requires the necessary condition ñ

b−1
≥ d̃

b−σ−1
for repair feasibility.

Proof: Given v − 1 combinations of v points, any two combinations differs only in one
point. Also, any combination is missing only one point. If one collects b − σ ≥ 2 of such
combinations in Construction III, then the partition with least number of instances is b− σ− 1.
(This follows as the first combination is missing only one partition which is necessarily included
in the second combination.) Then, by contacting any b− σ blocks, one can recover partitions of
failed node from these b−σ blocks. (There exist at least b−σ− 1 number of blocks containing
nodes storing symbols from a given partition.) Since each block has c = ñ

b−1
symbols from each

partition, we require ñ
b−1
≥ d̃

b−σ−1
to have repair feasibility in Construction III.

Therefore, a failed node can be regenerated from d = d̃(b−σ)
b−σ−1

nodes and downloading β =

(b−σ− 1)(b− 1)β̃ symbols from each block. (Note that, dr = d
b−σ = d̃

b−σ−1
.) For each partition

of the failed node, d̃β̃ symbols are downloaded, from which one can regenerate each partition.
Note that, repeating combinations multiple times enables us to have uniform downloads from
the nodes during repairs.

Data Collection: DC connects to kc = k
b

= k̃
b−1

nodes per block (as ρ = 0), and downloads total
of kcα symbols from each block. These symbols include k̃α̃

b−1
symbols from each of (b−1)(b−σ)

partitions. Therefore, from all blocks, (b−1)k̃α̃
b−1

= k̃α̃ symbols per partition is collected, from
which each partition can be decoded via underlying sub-code C̃, and the stored file f can be
reconstructed.

1) BFR-MSR: To construct a BFR-MSR code, we set each sub-code C̃ in Construction III as
an MSR code, which has

α̃ =
M̃
k̃
, d̃β̃ =

M̃d̃

k̃(d̃− k̃ + 1)
. (28)

This, together with (26), results in the following parameters of our BFR-MSR construction

α = (b− 1)(b− σ)α̃ =
M
k
, (29)

dβ =
d̃(b− σ)

b− σ − 1
(b− σ − 1)(b− 1)β̃ =

Md(b− σ − 1)

k(d(b− σ − 1)− k(b−1)(b−σ)
b

+ b− σ)
. (30)

From (7), we obtain that Construction III results in optimal BFR-MSR codes when k = b
σ

(i.e., k̃ = b−1
σ

).
2) BFR-MBR: To construct a BFR-MBR code, we set each sub-code C̃ in Construction III

as a product matrix MBR code [3], which has

α̃ = d̃β̃ =
2M̃d̃

k̃(2d̃− k̃ + 1)
. (31)

This, together with (26) results in the following parameters of our BFR-MBR construction

α = dβ =
2Md(b− σ − 1)

k(2d(b− σ − 1)− k(b−1)(b−σ)
b

+ b− σ)
. (32)

May 18, 2016 DRAFT



26

Cluster 1 Cluster 2 Cluster b
bL

Rack 1

Rack 2

Rack bL

Fig. 8: Data center architecture. Each rack resembles a block and each cluster forms a local
group for node repair operations in the BFR model.

From (8), we obtain that Construction III results in optimal BFR-MSR codes when k = b2

b+σ2−1

(i.e., k̃ = b(b−1)
b+σ2−1

).

V. LOCALLY REPAIRABLE BFR CODES

A. Locality in BFR

In this section, we focus on BFR model with repair locality constraints, i.e., only a local
set of blocks are available to regenerate the content of a given node. This model is suitable for
both disk storage and distributed (cloud/P2P) storage systems. For example, a typical data center
architecture includes multiple servers, which form racks which further form clusters, see Fig. 8.
We can think of each cluster as a local group of racks where each rack contains multiple servers.
Hence, in Fig. 8, we can model the data center as having b blocks (racks) where bL blocks form
a local group (cluster) and there are c nodes (servers) in each block.

In this section, we extend our study of data recovery with the block failure model to such
scenarios with locality constraints. We assume that DSS maintains the data of size M with at
most ρ blocks being unavailable. Hence, from any b−ρ blocks, data collection can be performed
by contacting any kc nodes from each of such blocks. In other words, DC can contact some set
of local groups, B∗, to retrieve the file stored in the DSS with |B∗| = b− ρ. Let ci,j denote the
part of the codewords associated with ith local group’s jth block accessed by DC, which consists
of kc nodes. Note that, we consider kc = c for full access and kc < c for partial access as before.
Then, we can denote by ci the codeword seen by DC corresponding to local group Bi, which
has a size j′ ≤ bL. Therefore, cB∗ =

{
ci1 , · · · , ci|B∗|)

}
denotes the codeword corresponding to

the one seen by DC, when accessing kc(b− ρ) = k nodes.

Definition 30. Let c be a codeword in C selected uniformly, the resilience of C is defined as

ρ = b− max
B∗⊆[b]:H(c(B∗))<M

|B∗| − 1. (33)

We remark that resilience ρ of locally repairable BFR code dictates the number of block
failures that the system can tolerate (analogous to minimum distance providing the maximum
number of node failures).
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Definition 31. Code C is said to have (rL, ρL) locality, if for any node j in a block i, there
exists a set of blocks Bi such that

• i ∈ Bi ⊂ B = {1, · · · , b},
• |Bi| ≤ bL := rL + ρL,
• C|Bi is an (nL, bL, KL, kL, ρL, α) BFR code. (See Definition 1.)

