
Theoretical Computer Science 633 (2016) 37–53
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Multi-periodic neural coding for adaptive information 

transfer ✩

Yongseok Yoo a, O. Ozan Koyluoglu b, Sriram Vishwanath c, Ila Fiete d,∗
a Computer and Information Communication, Hongik University, 2639 Sejong-ro, Sejong 339-701, Republic of Korea
b Electrical and Computer Engineering, University of Arizona, 1230 E Speedway Blvd., Tucson, AZ 85721, USA
c Electrical and Computer Engineering, University of Texas at Austin, 1 University Station C7000, Austin, TX 78712, USA
d Center for Learning and Memory, University of Texas at Austin, 1 University Station C0806, Austin, TX 78712, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 23 February 2016

Keywords:
Multi-periodic neural codes
Shift-map codes
Grid cells
The entorhinal cortex
Side information

Information processing in the presence of noise has been a key challenge in multiple 
disciplines including computer science, communications, and neuroscience. Among such 
noise-reduction mechanisms, the shift-map code represents an analog variable by its 
residues with respect to distinct moduli (that are chosen as geometric scalings of an 
integer). Motivated by the multi-periodic neural code in the entorhinal cortex, i.e., the 
coding mechanism of grid cells, this work extends the shift-map code by generalizing 
the choices of moduli. In particular, it is shown that using similarly sized moduli (for 
instance, evenly and closely spaced integers, which tend to have large co-prime factors) 
results in a code whose codewords are separated in an interleaving way such that when 
the decoder has side information regarding the source, then error control is significantly 
improved (compared to the original shift map code). This novel structure allows the system 
to dynamically adapt to the side information at the decoder, even if the encoder is not 
privy to the side information. A geometrical interpretation of the proposed coding scheme 
and a method to find such codes are detailed. As an extension, it is shown that this novel 
code also adapts to scenarios when only a fraction of codeword symbols is available at the 
decoder.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The brain represents, stores, and computes with analog variables (e.g., determining and storing the orientation of an edge 
in the visual world, estimating and representing the speed of motion of a target, comparing the hue of an item with that of 
another) in the presence of noise in the basic processes of synaptic communication and response generation [1–3]. In these 
neural computations, representing one variable with a large number of neurons reduces the effects of the noise. In many 
brain areas, the mean firing rates of neurons vary in characteristic ways with the value of the represented variable, and these 
functions are called tuning curves. Many neurons in the sensory and the motor cortices have unimodal (or single-bump) 
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Fig. 1. The response of a grid cell in the medial entorhinal cortex (mEC) is a periodic function of the animal location (A). Groups of grid cells (X1, X2, and 
X3) encode the spatial location (S) with different periodicities (B).

tuning curves peaked at a certain value of the represented variable. The peak values of different neurons tile the range of 
the variable. This redundant representation, known as a population code, enables noise tolerance [4–7].

In this work, we investigate the features of a code that is believed to underlie navigational computations in the brain. Our 
focus is on the inherent neural diversity of the tuning curve functions, and the functional advantage of this diversity from 
a coding-theoretic viewpoint. The hippocampus, which has long been implicated in spatial learning and memory functions 
and with the writing of new episodic memories, exhibits largely unimodal tuning curves for the 2-dimensional coordinate 
that represents the animal’s location in space [8]. Grid cells [9], the focus of the present work, reside in medial entorhinal 
cortex (mEC), a high-order association area that is the main cortical input to hippocampus. Individual grid cells represent 
animal location with an interesting multi-peaked firing pattern, in which the peaks are arranged on every vertex of a virtual 
triangular lattice that tiles the explored space, Fig. 1 [9]. Grid cells are organized in a number of distinct functional modules: 
in each module, grid cells have a common spatial firing period and orientation, but a diversity of spatial phases (that is, 
tuning curves of different cells in a module are rigid shifts of a canonical lattice pattern). Different modules exhibit different 
spatial periods. Neurophysiological experiments show 4–5 (and no more than 10) distinct modules, with an approximately 
geometric progression of grid periods involving a non-integer scale factor close to 1, of size ≈ 1.42 [9,10]. A multi-period 
representation, as seen in the firing activity of the grid cells, is shown to have excellent representational and error-control 
properties [11,12] compared to unimodal tuning curves, assuming the existence of an appropriate decoder. More specifically, 
the grid cell code exhibits an exponential coding capacity with linearly many neurons in the presence of noise, a qualitatively 
different result from previously characterized population codes from the sensory and motor peripheries [12].

In this work, we generalize the conventional notion of shift-map codes [13–15] to include the grid cell code as an 
instance, where the difference between the grid cell code and the conventional shift-map codes is the choice of moduli. In 
particular, by choosing relatively prime integers as moduli, we extend the shift-map code to a novel form that resembles the 
grid cell code in the brain, and thus obtain a self-interleaving code (in the coding space). Given that this use of relatively 
prime integers shares a strong connection with redundant residue number systems (RRNS) [16–19,11], we refer to our 
codes as RRNS-map codes. Among our findings is the increased robustness of the RRNS-map code against noise compared 
to the conventional shift-map codes when side information (about the variable encoded) is present. Furthermore, the code 
is shown to be adaptive against noise and the quality of the side information. The contributions of this work include the 
following:

• We generalize the notion of shift-map codes to a new construction of analog code using relatively prime integers, 
referred to as the RRNS-map code.

• We design a set of RRNS-map codes whose codewords are well-separated. This novel structure allows the receiver to 
adaptively combine side information about the source for estimation, which offers an advantage over the traditional 
shift-map code.

• We offer a geometrical interpretation of the RRNS-map code.
• We provide a method to find RRNS-map codes with the desired properties. This method involves integer programming 

over relatively prime integers.
• As an extension, we show that the RRNS-map code is also adaptive for scenarios when only partial knowledge of the 

encoded variables is present.

The organization of the paper is as follows. Section 2 describes the system model. In Section 3, we briefly review the 
shift-map code and generalize it to include the RRNS-map code. In Section 4, the properties of the proposed construction 
are studied without side information. In Section 5, adaptive decoding of RRNS-map codes with side information is discussed 
and examples of good codes are provided. Extensions of the proposed code to different setups are discussed in Section 6. 
Concluding remarks are provided in Section 7.
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Fig. 2. Schematic diagram of the system model. The encoder generates codewords X for a source S ∈ [0, 1), which are subsequently transmitted over 
AGN channels. In addition to the noisy observation Y, the decoder has additional knowledge in the form of (side information) that the source S lies in a 
subinterval W ⊂ [0, 1] of the full source interval.

