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A General Construction for PMDS Codes
Gokhan Calis and O. Ozan Koyluoglu

Abstract—PMDS (a.k.a. maximally recoverable) codes allow
for local erasure recovery by utilizing row-wise parities and
additional erasure correction through global parities. Recent
works on PMDS codes focus on special case parameter settings,
and a general construction for PMDS codes is stated as an open
problem. This paper provides an explicit construction for PMDS
codes for all parameters utilizing concatenation of Gabidulin
and MDS codes, a technique originally proposed by Rawat
et al. for constructing optimal locally repairable codes. This
approach allows for PMDS constructions for any parameters
albeit with large field sizes. To lower the field size, a relaxation
on the rate requirement is considered, and PMDS codes based
on combinatorial designs are constructed.

I. INTRODUCTION

Redundant array of independent disks (RAID) [1] archi-
tecture is used to prevent systems from data loss in case of
catastrophic failures (disk failure). Maximum distance separa-
ble (MDS) codes, i.e., Reed-Solomon codes, can be utilized
for erasure correcting in RAID systems, i.e., in RAID 6 to
overcome the failure of two disks. However, using solid-
state drives (instead of hard disk drives) brought challenges,
e.g., the system may experience both disk failures and hard
errors which may not be realized unless the specific sector
is accessed. RAID 6 architecture can tolerate such an erasure
pattern. However, the cost of recovery is expensive. Partial
MDS (PMDS) codes are proposed to overcome this problem
by utilizing both row-wise parities and global parities to
recover from mixed failures [2]. Remarkably, in the distributed
storage context, these row-wise (local) parities reduce the
communication cost of maintenance operations, and together
with global parities, provide maximal fault tolerance [3].

PMDS codes tolerate mixed failures consisting of column
failures (referring to a disk) in an r × n array and additional
failures (sectors). Each row in the array forms an MDS code,
i.e., each row forms a local group for erasure correction of
up to m symbols. Considering r × n array over a finite field
F, PMDS codes’ properties are [4]: Each row is an [n, n −
m,m+ 1] MDS code, and any m elements per row plus any
additional s erasures in the array can be recovered. PMDS
codes are labeled with (m; s) and defined in [4] as follows.
Definition 1. Let C be a linear [rn, k] code over a field such
that when codewords are taken row-wise as r×n arrays, each
row belongs in an [n, n−m,m+1] MDS code. C is an (m; s)
partial MDS (PMDS) code if, for any (s1, s2, . . . , st) such that
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each sj ≥ 1 and
∑t
j=1 sj = s, and for any i1, i2, . . . , it such

that 0 ≤ i1 < i2 < · · · < it ≤ r − 1, C can correct up to
sj +m erasures in each row ij , 1 ≤ j ≤ t.

PMDS codes draw attention recently and code constructions
are proposed in the literature, however, the parameter set
((m; s) values) is limited. Explicit constructions are provided
in [5], [6] for (m; s) = (1; 1) and (m; s) = (≤ 2; 2), in [2],
[7] for (m; s) = (≥ 1; 1), in [8] for (m; s) = (≥ 1; 2),
in [3] for (m; s) = (1; 3) and (m; s) = (1; 4), in [2] for
(m; s) = (1;≥ 1) and in [9] for (m; s) = (≥ 1; 1). In all
these explicit PMDS constructions, m or s is set to be 1 or 2.

Coding schemes that can be considered as relaxations to
erasure recovery properties of PMDS codes include SD codes
[4], STAIR codes [10], and t-level Generalized Concatenated
(GC) codes [7]. Locally repairable codes (LRCs) has been
studied recently [11]–[14], and these codes allow a recovery
of a symbol within a corresponding local group. We remark
that dmin-optimal LRCs necessarily have disjoint local groups,
which make them as candidates for constructing PMDS codes.
However, this approach (utilizing dmin-optimal LRCs) pro-
duces PMDS codes only for special parameter settings.

In this study, we first propose an explicit PMDS code con-
struction for all parameters using concatenation of Gabidulin
(Section II) and MDS codes, a technique originally proposed
in [13] for constructing optimal LRCs. The general PMDS
construction along with examples are detailed in Section III.
Then, to lower the field size requirement of this approach, we
develop rate suboptimal PMDS constructions using combina-
torial designs in Section IV. In particular, we will refer to the
PMDS definition given above as rate-optimal PMDS, where
the corresponding rate is R∗ = r(n−m)−s

rn , and compare this
optimal rate with those of suboptimal rate codes.

II. MAXIMUM RANK DISTANCE (MRD) CODES

We first define rank distance and linearized polynomials.
Definition 2 (Column rank). For a given basis of FqM over
Fq , the column rank of a vector v ∈ FNqM over the base field
Fq , denoted by Rk(v|Fq), is the maximum number of linearly
independent coordinates of v over the base field Fq .