Such codes are denoted as BFR-LRC in the following.
1) Upper bound on the resilience of BFR-LRC: We provide the following bound on the

resilience of BFR-LRC.

Theorem 32. The resilience of BFR-LRC can be bounded as follows.

ρ ≤ b−
⌈M(bL − ρL)

KL

⌉
−
(⌈M

KL

⌉
− 1

)
ρL (34)

Proof: The proof follows from the algorithmic approach as considered e.g., in [9], [10] and
[12], and detailed in the Appendix B.

B. Code Constructions for Resilience Optimal BFR-LRC

In this section we propose two code constructions, which yield optimal codes in terms of
resilience. Both of the constructions utilize Gabidulin coding as well as MDS codes but only
the first construction uses projective plane geometry.

1) Basic Construction with Projective Planes: Construction IV: Consider file f of size M
and projective plane of order p, (v, κ, λ = 1)−BIBD.

• First, encode f using [N = KLb
bL
, K = M, D = N −M + 1] Gabidulin code, CGab. The

resulting codeword c ∈ CGab is divided into b
bL

disjoint sets of symbols of size KL.
• For each disjoint set, divide it into v partitions of equal size. For each partition, use [ñ, k̃ =

kL(p+1−ρL)
bL−ρL

] MDS code, where nL = b̃v.
• Place the resulting encoded symbols using a projective plane of order p using Construction

II. That is, local code in the local group will have BFR properties and constructed as in
Construction II.

Remark 33. Construction IV works only if ρL ≤ p since otherwise we would have non-positive
value for k̃. Furthermore, we need (bL − ρL)|kL(p+ 1− ρL) to have an integer k̃.

Corollary 34. Construction IV provides resilience-optimal codes CBFR−LRC , when p2 + p +

1|KL|M and bL|b.

Proof: In order to prove that CBFR−LRC attains the bound in (32), it is sufficient to
demonstrate that any pattern of E = b−

⌈
M(bL−ρL)

KL

⌉
−
(⌈
M
KL

⌉
− 1
)
ρL number of block erasures

can be corrected. For b = NbL
KL

, we then have E = NbL
KL
−
⌈
M(bL−ρL)

KL

⌉
−
(⌈
M
KL

⌉
− 1
)
ρL. Also

May 18, 2016 DRAFT



28
note that the worst case erasure pattern is the one when erasures happen in the smallest possible
number of local groups and the number of block erasures inside a local group is the maximum
possible.

LetM = α1KL, then E = bL( N
KL
−α1)+ρL, which corresponds to N

KL
−α1 local groups with

bL erasures and ρL erasures from one additional group (which results in no rank erasures for the
underlying Gabidulin codewords since resilience of local group is ρL). Then, total rank erasures
is KL( N

KL
− α1) = N − KLα1 which can be corrected by Gabidulin code since its minimum

distance is D = N −M+ 1 = N − α1KL + 1.

Remark 35. Although above construction yield optimal codes in terms of resilience, when ρL 6=
0, they are not rate optimal. The optimal codes should store kLα = kLvα̃ = kL(p+ 1)α̃ symbols
(in each local group), since each node stores α = (p + 1)α̃ where α̃ is the number of symbols
from a partition and each node stores symbols from p + 1 partitions. On the other hand, with
the above construction, one can store k̃vα̃ = kL(p+1−ρL)

p2+p+1−ρL
(p2 + p + 1)α̃ symbols (in each local

group). Note that for ρL 6= 0, kL(p+1−ρL)
p2+p+1−ρL

(p2 +p+1)α̃ ≤ kL(p+1)α̃, which implies that the code
construction is not optimal in terms rate (i.e., file size for a fixed n).

2) Construction for BFR-LRC with Improved Rate: In the previous section, we utilize projec-
tive planes in code construction, however resulting codes are not optimal in terms of improved
rate. We now propose another construction for BFR-LRC to achieve higher rate.
Construction V: Consider file f of size M.

• First, encode f using [N,K =M, D = N −M + 1] Gabidulin code, CGab. The resulting
codeword c ∈ CGab is divided into b

bL
disjoint groups of size KL = NbL

b
.

• Apply MDS codes of [ñ = bLc, k̃ = NbL
b

] to each disjoint group. Resulting bLc symbols are
placed to each block equally (c symbols per block).

Corollary 36. Construction V yields an optimal code, CBFR−LRC , when b|NbL.

Proof: Let α1, β1 and γ1 be integers such thatM = KL
bL−ρL

(α1(bL−ρL)+β1)+γ1, where 1 ≤
α1 ≤ b

bL
; 0 ≤ β1 ≤ bL−ρL−1; and 0 ≤ γ1 ≤ KL

bL−ρL
−1. E = b−

⌈
M(bL−ρL)

KL

⌉
−
(⌈
M
KL

⌉
− 1
)
ρL

is the number of block erasures can be tolerated.