Fig. 3. The notion of threshold error in dimension-expansion mappings. A source S of dimension 1 (e.g. the unit interval) is mapped to a codeword X
of higher dimension. This mapping may be viewed as an embedding of a curve in a higher dimensional space. The length of the embedded curve is L 
and distant segments of the embedded curve are separated by a minimum distance d. A small noise (blue) is decoded as a point on the correct line 
segment, and the resulting error is small (local error). In contrast, a large noise (red) is decoded to the adjacent segment where the estimation error is 
large (threshold error). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

2. System model

Fig. 2 presents the system model. The continuous source S is uniformly distributed in the unit interval [0, 1). This source 
is encoded by N real-valued variables X = (X1, X2, . . . , XN). This codeword is transmitted over additive Gaussian noise 
(AGN) channels with the constraint 0 ≤ Xn < 1 for n = 1, 2, . . . , N .1 The received signal Y = (Y1, Y2, . . . , Y N) is the sum of 
the transmitted codeword and noise Z = (Z1, Z2, . . . , Z N). That is, for n = 1, 2, . . . , N ,

Yn = Xn + Zn, (1)

Zn ∼ N (0,σ 2), (2)

where the independent identically distributed (iid) noise terms Zn are Gaussian with mean zero and variance σ 2. The 
receiver receives side information, that the source S lies in a subinterval W ⊂ [0, 1). This side information is assumed to be 
known to the receiver but not to the sender, in a setting analogous to the Wyner–Ziv source coding problem [20,21]. The 
difference compared to [20,21] is the presence of the channels, which in our model are AGN.

The side information in our model can be made available by an additional sensory mechanism at the receiver. For 
instance, the sensory mechanism may provide a correlated information source S ′ ∼ N (S, σ 2

s ) to the decoder. Here, if a 
subregion W ∈ [0, 1) can be declared such that S ∈ W with high probability, then W can readily serve as side information 
in our model. The decoder uses this side information W and the channel output Y to produce an estimate of S , denoted 
as Ŝ .

The distortion D is defined as the mean square error in the estimate of S:

D = E
[(

Ŝ − S
)2]

. (3)

The distortion generally arises from two causes: The first is due to translation of the decoded estimate into a codeword 
near the true codeword, which represents a nearby value of the source (Fig. 3, blue). These errors occur frequently but the 
magnitudes are small. The second is due to large but infrequent errors, in which noise maps a codeword to another one 
that represents a distant point in the source (Fig. 3, red). These errors, called threshold errors by Shannon [22], are rare if the 
noise variance is small. By considering the probability of each case and the corresponding mean square error, the distortion 
D in (3) is given by:

D = P (Z /∈ T )E
[
(Ŝ − S)2|Z /∈ T

]+P (Z ∈ T )E
[
(Ŝ − S)2|Z ∈ T

]
, (4)

where T represents the set of noise vectors that produce threshold errors.

1 With an appropriate offset, this constraint is equivalent to the power constraint E
[
(Xn)2

] ≤ 1
12 for n = 1, 2, . . . , N .
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Fig. 4. Examples of the shift map with (a1, a2) = (1, 5) on the left and the RRNS-map with (a1, a2) = (3, 4) on the right. Both codes are chosen to have 
similar stretch factors and minimum distances. Numbers next to individual segments in blue indicate the order of the mapping as the source increases from 
0 to 1. A and B show codebooks without and with side information W = [0.5, 0.75], respectively. Gray dashed lines correspond the codeword inconsistent 
with W . (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

3. The shift-map code and its generalization

We start by describing the shift-map code and then generalize it to a new construction.

3.1. The shift-map code

Given a continuous source S , the shift-map codeword of length N is defined as follows [13–15]:

Definition 1 (The shift-map code). For a source S ∈ [0, 1) and an integer α ≥ 2, the shift-map codeword of length N is given 
by XSM(S) = [XSM

1 (S), XSM
2 (S), . . . , XSM

N (S)], where, for n = 1, 2, . . . , N ,

XSM
n (S) = α(n−1)S mod 1, (5)

and α ≥ 2 is the design parameter that controls codeword scaling.

We denote the set of all the codewords by X SM and the subset of codewords that represent values of the source in the 
subinterval W ⊂ [0, 1] as X SM(W ):

X SM = {
XSM(S)|S ∈ [0,1)

}
, (6)

X SM(W ) = {
XSM(S)|S ∈ W

}
. (7)

From a geometrical viewpoint, the shift-map codebook X SM forms parallel line segments with direction (1, α, α2, . . . , αN−1)

inside the unit hypercube (Fig. 4A). The total arc-length over all these segments is called the stretch factor, denoted as 
LSM(α), and the minimum distance between these segments is dSM(α).

For a fixed N , there exists a trade-off between the stretch factor and the minimum distance, controlled by α: Increasing 
the total length of the coding line implies that a longer curve is packed into a fixed volume, and thus the minimum distance 
must decrease. While LSM(α) monotonically increases with α, the minimum distance dSM(α) monotonically decreases. See 
Appendix A for more detailed analysis.

Importantly, the tradeoff between the stretch factor and the minimum distance results in a trade-off between the two 
terms in the distortion in (4). For a fixed SNR, as the stretch factor increases (by increasing α), the magnitude of each of 
the frequent small errors declines. However, as the minimum distance decreases, the frequency of threshold errors grows. 
Specifically, the first term in (4), scales as:

E
[
(Ŝ − S)2|Z /∈ T

] ∝
(

1
SM

)2

. (8)

L



Y. Yoo et al. / Theoretical Computer Science 633 (2016) 37–53 41
Therefore, the small or local errors decrease with increasing stretch factor and α. The second term in the distortion of (4), 
which is due to threshold errors, grows with increasing α because at a fixed SNR and more closely spaced coding line 
segments, there is a higher probability that the noise will map a codeword to a distant codeword.

3.2. A generalization of the shift-map code for the side information problem

The shift-map code is generalized by relaxing the conditions on the scaling coefficients in (5). In conventional shift-
map codes, the source is multiplied by a geometric series {an−1} followed by the modulo operation. In contrast, we 
propose that it is possible to define generalized shift-map codes using arbitrary (non)integer moduli a = (a1, a2, . . . , aN)

for code generation. When the moduli are integer and co-prime, we will call that set of shift-map codes the RRNS-map 
codes.

Definition 2 (The RRNS-map code). For a source S ∈ [0, 1) and a set of relatively prime integers a = (a1, a2, . . . , aN), the 
RRNS-map codeword is given by XRRNS(S) = [XRRNS

1 (S), XRRNS
2 (S), . . . , XRRNS

N (S)], where, for n = 1, 2, . . . , N ,

XRRNS
n (S) = an S mod 1, (9)

gcd(an,am) = 1 for n �= m. (10)

Here, gcd(·, ·) represents the greatest common divisor.