We note that a basis establishes an isomorphism between
N -length vectors, in FNqM , to M × N matrices, in FM×Nq .
For the given basis, the column rank Rk(v|Fq) is equal to
rank(V), the rank of the corresponding matrix of v.
Definition 3 (Rank distance). Rank distance between two
vectors is defined by dR(v1,v2) = Rk(v1 − v2|Fq).
Definition 4 (Matrix (array) code). A matrix code is defined as
any nonempty subset of FM×Nq . (Also called array code [15].)

Rank-metric code is a matrix (array) code, where the
distance is the rank distance. The minimum distance of a rank-
metric code C ⊆ FM×Nq is given by
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dR(C) = min
v1,v2∈C;v1 6=v2

dR(v1,v2). (1)

Lemma 5 ( [16]). Consider a rank-metric code C ⊆ FM×Nq

with minimum distance dR(C) = D. Then,

logq(|C|) ≤ min{M(N −D + 1), N(N −D + 1)}. (2)

The codes that achieve the bound in (2) are called maximum
rank distance (MRD) codes.

Definition 6. A linearized polynomial f(g) over FqM of q-
degree K − 1 has the form f(g) =

∑K−1
i=0 cig

[i], where the
coefficients ci ∈ FqM , cK−1 6= 0, and [i] = qi.

We note that the linearized polynomial satisfies f(a1g1 +
a2g2) = a1f(g1)+a2f(g2), for a1, a2 ∈ Fq and g1, g2 ∈ FqM .
We provide Gabidulin construction of MRD codes [15], [16].

Definition 7 (MRD (Gabidulin) codes). An [N,K,D] MRD
code CMRD over the extension field FqM (M ≥ N ) has length-
K input u0, · · · , uK−1, where ui ∈ FqM , i = 0, · · · ,K −
1, and encodes the input to length-N codewords by xj =

f(gj) =
K−1∑
i=0

uig
[i]
j , for j = 1, · · · , N . Linearized polynomial

is evaluated with N linearly independent, over Fq , generator
elements {g1, · · · , gN} with gj ∈ FqM which forms GMRD;
and its coefficients are selected by the length-K input vector.

Note that, symbol erasures in the vector representation of a
codeword in the Gabidulin code correspond to column erasures
in the matrix representation. Here, any non zero code (vector)
has a rank (norm) of at least N −K +1. Thus, the Gabidulin
code achieves a rank distance of D = N −K + 1, which is
the maximum achievable, and can correct any D−1 erasures.

III. A GENERAL CONSTRUCTION FOR PMDS CODES

Recently, a concatenation of MRD and MDS array codes
are utilized for coding in distributed storage systems. This
approach is used for constructing LRCs in [13], LRCs with
minimum bandwidth node repairs in [17], thwarting adversar-
ial errors in [18], and secure cooperative regenerating codes
in [19]. We utilize the same concatenation approach here to
construct PMDS codes. We note that maximally recoverable
codes in [3] are constructed using parity-check matrices and
they also utilize the linearized polynomial property.
Construction I. [An (m; s) PMDS code over an array of (r, n)
symbols (r rows and n columns)] Set K = r(n−m)− s, and
consider data symbols {u0, · · · , uK−1}.
• Use [N = K+s,K,D = s+1] Gabidulin code to encode
{u0, · · · , uK−1} to length-N codeword (x1, · · · , xN ).
That is, (x1, · · · , xN ) = (f(g1), · · · , f(gN )), where the
linearized polynomial f(g) = u0g

[0]+ · · ·+uK−1g[K−1]
is evaluated with N linearly independent, over Fq ,
generator elements {g1, · · · , gN} each in FqM ; and its
coefficients are selected by the length-K input vector.
We represent this operation by writing x = uGMRD.

• Split resulting N = K + s = r(n − m) symbols
{x1, · · · , xN} into r rows each with n-m symbols. We
represent this operation by double indexing the codeword
symbols, i.e., xi,j is the symbol at row i and column j
for i = 1, · · · , r, j = 1, · · · , n − m. We also denote

the resulting sets with the vector notation, xi,1:n−m =
(xi,1, xi,2, · · · , xi,n−m) for row i.

• Use an [n, k = n−m, d = m+ 1] MDS array code for
each row to construct additional parities. Representing the
output symbols as yi,1:n we have yi,1:n = xi,1:n−mGMDS
for each row i, where GMDS is the encoding matrix
of the MDS code over Fq . If a systematic code is
used, xi,1:n−m is encoded into the vector yi,1:n =
(xi,1, · · · , xi,n−m, pi,1, · · · , pi,m) for each row i.

The resulting codeword symbols are represented as a matrix:

y1,1 y1,2 · · · y1,n
y2,1 y2,2 · · · y2,n

...
...