• If γ1 = β1 = 0, then M = KLα1. Then, we have E = bL( N
KL
− α1) + ρL number of

block erasures to be tolerated, similar to Corollary 34. Thus, the worst case happens when
N
KL
−α1 local groups with all of their blocks erased and one additional local group with ρL

blocks erased. The latter does not correspond to any rank erasures since the resilience of
local group is ρL, therefore the worst case scenario results in KL rank erasures in each of
( N
KL
− α1) local groups. Since D − 1 = N −M = N −KLα1, these worst case scenarios

can be corrected by the Gabidulin code.
• If γ1 = 0 and β1 > 0, then M = KL

bL−ρL
(α1(bL − ρL) + β1). Hence, we have E = bL( N

KL
−

α1− 1) + bL−β1. Thus, the worst case happens when N
KL
−α1− 1 local groups with all of

their blocks erased and one additional local group with bL − β1 blocks erased. Then, that
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scenario corresponds to ( N

KL
− α1)KL − β1

KL
bL−ρL

rank erasures, which can be corrected by
Gabidulin code since D − 1 = N −M = N − α1KL − β1

KL
bL−ρL

.
• If γ1 > 0, then M = KL

bL−ρL
(α1(bL − ρL) + β1) + γ1. Hence, we have E = bL( N

KL
− α1 −

1) + bL − β1 − 1. Thus, the worst case happens when N
KL
− α1 − 1 local groups with all of

their blocks erased and one additional local group with bL − β1 − 1 blocks erased. Then,
that scenario corresponds to ( N

KL
− α1)KL − (β1 + 1) KL

bL−ρL
rank erasures, which can be

corrected by Gabidulin code since D − 1 = N −M = N − α1KL − β1
KL

bL−ρL
− γ1 and

γ1 <
KL

bL−ρL
.

Remark 37. We note that the above construction is similar to that of [12], here modified for
the block failure model to achieve resilience optimal construction with improved rate.

C. Local Regeneration for BFR Codes

In the previous section, MDS codes are utilized in local groups. These codewords, however, are
not repair bandwidth optimal. As an alternative, regenerating codes can be used in local groups to
construct codes which have better trade-off in terms of repair bandwidth. Differentiating between
the two important points, we denote BFR-LRC codes with regenerating code properties which
operate at minimum per-node storage point as BFR-MSR-LRC. Similarly, the codes operating
at minimum repair bandwidth point are called BFR-MBR-LRC.

Let G1, . . . ,G b
bL

represent the disjoint set of indices of blocks where Gi represents local group
i, which has bL blocks. A failed node in one of the blocks in Gi is repaired by contacting any
bL − σL blocks within the group. A newcomer downloads β symbols from dL

bL−σL
nodes from

each of bL− σL blocks. That is, the local group has the properties of repair bandwidth efficient
BFR codes as studied in Section III.

Definition 38 (Uniform rank accumulation (URA) codes). Let G be a generator matrix for a
BFR code C. Columns of G produce the codewords henceforth we can think of each α columns
(also referred to as thick column) of G as a representation of a node storing α symbols. Then,
a block can be represented by c such thick columns. Let Si be an arbitrary subset of i such
blocks. C is an URA code, if the restriction G|Si of G to Si, has rank ρi that is independent of
specific subset Si and it only depends on |Si|.

Remark 39. Generally, URA codes are associated with rank accumulation profile to calculate
the rank of any subset Si. However, rank accumulation profile is not required but rather rank
accumulation is enough for a code to be considered as URA code. We note that for BFR-
MSR/MBR codes, we do not have a specific rank accumulation profile but that does not rule
out BFR-MSR/MBR codes being URA since they still obey the rank accumulation property.
Specifically, we note that H(bSi) = f(|Si|) for both BFR-MSR/MBR, which makes them URA
codes.
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Following similar steps as introduced in [16], resilience upper bound can be derived when

local codes are URA codes. Consider the finite length vector (b1, . . . , bbL) and its extension with
bL period as bi+jbL = bi, 1 ≤ i ≤ bL, j ≥ 1. Let H(bS) denote the entropy of set of blocks S,

H(bS) =

|S|∑
i=1

H(bji |bj1 , · · · , bji−1
), |S| ≥ 1, S =

{
j1, . . . , j|S|

}
⊆ [b]. (35)

For integers µ ≥ 0 and 1 ≤ φ ≤ bL, let H(µbL + φ) = µKL + H(φ). (Note that, due to URA
property, entropy is only a function of number of blocks here.) For the inverse function H(inv),
we set H(inv)(ϕ) for ϕ ≥ 1, to be largest integer S such that H(bS) ≥ ϕ. Then, we have for
µ̃ ≥ 0 and 1 ≤ φ̃ ≤ KL,

H(inv)(µ̃KL + φ̃) = µ̃bL +H(inv)(φ̃),

where H(inv)(φ̃) ≤ min {b− ρL, b− σL}.