We assume 1 < a1 < · · · < aN for convenience and refer to these as the scale factors. Similar to the shift-map definition 
given above, the set of all the codewords generated by the RRNS code is denoted as X RRNS and the partial codebook for 
S ∈ W ⊂ [0, 1) X RRNS(W ):

X RRNS = {
XRRNS(S)|S ∈ [0,1)

}
, (11)

X RRNS(W ) = {
XRRNS(S)|S ∈ W

}
. (12)

All the shift-map codes, including the RRNS-map codes X RRNS , form parallel line segments with direction (a1, a2, . . . , aN)

inside the unit hypercube (Fig. 4B). The stretch factor LRRNS(a) and the minimum distance dRRNS(a) are defined in the same 
way as for the shift-map code.

In the conventional shift-map codes, because the n’th coordinate of the codeword is related to the source S by the scale 
factor α(n−1) with α > 1, the coordinate with larger n encodes local changes of the source with a geometrically greater 
sensitivity. In contrast, in RRNS-map codes, one can choose an ’s to lie within a small range so that all the Xn ’s have similar 
sensitivity to variations in the source value.

We illustrate potential benefits of the RRNS-map code with the following example. Consider Fig. 4A, which compares 
examples of a conventional shift-map (left) and RRNS-map (right) code. The parameters for these codes are (a1, a2) = (1, 5)

and (a1, a2) = (3, 4), respectively. Both codes have essentially the same stretch factor (L2 = 1 + 52 ≈ 32 + 42) and minimum 
distances (0.20) between line segments. Therefore, without additional information about the source, decoders for both codes 
have the same performance. The numbers in blue indicate the order of the encoding line segments, as the source point 
ranges from 0 to 1. In the conventional shift-map code, each component of codeword monotonically increases, and the 
resulting line segments are ordered sequentially (Fig. 4A left). However, in the RRNS-map code, the order is interleaved 
(Fig. 4A right). As we will see next, this interleaving is a key advantage of the RRNS-map codes over conventional shift-map 
codes, because it allows the decoder to exploit side information to reduce distortion.

In Fig. 4B, the effects of side information on the shift-map (left) and RRNS-map (right) codes are demonstrated. Solid 
lines indicate codewords consistent with side information W = [0.5, 0.75], corresponding to segments 3 and 4 for the 
shift-map code and segments 4 and 5 for the RRNS-map code. Gray dashed lines indicate codewords inconsistent with W . 
In the shift-map codes, the distance between candidate segments remains the same because they lie next to each other 
(Fig. 4B left). In contrast, the distance between candidate segments of the RRNS-map code is much larger (Fig. 4B right), 
resulting in a larger minimum distance and, consequently, a lower threshold error probability.

Thus, the design goal for the RRNS-map code is two-fold. The first is to achieve well-spaced segments with the same or 
approximately the same stretch factor and minimum distance as the corresponding shift-map code, which guarantees the 
same distortion in the absence of side information. The second is to make the RRNS-map codebook interleave itself so that 
neighboring segments encode distant subintervals of the source. When this interleaving property is combined with the side 
information, the effective minimum distance between coding segments increases without a decrease in local stretch factor, 
and the overall result is a smaller distortion without changing the encoding scheme.
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4. RRNS-map codes

In this section, we study the structure of the RRNS-map codebook from a geometric perspective.

4.1. Geometric interpretation: “cylinder packing” problem

We consider a geometrical perspective and discuss finding a good RRNS-map with maximum separation. A cylinder 
around the RRNS-map codebook with radius r is defined as follows:

C(r) = {
x ∈ [0,1)N : |x − xRRNS| < r, ∀xRRNS ∈ X RRNS}, (13)

where | · | is the Euclidean distance. The problem here is to find the direction a = (a1, a2, . . . , aN) of the cylinder with the 
maximum radius r under the constraint that C(r) does not intersect itself. We call a problem of cylinder packing. Since a
consists of relatively prime integers, cylinder packing is an integer programming problem with an unusual search domain, 
denoted as the following:

A = {(a1,a2, . . . ,aN) | gcd(an,am) = 1 if n �= m,

an < am if n < m}. (14)

The requirement of relatively prime coordinates might appear to be too stringent and the size of the search space A itself 
might appear small. However, as the dimension N grows, the probability of finding points with relatively prime coordinates 
among the N-dimensional rectangular lattice quickly approaches 1 [23], meaning that there exist many RRNS-map codes. 
To simplify the problem, we restrict the search domain to those vectors in A with coordinates that are not greater than a 
predetermined amax , denoted as

Aamax = {(a1,a2, . . . ,aN) | gcd(an,am) = 1 if n �= m,

an < am if n < m, an ≤ amax}. (15)

This restriction avoids stretch factors that are too large and produce severe threshold errors which result in large distortions.
In order to find the tightest cylinder packing, let us consider the hyperplane that is orthogonal to the cylinder axis. The 

hyperplane that is orthogonal to a and passes through the center of the unit hypercube is denoted by H(a). Algebraically, 
this hyperplane is

H(a) = {
x ∈ [0,1)N | a · (x − c) = 0

}
, (16)

where c = ( 1
2 , 12 , . . . , 12

)
is the center of the unit hypercube and · represents the inner product. Then, each line segment in 

X RRNS intersects with H(a) at a point. We call the set of such intersections X ∗ the discrete codebook, denoted as:

X ∗ = H(a) ∩X RRNS (17)

= {aS mod 1 | S ∈ [0,1),a · (aS mod 1) = a · c}. (18)

Similarly, the discrete codebook of corresponding source in the subinterval W is defined as follows:

X ∗(W ) = H(a) ∩X RRNS(W ) (19)

= {aS mod 1 | S ∈ W ,a · (aS mod 1) = a · c}. (20)

Maximizing the radius of the cylinder is equivalent to maximizing the distance between points in the discrete codebook. 
The minimum distance of the RRNS-map code is equal to the minimum distance between distinct points in X ∗ :

dRRNS(a) = min
x�=x′∈X ∗ |x − x′| (21)

Unfortunately, the minimum distance depends on a in a non-trivial way and the search domain A is not convex. Appendix B
describes a way to identify all the points in X ∗ for a given a and to calculate the minimum distance dRRNS(a).

4.2. The trade-off between the minimum distance and the stretch factor

The generalized shift-map codes, including RRNS-map codes, also exhibit a fundamental tradeoff between minimum 
distance and stretch factor. dRRNS(a) and LRRNS(a) are related to the radius and the length along the axis of the cylinder, 
respectively, and the volume of the cylinder is upper-bounded by that of the unit hyper cube. Here, assuming evenly spaced 
coding lines, we have that the scaling of the optimal dRRNS(a) with LRRNS(a) and N will obey the following relationship:

dRRNS(a) = O (LRRNS(a)−
1

N−1 ). (22)
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Fig. 5. The trade-off between stretch factor and minimum distance for RRNS-map codes (black and gray dots), compared with conventional shift-map codes 
(red diamonds) for A50. The dashed line represents predicted scaling with slope − 1

N−1 between stretch factor and minimum distance in (22). Black dots 
highlight RRNS-map codes with large minimum distances that are close to the optimal predicted scaling. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

Fig. 5 shows a concrete example of this trade-off. For each a in A50 with N = 5 and W = [0, 1] (no side information), the 
minimum distance of the RRNS-map code dRRNS(a) is numerically computed and plotted as a function of the stretch factor 
LRRNS(a) in log-scale (black and gray dots). The dashed line provides a reference scaling, log d = − 1

N−1 log L, corresponding 
to the prediction in (22). Black dots highlight RRNS-map codes with large minimum distances, greater than 95% of the 
prediction in (22) while gray dots indicate RRNS-map codes with smaller minimum distances. The two red diamonds are 
for the shift-map codes with design parameter α = 2 (left) and α = 3 (right). There are 1156 such RRNS-map codes with 
large minimum distances among 15279 a’s in A50. Those RRNS codes fill in the gaps between the shift-map codes with 
different α’s. In this sense, the RRNS-map codes generalize shift-map codes.

Overall, good RRNS-map codes can be found (without considering side information), and can be used as candidates for 
good RRNS-map codes with side information. The RRNS-map codes found here are used in Section 5 to search for codes 
that satisfy an additional requirement: that the minimum distance should scale well as side information is revealed to the 
decoder.

4.3. Cylinder packing versus sphere packing

To further understand the cylinder packing problem, we address how densely X ∗ can be packed. As a reference, we 
compare the local structure of the RRNS-map code with that of lattice codes. Finding the lattice with the greatest density 
in a given dimension is equivalent to finding a way to pack as many as non-overlapping spheres with the same radii into 
a volume. The maximum number of spheres that can be packed around a central sphere without overlap (just touching at 
the boundaries) is called the kissing number. Finding the largest possible kissing number in a given dimension is the kissing 
number problem [24]. The centers of the spheres comprise a lattice codebook to encode a discrete source.

Cylinder packing and sphere packing are compared in the N − 1 dimensional orthogonal hyperplane H . Note that the 
former controls the direction of the cylinders in N dimensional torus such that its projections are tightly packed points 
in H , while the latter concerns the tightest sphere packing directly in H . Thus, sphere packing in the (N − 1)-dimensional 
perpendicular hyperplane puts an upper bound on the densest cylinder packing in the N-dimensional hypercube.

We report that good RRNS-map codes have well-spaced codewords that are close to lattices. Among the good RRNS 
codes with N = 5 found in the previous subsection (black dots in Fig. 5), three sets of parameters that satisfy constraints in 
the next section are chosen: a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27), and a3 = (5, 11, 19, 37, 47). For each parameter, the 
Voronoi regions of X ∗ and the corresponding numbers of neighbors are calculated by the quickhull algorithm [25] ported 
into Matlab [26]. The Voronoi region of a point x∗

c ∈X ∗ is defined as follows:

V a(x∗
c ) = {

x ∈ X ∗∣∣ |x − x∗
c | < |x − x′|,

x′ ∈ X ∗,x′ �= x∗
c

}
, (23)
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Fig. 6. Histograms of the number of neighbors in RRNS-map codes with a1 = (5, 7, 9, 11, 17) (left), a2 = (5, 7, 13, 23, 27) (middle), and a3 =
(5, 11, 19, 37, 47) (right) in the projected codebook X ∗ , which resides in an (N − 1) = 4-dimensional space. Red dashed lines show the densest possi-
ble number of neighbors in a regular lattice in the same space. (For interpretation of the colors in this figure, the reader is referred to the web version of 
this article.)

Fig. 7. The RRNS-map codebook X RRNS (left) and its projection to the orthogonal plane X ∗ (right) either without (A) and with (B) side information at 
decoder. Numbers in the right denote the order as the source increases from 0 and the green region is the Voronoi region of the center point. (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

where | · | is the Euclidean distance. The histograms of number of neighbors for these RRNS-map codes are shown in Fig. 6. 
In the four dimensional space, the highest attainable kissing number is 24 [24], shown in red dashed lines in Fig. 6. These 
RRNS-map codes have numbers of neighbors (15.2 ± 3.8, and 19.8 ± 4.6, and 18.5 ± 4); while not directly measuring the 
same quantity, it is nevertheless notable that these numbers are of similar size to the kissing number in four dimensions. 
This hints that good RRNS-map codes may indeed be well-spaced in the (N − 1) dimensional orthogonal hyperplane and 
close to lattice codes.

5. Adaptive decoding of RRNS-map codes with side information

In this section, we design the RRNS-map codebook so that side information at the decoder is efficiently combined, 
resulting in a lower distortion.

5.1. The RRNS-map codebook shrinks with side information at the decoder

With side information W , the decoder needs only to use a subset of the codebook, corresponding to X RRNS(W ). The size 
of this partial codebook decreases as more side information is revealed to the decoder (equivalently, as |W | decreases). The 
property we require for good RRNS-map codes is that this partial codebook is maximally separated in the codeword space 
and the minimum distance of X RRNS(W ) increases as |W | decreases.
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For example, Fig. 7 illustrates the RRNS-map code with a = (3, 5, 7). In Fig. 7A, we assume no additional information 
about S . Thus, the decoder must search the entire codebook X RRNS in the left panel. The projected codebook (onto the 
perpendicular hyperplane H passing through the center of the hypercube), X ∗([0, 1]), is shown in the right panel. The 
green area represents the Voronoi region of the center point. In Fig. 7B, side information S ∈ W = [1/3, 2/3] is provided to 
the decoder. Thus, the decoder will only consider a subset of the codebook, X RRNS([1/3, 2/3]), which contains five segments 
shown in black in the left panel. The number of segments needed for decoding decreases from 12 to 5. The right panel 
shows the projection of those five active segments in black; gray points are not considered. Because the segments are 
well-interleaved, the side information results in an increased distance between neighbors. Consequently, the Voronoi region 
(in green) of the center point increases.

The cardinality of the discrete codebook, |X ∗(W )|, linearly scales with |W |, which is summarized in the following 
theorem and proved in Appendix C.