Theorem 40. The resilience of BFR-LRC is upper bounded by

ρ ≤ b−H(inv)(M). (36)

When URA codes are used as local codes, we have the following file size bound for resilience
optimal codes

M≤ H(b− ρ)

= µKL +H(φ),
(37)

where µ =
⌊
b−ρ
bL

⌋
and φ = b − ρ − µbL. Note that if φ ≥ min {bL − ρL, bL − σL}, then

H(
∑φ

i=1 bi) = KL since from any such φ blocks, one can regenerate all symbols or retrieve the
content stored in the corresponding local group. Therefore, the case of having φ ≥ min{bL−ρL,
bL−σL} results inM = (µ+1)KL and we will mainly focus on the otherwise in the following.

1) Local Regeneration with BFR-MSR Codes: At first, we analyze the case where BFR-MSR
codes are used inside local groups to have better trade-off in terms of repair bandwidth. When
BFR-MSR codes are used, dimension of local code is given by

KL =

bL∑
i=1

H(bi|b1, . . . , bi−1) = kLα. (38)

Since BFR-MSR is a class of URA codes, we can upper bound the resilience of BFR-MSR-
LRC as follows,

ρ ≤ b−H(inv)(M), (39)

where for BFR-MSR codes we have

H(inv)(µKL + φ) = µbL + ϕ, (40)

for some µ ≥ 0 and 1 ≤ φ ≤ KL and ϕ is determined from KL(ϕ−1)
bL−ρL

< φ ≤ KLϕ
bL−ρL

. Then, we
can derive the file size bound for optimal BFR-MSR-LRC as M≤ H(b− ρ), i.e.;
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M≤ µKL +
KLϕ

bL − ρL
, (41)

where µ =
⌊
b−ρ
bL

⌋
and ϕ = b−ρ−µbL < min {bL − ρL, bL − σL}. If ϕ ≥ min {bL − ρL, bL − σL},

then φ = KL and
M≤ KL(µ+ 1). (42)

2) Local Regeneration with BFR-MBR Codes: In the following, we will focus on the case
where the local groups form BFR-MBR codes. When BFR-MBR codes are utilized, the dimen-
sion of the local code is given by

KL =

bL∑
i=1

H(bi|b1, . . . , bi−1)

=


β(kLdL − k2L(bL−ρL−1)

2(bL−ρL)
), if dL

bL−σL
≥ kL

bL−ρL
and σL ≤ ρL

β(kLdL − k2L(bL−σL)(bL+σL−2ρL−1)

2(bL−ρL)2
), if dL

bL−σL
≥ kL

bL−ρL
and σL > ρL

β(kLdL(ρL−σL+1)
bL−σL

+
d2L(bL−ρL)(bL−ρL−1)

2(bL−σL)2
), if dL

bL−σL
< kL

bL−ρL
and σL < ρL

(43)

Using the fact that BFR-MBR is URA code, the upper bound on the resilience of BFR-MBR-
LRC is given by

ρ ≤ b−H(inv)(M), (44)

where for BFR-MBR codes we have

H(inv)(µKL + φ) = µbL + ϕ, (45)

for some µ ≥ 0 and 1 ≤ φ ≤ KL and ϕ is determined from

ϕ =

β(kLdL(ϕ−1)
bL−ρL

− k2L(ϕ−2)(ϕ−1)

2(bL−ρL)2
) < φ ≤ β( kLdLϕ

bL−ρL
− k2Lϕ(ϕ−1)

2(bL−ρL)2
), if dL

bL−σL
≥ kL

bL−ρL
dL(ϕ−1)β
bL−σL

(dL
2

+ (2kc−dr)(bL−σL−ϕ+2)
2

)) < φ ≤ dLϕβ
bL−σL

(dL
2

+ (2kc−dr)(bL−σL−ϕ+1)
2

)), o.w
(46)

where kc = kL
b−L−ρL

and dr = dL
bL−σL

. Now, the file size bound for an optimal BFR-MBR-LRC
is given by

M≤ µKL + ∆, (47)

where µ =
⌊
b−ρ
bL

⌋
, ϕ = b− ρ− µbL < min {bL − ρL, bL − σL} and

∆ =

β( kLdLϕ
bL−ρL

− k2Lϕ(ϕ−1)

2(bL−ρL)2
), if dL

bL−σL
≥ kL

bL−ρL

β( kLdLϕ
bL−ρL

( bL−σL−ϕ+1
bL−σL

) +
d2Lϕ(ϕ−1)

2(bL−σL)2
), o.w

(48)

If ϕ ≥ min {bL − ρL, bL − σL}, then

M≤ KL(µ+ 1). (49)
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3) Construction of BFR-MSR/MBR-LRC: In order to construct codes for BFR-MSR/MBR-

LRC, we will utilize our earlier construction that is based on Duplicated Block Designs.
Construction VI: Consider a file f of size M.

• First, encode f using [N,K =M, D = N −M + 1] Gabidulin code, CGab. The resulting
codeword c ∈ CGab is divided into b

bL
disjoint local groups of size NbL

b
.

• Apply Construction III to each local group.

Remark 41. Construction VI requires N
b(bL−σL)

to be integer since in each local group we utilize
Construction III, where a sub-code (regenerating code) is used with k̃ = M̃ and M̃ is obtained
by partitioning local file into (bL − σL)bL parts. Furthermore, due to use of Construction III,
Construction VI results in codes with ρL = 0. (This implies that code can tolerate any ρ block
erasures, but the content of the local group will be reduced even after a single block erasure in
the local group.)

Corollary 42. Construction VI yields an optimal code, with respect to resilience, when b(bL −
σL)|N and KL|M.

Proof: We need to show that E = b−
⌈
MbL
KL

⌉
number of block erasures are tolerated since

ρL = 0. If KL|M, then M = α1KL and E = b − α1bL, which implies that the worst case
erasure scenario is having N

KL
− α1 local groups with bL erasures. Then, total rank erasure is

KL( N
KL
−α1) = N−KLα1, which can be corrected by Gabidulin code since D−1 = N−M =

N − α1KL.
We will utilize Construction VI to obtain optimal BFR-MSR-LRC. Construction VI can be

used to construct BFR-MBR-LRC as well, if BFR-MBR codes are used inside local groups.

Corollary 43. Construction VI yields an optimal LRC with respect to file size bounds when
N
b
|M for BFR-MSR-LRC.

Proof: If N
b
|M, then KL

bL−ρL
|M (since KL = NbL

b
) for ρL = 0, which is the case. Therefore,

we can write M = KL
bL

(α1bL + β1) for 0 ≤ α1 ≤ b
bL

and 0 ≤ β1 ≤ bL − σL.

• If β1 = 0, then b−ρ =
⌈
MbL
KL

⌉
= α1bL. Therefore µ =

⌊
b−ρ
bL

⌋
= α1 and ϕ = b−ρ−µbL = 0,

which implies that µKL + KLϕ
bL

= α1KL =M.

• If β1 6= 0, then b − ρ =
⌈
MbL
KL

⌉
= α1bL + β1. Therefore µ =

⌊
b−ρ
bL

⌋
= α1 and ϕ =

b− ρ− µbL = β1, which means µKL + KLϕ
bL

= α1KL + KLβ1
bL

=M.

VI. DISCUSSION

A. Repair Delay

In this section, we’ll analyze the repair delay by considering the available bandwidth between
the blocks. (In DSS architectures racks are connected through switches, referred to as top-of-
rack (TOR) switches, and the model here corresponds to the communication delay between these
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switches.) Since in schemes that uses BFR a failed node requires drβBFR amount of data from
each of b−σ blocks, the repair delay (normalized with file sizeM) can be calculated as follows.

RTBFR = max
i∈Bh

drβBFR

MBWi

, Bh = {1, . . . , b− σ} , (50)

where BWi is the bandwidth for block i and Bh is the set of blocks that help in the repairs.
We assume the repairs through blocks are performed in parallel. Throughout this section, we’ll
assume that all bandwidths are identical (BWi = BW, ∀i), hence the repair time of a failed node
is given by drβBFR

MBW
.

In an identical setting, we can also analyze the repair delay of regenerating codes. Note that
regenerating codes do not require any symmetric distribution of helper nodes among blocks.
Hence repair delay of regenerating codes is,

RTRC(s) = max
i

diβRC

MBW
, s ∈ S =

{{
d1, . . . , d|B|

}
s.t.

∑
i

di = d,B = {1, . . . , b}
}

(51)

where a system s refers to a selection of di (the number of helper nodes in block i) such that
the sum of helper nodes is equal to d. In other words, repair delay will be affected by the block
with the most helper node. Furthermore, the average repair delay can be calculated as

E[RTRC(s)] =
1

|S|
∑
s∈S

RTRC.(s) (52)

We may encounter some d values, which are not attainable in the BFR model since for BFR
codes we require d ≤ n− c because of the assumption that a failed node does not connect any
nodes in the same block. Furthermore, to compare the codes in a fair manner, we assume that
regenerating codes connect any d from b−σ blocks. Henceforth, in our comparisons, we instead
calculate repair delay for regenerating codes as

RTRC(s) = max
i

diβRC

MBW
, s ∈ S =

{{
d1, . . . , d|Bh|

}
s.t.

∑
i

di = d,Bh = {1, . . . , b− σ}
}

(53)
where the helper nodes are chosen from b−σ blocks but the number of helpers in each block is
not necessarily the same, only requirement is to have the sum of the helpers equal to d. Average
repair time can be calculated similar to (52) where the difference being the system s satisfies
the condition that helpers are chosen from b− σ blocks.

One can allow symmetric distribution of regenerating codes among d − σ blocks as well,
similar to BFR codes. We’ll denote these codes by MSR-SYM or MBR-SYM in the following.

We examine the case where b = 7 and n = 21, which means each block contains c = 3

nodes. We also set σ = 3 so that b− σ = 4. Note that since we are comparing relative values,
the values we assign to BW and M does not change the result as long as they are same across
all comparisons. In other words, one can think our results as normalized repair delays. At first,
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Fig. 9: Repair time vs. storage overhead comparisons for b = 7, n = 21 and σ = 3. (a) Data
points for possible cases of each node. (b) Lower envelope of Fig. 9a when zoomed in.

we find out all possible ρ, dr, kc, d and k values accordingly from Section III. After identifying
all possible parameter sets, we calculate repair times for both BFR-MSR and BFR-MBR. For
regenerating codes, we choose all possible parameter sets as long as d ≤ n−σc since we impose
regenerating codes to perform repairs from b − σ blocks. For each parameter set, we calculate
repair time of all possible helper node allocations and then calculate the mean of those. The
mean is reported for each data point in Fig. 9 for one set of parameters for both MSR and MBR
codes. Finally, we allow symmetric distribution of helper nodes among b− σ blocks, and report
MSR-SYM and MBR-SYM.