Theorem 1. In the limit of large N, the number of active points scales with the length of the side information |W |.
|X ∗(W )| ≈ |X ∗||W |. (24)

5.2. The minimum distance of the RRNS-map codebook increases with side information at the decoder

As more side information is given to the receiver (decreasing |W |), the number of coding points in H decreases and, 
thus, the minimum distance increases. We are interested in this scaling of minimum distance as a function of |W |. For ease 
of analysis, we assume that the shrinking codebook is well-separated in H for all choices of W and derive an upper bound 
of the minimum distance as a function of |W | as summarized in the following theorem. (Proof is detailed in Appendix D.)

Theorem 2. For fixed a and N, the minimum distance of RRNS-map codes is bounded from above as follows:

dRRNS ≤ 2

√
N − 1

2πe

(
Vol(H)

|X ∗||W |
)1/(N−1)

. (25)

Thus, in log scale, we have

log dRRNS = O

(
1

N − 1
log

1

|W |
)

. (26)

Note that Theorem 2 follows from rather ideal assumption that a good RRNS-map codebook remains maximally separated 
as it shrinks due to side information. In the following subsection, we provide examples of such good RRNS-map codes.

5.3. Examples of good RRNS-map codes for N = 5

To find good RRNS-map codes among the candidates found in Section 4, we add the constraint that the partial codebook 
X ∗(W ) must have large minimum distances for a range of |W |. In particular, the minimum distance for |W | < 1 should be 
larger than the minimum distance for |W | = 1 (no side-information), and should scale similarly as the minimum distance 
upper-bound of (26). The number of active points should scale linearly with |W | as predicted in (24).

LRRNS and dRRNS
min and are calculated for each a ∈ A50 with N = 5, amax = 50, and varying W < 1. For each a ∈ A50, W

is varied such that its boundaries are aligned to points among {0.1, 0.2, . . . 1}. The number of points in X ∗(W ) and the 
minimum distance are averaged over intervals of the same length and, therefore, are functions of |W |.

The choices a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27), and a3 = (5, 11, 19, 37, 47) produce the three largest minimum 
distances (Fig. 8). The stretch factors of those codes are between those of shift-map codes with α = 2 and 3 (shown in red 
diamonds). The left panel of Fig. 9 shows the size of the partial codebook X ∗(W ) as a function of |W |. Circles in the figure 
are numerical calculations and dashed lines are analytical predictions from (24). Consistent with the prediction, the partial 
codebook size |X ∗(W )| linearly scales with |W |. The right panel of Fig. 9 shows the minimum distances as a function of 
|W |. Circles in the figure are numerical results and dashed lines are least-mean-square fits of the numerical results. The 
slopes of the fits are −0.22, −0.23, and −0.22, which are close to the analytical prediction − 1

N−1 = −0.25 from (26). Thus, 
the size of the partial codebook and resulting minimum distance for these RRNS-map codes match the analytical predictions, 
and thus have the desired properties.

5.4. Probability of threshold error and distortion of RRNS-map codes decrease with side information at the decoder

The threshold error probability of good RRNS-map codes decreases as more side information is revealed to the decoder, 
because of the increase in the minimum distance. For the RRNS-map codes with parameters a1 = (5, 7, 9, 11, 17), a2 =
(5, 7, 13, 23, 27), and a3 = (5, 11, 19, 37, 47), upper bounds on the probability of threshold error (Pth) are calculated using 
the minimum distances and numbers of neighbors (see Appendix E). In Fig. 10 (left), the probabilities of threshold errors 
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Fig. 8. The minimum distance of the RRNS-map code increases with additional side information. For good RRNS-map codes identified in Fig. 5, each black 
dot represents the ratio of the minimum distance with side information W to the minimum distance of the whole codebook (da(W )/da([0, 1))), averaged 
over a uniformly sampled range of |W | (|W | ranges from 0.1 to 1 in steps of 0.1). Three parameters for the RRNS-map with three largest average increase 
in minimum distance with side information are a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27), and a3 = (5, 11, 19, 37, 47). For comparison, shift-map codes 
with α = 2, 3 are shown in red diamonds. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 9. How the number of active points and minimal distances scale with side information in good RRNS-map codes. Numbers of active points (left) and 
minimum distances (right) of good RRNS-map codes with a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27), and a3 = (5, 11, 19, 37, 47) are plotted as a function 
of |W |. Circles indicate numerically found values, which agree well with analytical predictions (24) and (26), shown as dashed lines.

for the RRNS-map codes (triangles) and the shift-map codes (red dashed lines) are compared when σ = 0.05. As |W |
decreases (more side information), the upper bounds on Pth of the RRNS-map codes decrease, while lower bounds on Pth
for conventional shift-map codes remain constant.

Consequently, the distortion of the RRNS-map decreases with increasing side information at the decoder. In Fig. 10
(right), distortion in the good RRNS-map codes are compared to shift-map, tent-map, and repetition codes. Upper bounds 
on the distortion of the RRNS-map codes (triangles) decreases as |W | decreases. However, lower bounds on the distortions 
of the shift-map (red dashed lines) stay constant, as does the average distortion of the repetition code (green): σ 2

N . Those 
lower bounds are derived similarly to [15] (Appendix F). The red cross represents the distortion of the tent-map code [13, 
Eqs. (16a) and (16b)]. Without side information (|W | = 1), the upper bounds of the distortion of the RRNS-map codes 
with a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27) (from bottom to up) are similar to the lower bounds of the shift-map 
codes with α = 2 and 3, respectively. As |W | decreases (and thus side information increases), distortion in the RRNS-map 
codes decreases while that in the conventional shift-map codes stays constant. Interestingly, the RRNS-map code with 
a3 = (5, 11, 19, 37, 47) has larger distortion than the other two RRNS-map codes shown in this plot when |W | = 1, but the 
distortion crosses over and becomes smaller than in the other RRNS-map codes when |W | approaches 0.

The differing reductions in distortion with side information for the different RRNS-map codes suggests that choosing code 
parameters based on prior knowledge about the distribution of |W | could result in lower average distortion. For instance, 
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Fig. 10. The probability of threshold error and distortion in the RRNS-map code. Left: The probability of threshold error for the RRNS-map code decreases 
with increasing side information at the decoder (decreasing |W |). Right: The distortion in some good RRNS-map codes compared to that in other analog 
codes. Distortion in RRNS-map codes without side information (|W | = 1) is similar to that in shift-map codes with similar stretch factors (α = 2, 3). As 
more side information is revealed to the decoder, distortion in the RRNS-map code decreases without changes in the encoding scheme. This is in contrast 
to other analog codes, in which distortion is independent of side information when the encoder is ignorant of the side information. (For interpretation of 
the colors in this figure, the reader is referred to the web version of this article.)

if |W | were uniformly distributed ∈ [0, 1], then a1 and a2 would produce lower average distortions than would a3. On the 
other hand, if |W | were concentrated around a smaller value and is large only occasionally, the RRNS-map code with a3
would achieve a lower average distortion. Thus, specific RRNS-map parameters may be preferable for a specific distribution 
on the amount of available side information, an area for future research.