Repair delay vs. storage overhead results are depicted on Fig. 9. In Fig. 9a we indicate all data
points, whereas in Fig. 9b, lower envelope when zoomed in to the storage overheads less than 13.
As expected, one can observe that there are more data points for regenerating codes than BFR,
since BFR requires b−σ|d, which limits the number of possible sets of parameters for BFR. First,
lower envelopes of MSR and MSR-SYM are the best repair times for MSR is achieved when d
gets it’s highest possible value, (b−σ)c. In other words, all nodes are utilized hence there is no
different possible connection schemes for MSR. Interestingly, given storage overhead, it can be
observed that in some cases MSR codes perform better than MBR codes eventhough MBR codes
minimizes repair bandwidth. On the other hand, when distributed symmetrically across blocks,
MBR-SYM outperforms both MBR and MSR-SYM in all cases. When we compare BFR-MSR
and BFR-MBR, we can observe that BFR-MBR has lower repair delay for all cases but still they
perform same when storage overhead gets larger. Furthermore, we observe that unlike MBR-
MSR comparison, BFR performs more regularly, meaning BFR-MBR is better than BFR-MSR
always. Next, if we compare all schemes, it can be observed that convex hulls of BFR-MBR,
MBR and MBR-SYM follows the same line. Note that repair delay of BFR-MSR is below MSR
and it performs same as storage overhead increases. Also, BFR-MBR outperforms MSR-SYM
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Fig. 10: Repair time vs. storage overhead comparisons for b = 7 and σ = 3, (a) when n = 21,
(b) when n = 35.

and performs identical to MBR-SYM. For lower storage overheads, we can observe that BFR
codes operate well (both BFR-MSR and BFR-MBR) whereas existing RC or RC-SYM codes
(MBR and MBR-SYM codes do not even exist for overhead below 3.23) performs worse than
BFR.

Finally, note that within BFR schemes, we may encounter different α and β values depending
on the parameters. Differentiating between cases, let BFR1 denote the schemes with dr ≥ kc and
ρ ≥ σ, BFR2 denote dr ≥ kc and ρ < σ, and BFR3 denote dr < kc and ρ ≥ σ. The resulting
β values for these schemes may not be the same for same k and d. In Fig. 10, we examine
these BFR schemes (for storage overhead less than 10). We observe that the convex hull for
BFR-MBR is a line and all BFR-MBR schemes operate on that line. Furthermore,different MSR
schemes can perform better depending on the storage overhead.

B. Relaxed BFR

It’s challenging to find general constructions that allow for repair and data collection schemes
to operate with any ρ and σ blocks with any subset of dr or kc. Hence, in this section, we
relax “any” requirement of BFR to table-based recovery schemes that guarantee an existence of
helper/data recovery nodes for every possible repair/data collection scenarios. By altering this,
we are able to use another combinatorial design and obtain relaxed BFR codes (R-BFR) for
wider set of parameters. 3

1) Resolvable Balanced Incomplete Block Design (RBIBD):

3We note that under this setting the fundamental limits will be different than BFR codes. The focus here is more on operating
at BFR performance under a relaxation of “any” requirement.
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Definition 44. A parallel class is the set of blocks that partition the point set. A resolvable
balanced incomplete block design is a (v, κ, λ)− BIBD whose blocks can be partitioned into
parallel classes.

An example of (9, 3, 1)−RBIBD is given below, where each column (consisting of 9 points
in 3 blocks) forms a parallel class.

{1, 2, 3} {1, 4, 7} {1, 5, 9} {1, 6, 8}
{4, 5, 6} {2, 5, 8} {2, 6, 7} {2, 4, 9}
{7, 8, 9} {3, 6, 9} {3, 4, 8} {3, 5, 7}

(54)

2) R-BFR-RC with RBIBD: In this section, we show that RBIBDs can be used to construct
R-BFR codes for any ρ ≥ 0 and σ ≥ 1. Considering RBIBDs (with λ = 1) as defined above,
we construct blocks each containing the same number of nodes that store symbols belonging
to different partitions. For instance, utilizing (54), a block can be formed to contain 12 nodes,
where 4 nodes store symbols in the form of {1, 2, 3}, (referred to as “type” below), 4 nodes store
symbols of the type {4, 5, 6} and the other 4 nodes store symbols of the type {7, 8, 9}. We refer
to blocks of the same type as sub-block. Assume that one of the nodes that store the symbols of
the type {1, 2, 3} is failed. A newcomer may download symbols from any other subset of blocks
but instead of connecting to any dr nodes from each block, we consider connecting to any dr

3

nodes of type {1, 4, 7}, any dr
3

nodes of type {2, 5, 8} and any dr
3

nodes of type {3, 6, 9} in the
second block and so on. 4 Similarly, DC can connect any kc

3
from each sub-blocks. Therefore,

requirement of any set of nodes from a block is changed to any subset of nodes from a sub-block.
Note that, RBIBD still preserves any ρ and σ properties.

In the general case of any ρ and σ, we still have the same relationship as before, c.f., (55),
since repair property with any b−σ blocks or DC property with any b−ρ blocks does not change
this relationship but instead it only alters which dr and kc nodes that are connected in a block,
where dr = d

b−σ , kc = k
b−ρ . Also, to ensure the repair and DC properties, c = n

b
≥ max kc, dr

must be satisfied.

M = vM̃, k =
v

κ
k̃, d = κd̃, α = κα̃, β = β̃ (55)

With this construction, the same steps provided for BFR-MSR and BFR-MBR cases in the
previous section can be followed. In the general case, we have three cases depending on the
values of dr, kc, σ and ρ and the corresponding cut values can be found using Theorems 12,
20, and Lemma 17. Solving for these minimum storage and bandwidth points, optimal k̃ values
can be found. We provide these result in the following subsections.

4This construction can be viewed as a generalization of table-based repair for regenerating codes, see e.g., fractional
regenerating codes proposed in [25].
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3) R-BFR-MSR: To construct a R-BFR-MSR code, we set each sub-code C̃ as an MSR code

which has

α̃ =
M̃
k̃

d̃β̃ =
M̃d̃

k̃(d̃− k̃ + 1)
. (56)

This together with (55) results in the following parameters for R-BFR-MSR construction

α = α̃κ =
M
k

dβ = d̃κβ̃ =
Md

k(d− kκ2

v
+ κ)

. (57)

Using the relationships (56) and (57) together with (4), (7) and (10) we obtain the optimal
value as

k̃ =


κ2(b−ρ)

(κ2−v)(b−ρ)+v
, dr ≥ kc and σ ≤ ρ

κ2(b−ρ)
κ2(b−ρ)−v(b−σ)

, dr ≥ kc and σ < ρ

d(b−ρ−1)+κ(b−σ)
κ(b−σ)

, dr < kc and σ ≤ ρ

(58)

where b = v−1
κ−1

.
4) R-BFR-MBR: To construct R-BFR-MBR code, we set each sub-code C̃ as an MBR code

which has

α̃ = d̃β̃ =
2M̃d̃

k̃(2d̃− k̃ + 1)
. (59)

This together with (55) results in the following parameters for our R-BFR-MBR construction

α = dβ =
2Md

k(2d− kκ2

v
+ κ)

. (60)

Similar to above, we can solve for optimal value in MBR case using (59) and (60) together
with (5), (8) and (11). Resulting optimal values are

k̃ =


κ2(b−ρ)

(κ2−v)(b−ρ)+v
, dr ≥ kc and σ ≤ ρ

κ2(b−ρ)2

κ2(b−ρ)2−v(b−σ)(b+σ−2ρ−1)
, dr ≥ kc and σ < ρ

2d(b−ρ−1)
κ

−b+σ±
√

(
2d(b−ρ+1)

κ
−b+σ)2− 4d2(b−ρ)(b−ρ−1)

v

2(b−σ)
, dr < kc and σ ≤ ρ

(61)

where b = v−1
κ−1

.

VII. CONCLUSION

We introduced the framework of block failure resilient (BFR) codes that can recover data stored
in the system from a subset of available blocks with a load balancing property. Repairability is
then studied, file size bounds are derived, BFR-MSR and BFR-MBR points are characterized,
explicit code constructions for a wide parameter settings are provided for limited range of σ and
ρ. We then analyzed BFR for broader range of parameters and characterized the file size bounds
in these settings and also proposed code constructions achieving the critical points on the trade-
off curve. Locally repairable BFR codes are studied where the upper bound on the resilience
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of DSS is characterized and two-step encoding process is proposed to achieve optimality. We
finally analyzed repair delay of BFR codes and compare those with regenerating codes, and
provide constructions with table-based repair and data recovery properties.

Constructions reported here are based on combinatorial designs, which necessitate certain
parameter sets. As a future work, general constructions for the BFR mode can be studied further.
Also, the file size bound for the case of having dr ≥ kc and σ > ρ is established here, and we
conjecture that this expression corresponds to the min-cut. The proof for this conjecture resisted
our efforts thus far. Furthermore, repair delay with a uniform BW assumption is studied here.
Different bandwidth and more realistic communication schemes (e.g., queuing models) can be
be studied. Further, system implementations can be performed and more realistic analysis can
be made for disk storage and distributed (cloud/P2P) storage scenarios.

APPENDIX A
CONCATENATED GABIDULIN AND MDS CODING

Set K = (b− ρ)kc, and consider data symbols {u0, . . . , uK−1}.
• Use [N = K+ρkc, K,D] Gabidulin code to encode {u0, . . . , uK−1} to length-N codeword

(x1, . . . , xN). That is,
(x1, . . . , xN) = (f(g1), . . . , f(gN)),

where the linearized polynomial f(g) = u0g
[0] + · · · + uK−1g

[K−1] is constructed with
N linearly independent, over Fq, generator elements {g1, . . . , gN} each in FqM ; and its
coefficients are selected by the length-K input vector. We represent this operation by writing
x = uGMRD.