5.5. Neural implications of good RRNS-map codes

The scaling factors of good RRNS-map codes discovered in the previous subsection are consistent with the scalings of 
the grid cells in the entorhinal cortex. The ratios of consecutive scale factors of those RRNS-map codes are 1.36 ± 0.14 (a1), 
1.55 ± 0.32 (a2), and 1.79 ± 0.39 (a3). These ratios agree well with the experimental observations of grid cell scaling ratio 
of ≈1.42 [9,10]. The similarity between good RRNS-map codes and grid cells in terms of scaling factors is worthy of note. 
Another important point is that the ratio of consecutive scaling factors is smaller than those of shift-map codes (integers 
greater than 1). This finding implies that the grid cell code is in principle an RRNS-map code rather than a shift-map code.

Thus, this study of RRNS-map codes offers coding-theoretic interpretations of grid cell models. Good RRNS-map codes 
can have the self-interleaving structure by choosing scaling factors with similar sizes. This property is in alignment with 
experimental observations [9,10] and theoretical studies on error-correcting properties of grid cells [11,12]. In addition, we 
show that the self-interleaving structure of the RRNS-map codes enables efficient combining of side information without 
changing the structure of the code. This finding extends the grid cell model to include the side information which may 
come from the cortex (e.g. processed sensory inputs) or the hippocampus (e.g. in the form of prior knowledge or episodic 
memory). The multi-periodic grid cell codes, similar to the RRNS-map codes, enables efficient aggregation of spatial location 
and such side information.

6. Extensions

In the previous section, we focused on the advantage the RRNS-map coding presents, in increasing the robustness of the 
source estimate to noise when side information is available at the decoder. In the next subsection, we study the cost of this 
side information. In the second subsection, we apply the RRNS-map code for a slightly different scenario, where we show 
that the RRNS-map code outperforms the shift-map code when only parts of the codeword are available at the decoder. 
(Showing that the RRNS-map code is robust to adversarial erasures in the channel.)

6.1. The case when side information is not free

We consider the cost of transmitting any side information from the transmitter to the receiver. For simplicity, we assume 
that the interval is divided into 2Q bins of width |W | = 2−Q each (where Q is any integer), and the side information 
involves conveying the number Q , which specifies how many bins there are (this number also automatically specifies the 
bin boundaries within the interval [0, 1]), and the index k of the specific bin in which the source is contained. Specifying Q
requires log2(Q ) bits, and specifying k involves log2(k) bits, where k ranges from 1 to 2Q . Thus, log2(k) ≤ Q , and the total 
number of bits in the side information is bounded above by log2(Q ) + Q . Substituting Q = log2(1/|W |), we have that the 
side information channel uses an additional B bits with B = log2(1/|W |) + log2(log2(1/|W |)).
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Fig. 11. The cost of side information. Left: The cost of side information is quantified in terms channel uses. With the same parameters as in Fig. 10 (N = 5, 
σ = 0.05), �N increases up to 2 as |W | decreases. Right: The potential improvement in distortion if the additional channel uses were granted to the 
conventional shift-map code. If the additional �N channel uses corresponding to different values of |W | are allocated to repeating some entries of the 
conventional shift-map code, distortion at the decoder decreases by the factor of N

N+�N . Consequently, the distortion decreases to 70% (right).

Next, the number of additional channel uses, �N , to transmit B bits is calculated by considering the channel capacity of 
the AWGN channel with SNR γ :

B <
�N

2
log2(1 + γ ). (27)

Therefore, we obtain

�N >
2[log2(1/|W |) + log2(log2(1/|W |))]

log2(1 + γ )
. (28)

Thus for a performance comparison, the RRNS-map codes utilized over N channel uses with side information W might 
more fairly be compared against conventional shift-map codes that are allowed N +�N channel uses (and no side informa-
tion).

Any performance gains in the conventional shift-map codes with the added �N channel uses depend on how they are 
allocated. One possibility is to keep with the conventional shift-map coding scheme, and thus to hold the design parameter 
α fixed while adding registers with higher powers of α, so that �a = (1, α, α2, . . . , αN , . . . , αN+�N−1) (1 < α ∈ Z+). In this 
scheme, because the additional registers represent finer-scale information about the source S , the gains from �N will only 
occur at very high SNR. At lower SNR, noise will swamp any information transmitted in the channels with larger scale 
factors and eliminate any gains of a non-zero �N . This is in fact a general limitation of conventional shift-map codes, 
because for any given SNR, there is a cutoff in n beyond which registers αn convey no information about the source.

On the other hand, the additional �N may be used to build a hybrid shift-map and repetition code. Instead of a single 
geometric series with powers of α from 0 to N + �N − 1, registers with lower exponents of α could be repeated. Thus, the 
code parameters would be (1, α, α2, . . . , α(N−1), 1, α, α2, . . . , α(�N−1)), (1 < α ∈Z+). When N = �N , such a scheme results 
in a doubling of the SNR and a 3 dB decrease in distortion.

Fig. 11 quantifies the cost of side information and the potential decrease in the distortion of conventional shift-map codes 
if we take into account the extra side information cost of the RRNS-map codes. According to Equation (28), �N increases 
to 2 as |W | decreases down to 0.1 with σ = 0.05 (Fig. 11 left). By the hybrid shift-map repetition code scheme, with �N
transmissions used to repeat the smallest scale-factor registers, the effective SNR increases and distortion decreases, relative 
to the case when the sender was allowed only N transmissions (no repetitions), Fig. 11 right. Note that compared to the 
corresponding orders-of-magnitude decrease in distortion in the RRNS-map code when side information is provided, Fig. 10, 
the decrease in distortion that results by granting extra channel uses to the conventional shift-map code is limited and 
modest.

6.2. Robustness of RRNS-map codes to erasure

In communication networks and biological neural networks, some connections may completely fail and only a partial 
measurements may be available at the decoder. Here, we show that the RRNS-map code can be robust to erasure of code-
word symbols.

Let us assume that only No out of N measurements are available to the decoder. In the conventional shift-map codes, 
if the registers corresponding to the smallest scale-factors are erased, the distortion will be large; loss of the largest scale-
factors will lead to only small increases in distortion. By contrast, in RRNS-map codes, because the scale factors are relatively 
prime and all roughly of the same size, the increase distortion will not be large for any erasure.



Y. Yoo et al. / Theoretical Computer Science 633 (2016) 37–53 49
Fig. 12. Effects of erasure on RRNS-map and shift-map codes. (A–B) Histograms of the decoded estimate of the source Ŝ without (leftmost column) or with 
(right three columns) single erasures in the RRNS-map and shift-map codes. The single erased register is designated by ’×’. (A) The RRNS-map code with 
a = {3, 5, 7}, and (B) the shift-map code with α = 3 (B). 104 samples are generated to quantify decoding performance. The stretch factors of these codes 
are similar (9.1 and 9.5, respectively) and thus they exhibit similar mean square errors (MSEs) without puncturing (C, leftmost).

This effect is shown in Fig. 12. The stretch factors of the RRNS-map and shift-map codes shown there are very close 
(9.1 and 9.5, respectively), hence they exhibit similar mean square errors (MSEs) in the absence of any erasures. When 
the first component is erased from both codewords, the mean square error (MSE) of the shift-map code is significantly 
larger than that of the RRNS-map code (Fig. 12C, second pair of bars). Erasures of either of the other two components, 
corresponding in the shift-map code to larger scale-factors, results in similar but slightly smaller distortion in the shift-map 
than the RRNS-map code. The net result is that the RRNS-map code outperforms the shift-map code when all symbol 
erasure patterns are equally likely, at the SNR considered here.

7. Conclusions

In summary, we have generalized the shift-map code family of analog codes to a larger family that does not involve a 
geometric series of a single design parameter. Instead, the codewords are generated by modulo remainder after multiplying 
the source with a set of (non)integer scale-factors a = (a1, a2, . . . , aN). We identify a subset of these generalized shift-map 
codes, defined as involving co-prime integer scale-factors, and call these codes RRNS-map codes.

Good RRNS-map codes can, thanks to their interleaving structure, allow the decoder to use side information to produce 
an estimate of the source that is less prone to threshold errors, and thus has lower distortion. The interleaving structure is 
generated by carefully chosen relatively prime integer parameters for the code. Without side information, good RRNS-map 
codes achieve a comparable performance as corresponding conventional shift-map codes. With side information, RRNS-map 
codes can outperform the shift-map code.

Designing an RRNS-map code was formulated as an integer program over relatively prime integers, which has a geo-
metrical interpretation of cylinder packing. We numerically solved this problem to find example RRNS-map codes that have 
well-spaced partial codebooks. These codes result in excellent performance when varying degrees of side information are 
made available to the receiver, and are moreover somewhat tolerant to erasure of components of the codeword.
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It will be interesting as part of future work to consider the complexity of decoding of RRNS-map codes, and to consider 
whether these codes can be decoded with similar complexity as the conventional shift-map codes. One work of our group 
[27] studies the decoding aspect of multi-periodic codes and shows that RRNS-map codes can be efficiently decoded by a 
distributed algorithm consistent with anatomical connectivities between the hippocampus and the entorhinal cortex.

Another direction of future works is to investigate how the brain actually implements multi-periodic codes with distinct 
modules. This paper focuses on the coding-theoretic perspective of grid cells’ multi-periodic codes. Recently, we started 
investigating on how the brain can implement such multi-periodic codes with distinct modules. Recent studies from our 
group [28,29] considered this question and proposed developmental models of grid cells for the formation of modules based 
on biologically plausible mechanisms. We believe this is an intriguing question requiring future studies.
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Appendix A. Tradeoff between the stretch factor and minimum distance of shift-map codes

Here, we provide detail analysis on the tradeoff between the stretch factor, LSM(α), and minimum distance, dSM(α), of 
shift-map codes. Specifically, while LSM(α) monotonically increases with α, the minimum distance dSM(α) monotonically 
decreases with α. The following lemma quantifies this trade-off.

Lemma 1. Given the shift-map code with the design parameter α, the stretch factor LSM(α) and the minimum distance dSM(α) are 
given by

LSM(α) =
√

1 + α2 + · · · + α2(N−1), (29)

dSM(α) = 1

α

√
(LSM(α))2 − 1

LSM(α)
. (30)

Proof. The stretch factor in (29) follows as the message interval of length 1 is stretched by αn−1 in the n’th dimension for 
each n = 1, 2, . . . N . In order to calculate the minimum distance in (30), let us first consider distances from individual line 
segments to a reference line passing the origin. Finding intercepts of individual line segments simplifies the calculation as 
follows. Consider a non-zero codeword X with the no ’th coordinate being zero for 1 < no ≤ N . By construction, Xno = 0
implies Xn = 0 for n > no . These intercepts correspond to the message S = i

α(no−1) for a positive integer 0 < i < an . Thus, 

other coordinates have the form of Xn = α(n−1) i
α(no−1) for n < no . Among those points, ( 1

α , 0, . . . , 0) attains the minimum distance 
in (30). �
For large α, the minimum distance scales inversely with α: dSM ≈ 1

α . To be specific, we have the following corollary.

Corollary 1.

4

5

1

α2
≤ dSM(α)2 <

1

α2
. (31)

Proof. Equation (31) immediately follows from (30) by observing that

4

5
≤ (LSM(α))2 − 1

(LSM(α))2
= 1 − 1

(LSM(α))2
< 1 (32)

since (LSM(α))2 ≥ 5 for α ≥ 2. �
Appendix B. Identifying the discrete codebook of a RRNS-map code

For a given direction a, points in the discrete codebook X ∗ are calculated as follows. We first consider the intersections of 
X RRNS and the faces of the unit cube and then project those intercepts onto H . Let Hn be the hyperplane that is orthogonal 
to the n’th axis and contains the origin:

Hn = {
x ∈R

N | en · x = 0
}
, (33)

where en is the unit vector with zero in all the coordinates other than the n’th coordinate. Then, X RRNS intersects with the 
face of the unit hypercube on Hn at the origin and the other (an − 1) points. This is summarized in the following lemma.
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Lemma 2. X RRNS intersects with Hn(a) at an number of points with corresponding source S = i
an

, i = 0, 1, . . . , an − 1: Let

Xn(a) ≡ Hn ∩X RRNS (34)

=
{

aS mod 1

∣∣∣∣ S = i

an
, i = 0,1, . . . ,an − 1

}
. (35)

Then,

|Xn(a)| = an. (36)

Proof. By the definition, Xn is the set of points in X with the nth coordinate being zero, which is equivalent to

an S = 0 (mod 1). (37)

Since 0 ≤ S < 1, 0 ≤ an S < an . Thus, (37) has an solutions of S, namely S = i
an

, i = 0, 1, . . . , an − 1. �
Next, the primality of an ’s in the construction of the RRNS-map code implies that the projections of Xn \ 0 onto H are 

disjoint as stated in the following lemma.

Lemma 3. If n �= m,

Xn(a) ∩Xm(a) = 0, (38)

where 0 represents the vector corresponding to the origin (0, 0, . . . , 0).