• Split resulting N symbols {x1, . . . , xN} into b blocks each with kc symbols. We represent
this operation by double indexing the codeword symbols, i.e., xi,j is the symbol at block
i and j for i = 1, . . . , b, j = 1, . . . , kc. We also denote the resulting sets with the vector
notation, xi,1:kc = (xi,1, xi,2, . . . , xi,kc) for block i.

• Use an [n = c, k = kc, d] MDS array code for each block to construct additional parities.
Representing the output symbols as yi,1:c we have

yi,1:c = xi,1:kcGMDS

for each block i, where GMDS is the encoding matrix of the MDS code over Fq. For instance,
if a systematic code is used, xi,1:kc is encoded into the vector yi,1:n = (xi,1, . . . , xi,kC ,

pi,1, . . . , pi,c−kc) for each block i = 1, . . . , b.

In the resulting code above if one erases ρ blocks and any c−kc symbols from the remaining
blocks, the remaining (b−ρ)kc symbols form linearly independent evaluations of the underlying
linearized polynomial which can be decoded due to to the Gabidulin code from which the data
symbols can be recovered and hence, by re-encoding, the pre-erasure of the version of the system
can be recovered.
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1: Set B∗0 = ∅ and i = 1

2: while H(c(B∗i−1)) <M do
3: Pick a coded local group ci /∈ B∗i−1 s.t. |Bi \ B∗i−1| ≥ ρL

4: if H(c(B∗i−1), c(Bi)) <M then
5: set B∗i = B∗i−1 ∪ Bi
6: else if H(c(B∗i−1), c(Bi)) ≥M and ∃B′i s.t. B′i = argmax

B′i⊂Bi
H(c(B∗i−1), c(B′i)) <M then

7: set B∗i = B∗i−1 ∪ B′i
8: end if
9: i = i+ 1

10: end while
11: Output: B∗ = B∗i−1

Fig. 11: Construction of a set B∗ with H(c(B∗)) <M for BFR-LRC

APPENDIX B
PROOF OF THEOREM 32

Proof:
In order to get an upper bound on the resilience of an BFR-LRC, the definition of resilience

given in (33) is utilized similar to proof in [9], [10]. We iteratively construct a set B∗ ⊂ B so
that H(c(B∗)) <M. The algorithm is presented in Fig. 11. Let bi and hi represent the number
of blocks and entropy included at the end of the i-th iteration. We define

bi = |B∗i | − |B∗i−1| ≤ bL (62)

and
hi = H(c(B∗i ))−H(c(B∗i−1)) ≤ KL. (63)

Assume that the algorithm outputs at (l+1)th iteration then it follows from (62) and (63) that

|B∗| = |B∗l | =
l∑

i=1

bi (64)

H(c(B∗)) = H(c(B∗l )) =
l∑

i=1

hi (65)

The analysis of algorithm is divided into two cases as follows.

• Case 1: [Assume that the algorithm exits without ever entering line 7.] We have

hi = H(c(B∗i ))−H(c(B∗i−1)) = H(c(B∗i \ B∗i−1)|c(B∗i−1)) ≤ (bi − ρL)
KL

bL − ρL
(66)
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From which we have

bi ≥
hi(bL − ρL)

KL

+ ρL (67)

Using (67)

|B∗| = |B∗l | =
l∑

i=1

bi ≥
l∑

i=1

(
hi(bL − ρL)

KL

+ ρL

)
=
bL − ρL
KL

l∑
i=1

hi + ρLl (68)

Similar to proof in [10], we have

l∑
i=1

hi =

⌈ M
KL/(bL − ρL)

⌉
KL

bL − ρL
− KL

bL − ρL
(69)

and

l =

⌈M
KL

⌉
− 1 (70)

By combining (68),(69) and (70)

|B∗| ≥
⌈M(bL − ρL)

KL

⌉
− 1 + ρL

(⌈M
KL

⌉
− 1

)
(71)

• Case 2: [The algorithm exits after entering line 7.] For this case we have

H(c(B∗i−1), c(Bi)) ≥M (72)

In each iteration step we add KL entropy hence we have

l ≥
⌈M
KL

⌉
(73)

For i ≤ l − 1 same as (67) we have

bi ≥
hi(bL − ρL)

KL

+ ρL (74)

For i = l,

bl ≥
hl

KL/(bL − ρL)
(75)

Hence it follows from (64), (69) (73), (74) and (75) that

|B∗| =
l∑

i=1

bi ≥
l−1∑
i=1

(
hi(bL − ρL)

KL

+ ρL

)
+

hl
KL/(bL − ρL)

=
bL − ρL
KL

l∑
i=1

hi + (l − 1)ρL

≥ bL − ρL
KL

(⌈M(bL − ρL)

KL

⌉
KL

bL − ρL
− KL

bL − ρL

)
+

(⌈M
KL

⌉
− 1

)
ρL

=

⌈M(bL − ρL)

KL

⌉
− 1 +

(⌈M
KL

⌉
− 1

)
ρL

(76)

Therefore by combining (33), (71) and (76) we have
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ρ ≤ b−
⌈M(bL − ρL)

KL

⌉
−
(⌈M

KL

⌉
− 1

)
ρL (77)
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