Proof. Trivially, 0 ∈ Xn for all n = 1, 2, . . . , N . Next, it is shown by contradiction that there is no other element in the 
intersection. Suppose that there exists an element other than 0 in the intersection: x ∈ Xn ∩ X j and x �= 0. This implies 
that there exists s ∈ (0, 1) satisfies (37) for both an and am . In other words, an S = m and am S = n with integers 0 < m <
an − 1 and 0 < n < am − 1. Since an and am are relatively prime by construction, this can happen only when S = 0, which 
contradicts the assumptions that x �= 0. �

Lemmas 2 and 3 lead to the following theorem showing that the number of points in X ∗ is related to the sum of an ’s.

Theorem 3. Given a RRNS-map code with a satisfying (10), the cardinality of the discrete codebook X ∗, the intersections between the 
codebook X RRNS and the orthogonal hyperplane H in (16), is as follows:

|X ∗| = 1 +
N∑

n=1

(an − 1). (39)

Following the same procedure, one can identify all the points in X ∗ by first finding Xn(a) and then projecting those 
points and the origin onto H . Let xni be an element in Xn(a) with corresponding source S = i

an
, i �= 0 from (35):

xni =
(

a1

an
i, . . . ,

an−1

an
i,0,

an+1

an
i, . . . ,

aN

an
j

)
mod 1, (40)

where n = 1, 2, . . . , N and i = 1, . . . , an − 1. In order to project this point onto H , one needs to find the orthogonal basis of 
H by finding the null space of a. Considering aT as a (1 × N) matrix and performing the singular value decomposition,

aT = [
a1 a2 . . . aN

] = U�VT . (41)

� contains only one non-zero singular value at the first row and all the other singular values are zero. Thus, the first 
column of V corresponds to the non-zero singular value and the remaining (N − 1) columns of V are the orthogonal basis 
of the null space of a, denoted as a N × (N − 1) matrix B. Therefore, the projection of xni onto H is

x∗
ni = BT (xni − c), n = 1,2, . . . , N, i = 1,2, . . . ,an − 1 (42)

where c = ( 1
2 , 12 , . . . , 12

)
is the center of the hypercube. From (42), we have the full description of individual points in X ∗ , 

which allows us to numerically calculate the minimum distance for a given a.
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Appendix C. The proof of Theorem 1

The shrinkage of the RRNS-map codebook is quantified as a function |W |. The cardinality of the discrete codebook, 
|X ∗(W )|, linearly scales with |W |, as summarized in the following lemma.

Lemma 4. Given an RRNS-map code with parameter a satisfying (10), the cardinality of X ∗(W ) — the intersection set between the 
active codebook X RRNS with W of length |W | and the orthogonal hyperplane H in (16) — is

1 +
N∑

i=1

(�an|W |� − 1) ≤ |X ∗(|W |)| ≤ 1 +
N∑

i=1

(�an|W |�). (43)

Proof. The theorem follows from the same argument as in Lemma 2 in Appendix A, with the slight modification that the 
support of the source considered is reduced by a factor of |W |. X RRNS(|W |) intersects with Hn(a) when the corresponding 
source is S = i

an
∈ W for some integer i. Thus, there are �an|W |� integers for i. If i = 0 is included, it should be excluded to 

avoid multiple counting. Summing up for all an ’s, and subtracting redundant counts for S = 0, we have (43). �
For a large N , one can ignore the first term in the right side of (43), which leads to (24) in Theorem 1.

Appendix D. The proof of Theorem 2

An upper bound of the minimum distance of a RRNS-map code is derived as follows. The radius of cylinder packing is 
bounded from above by that of optimal sphere packing. Thus, the volume of a (N − 1)-dimensional ball with radius d̃/2
multiplied by the number of points in X ∗(W ) is bounded from above by the volume of H , which is a constant:

|X ∗(W )| π
N−1

2( N−1
2

)!
(

d̃

2

)(N−1)

≤ Vol(H), (44)

where the formula for (N − 1)-dimensional ball is used when N is an odd and Vol(H) represents the volume of H . Using 
the approximation in (24) for the number of balls and applying Stirling’s formula 

( N−1
2

)! ≈ ( N−1
2

)( N−1
2

)
e−(

N−1
2

)
, we have 

(25) in Theorem 2.

Appendix E. Calculating the probability of threshold error using the union bound

In order to calculate the probability of threshold error, probability of threshold error to a neighboring segment is cal-
culated. Suppose that true codeword X is in the i’th segment and let Eij be the event that this codeword is decoded to 
another segment j by noise. Corresponding probability Pij is as follows:

Pij = 1 − �

(
dij

2σ

)
, (45)

where dij is the distance between segments i and j and �(x) is the cumulative distribution of the standard normal distri-

bution defined by 1√
2π

∫ x
−∞ e− t2

2 dt .

Then, the threshold error event is the union of Eij with j being neighbors of i. Thus, the probability of threshold error is

Pth = P

( ⋃
j∈N(i)

Eij

)
, (46)

where N(i) represents the neighbors of i excluding i. Considering the union bound of (46), we have an upper bound on Pth
with the union replaced by the summation of corresponding probabilities:

Pth ≤
∑

j∈N(i)

Pij ≤ K

(
1 − �

(
dmin

2σ

))
(47)

where K is the number of neighbors and dmin is the minimum distance. When dimension is high, this upper bound is 
known to be a tight approximation of the threshold error [30].
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Appendix F. The lower bound of distortion of the shift-map codes for a given α

A lower bound of the distortion of the shift-map code with a given scaling parameter α is calculated as follows. Since 
the first encoded variable X1 = S is most sensitive to the additive noise Z1, let’s consider the case where a large error 
occurs in the estimate of S because the observation Y is pushed toward to a different segment of the code segments in the 
first dimension. To be specific, when |Z1| > 1

2α and Zn = 0 for n > 1, the estimation error is 1
α . In addition, if |Z1| > 1

2α
and Zn(n > 1) have the same sign as Z1, the estimation error only increases. Let’s denote the set of such Z as T1 ⊂ T . The 
distortion considering only Z ∈ T1 is a lower bound of the distortion considering all Z ∈ T . Therefore, the second term in 
(4) is greater than erfc

( 1
2
√

2ασ

)( 1
2

)(N−2) 1
α2 , where erfc is the complementary error function. Consequently, the distortion of 

the shift-map code with α is bounded from below by:

D ≥ (
1 − P U

th

) σ 2

(LSM(α))2
+ erfc

(
1

2ασ

)(
1

2

)(N−2) 1

α2
, (48)

where P U
th is the union bound of the probability of threshold error calculated similarly to (47), LSM(α) is the stretch factor 

defined in (29).
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