...
...

yr,1 yr,2 · · · yr,n

(3)

Proposition 8. The symbol matrix resulting from Construction
1 has a total of rn symbols that are placed in r rows and n
columns. Now, consider that we have m erasures per row,
and an additional s erasures over the remaining symbols
(referred to as (m; s) erasure pattern). The remaining symbols
are sufficient to decode the data symbols u0, · · · , uK−1, from
which the erasures in (m; s) erasure pattern can be recovered
by re-encoding the data.
Example 9. Consider construction of (m = 2; s = 3) PMDS
over an array of r = 3, n = 5 symbols. Here, we use [N =
9,K = 6, D = 4] Gabidulin code together with an [n =
5, k = 3, d = 3] MDS code. We obtain, e.g., the following
symbols, for the case of systematic MDS code.

x1,1 x1,2 x1,3 p1,1 p1,2
x2,1 x2,2 x2,3 p2,1 p2,2
x3,1 x3,2 x3,3 p3,1 p3,2

(4)

(4) can have m = 2 erasures in each row and additional s = 3
erasures. For instance, consider the erasures below.

x1,1 x1,2 x1,3 ∗ ∗
∗ ∗ ∗ p2,1 p2,2
∗ ∗ ∗ ∗ p3,2

(5)

This resulting symbol array (x1,1, x1,2, x1,3, p2,1, p2,2, p3,2)
forms a set of linearly independent evaluation points of the un-
derlying linearized polynomial for the [N = 9,K = 6, D = 4]
Gabidulin code. By polynomial interpolation, one can then
solve for the data coefficients u0, · · · , u5, re-encode this into
codewords and construct back the full symbol matrix.

Proof of Proposition 8. We first provide a lemma, which is a
summary of the observations given in [13] for the scenario
considered here. (In particular, we have scalar symbols here.)
Lemma 10. Consider the code given in Construction 1,
where the Gabidulin codeword x = [x1, · · · , xN ] =
[f(g1), · · · , f(gN )] in FNqM is partitioned into symbol vectors
xi,1:n−m = (xi,1, · · · , xi,n−m) for row i = 1, · · · , r, and each
is encoded into symbols yi,1:n through GMDS. Consider a set
S which is the union of li symbols from row i (symbols in
yi,1:n). Then, the symbols in S correspond to the evaluations

of the underlying linearized polynomial f(·) at
r∑
i=1

min{li, k}

linearly independent (over Fq) points from Fqm .
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The proof of this lemma is provided in Appendix A. We
utilize this Lemma in the following.

Corollary 11. Consider the code given in Construction I
and an erasure pattern which leaves li number of remaining
symbols in row i in the symbol matrix. In such a scenario, if
r∑
i=1

min{li, k} ≥ K, then, the erasure pattern can be recov-

ered from the remaining symbols. In particular, the remaining

symbols result in
r∑
i=1

min{li, k} linearly independent evalu-

ation points for the underlying polynomial (see Lemma 10).
And, when this number is greater than or equal to K, the
data symbols u0, · · · , uK−1 can be decoded via polynomial
interpolation, from which the pre-erasure situation of the array
can be recovered by re-encoding the symbols.

For a given (m; s) erasure scenario over an array of (r, n)
symbols (r rows and n columns), we have m erasures in each
row and additional si erasures per row, resulting in a total of

rm+
r∑
i=1

si = rm+s erasures. In Construction 1, after erasing

m symbols from each row, we are left with n−m symbols in
r rows. Now, having si number of additional erasures in each
row will result in having li = n−m− si number of symbols
at row i. As the underlying MDS code has a dimension of
k = n − m, the number of linearly independent evaluations

at hand is
r∑
i=1

min{li, k} =
r∑
i=1

li = r(n − m) −
r∑
i=1

si =

r(n−m)− s = K. Therefore, any (m; s) erasure pattern can
be recovered with Construction 1.

Remark 12. Construction I is same as the one in [13]. We
note that this construction, in addition to being an LRC, which
provides row-wise MDS property of PMDS codes, has a max-
imum erasure tolerance property that matches to the (m; s)
erasure pattern recovery property of PMDS codes. Together
with rate optimality of the construction, this provides a general
construction for optimal PMDS codes for all parameters.

Note that Construction I allows for construction of PMDS
for any m and s, but with a field size of qr(n−m) (M ≥
N = r(n − m) from Definition 7), where q ≥ n due to
[n, k = n −m] MDS codes. On the other hand, the existing
PMDS codes work for limited range of m or s (with lower
field sizes). Next, we relax the optimal rate requirement in
PMDS codes and provide constructions with lower field sizes.

IV. RATE SUBOPTIMAL PMDS CODES THROUGH
COMBINATORIAL DESIGNS

We first provide an example. Assume a data D = u of
size 9 contains 3 sub-data (Di = [ui,1:3]) each of size 3,
i.e., u = {u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, u3,1, u3,2, u3,3} . We
encode each of these sub-data with [10, 3] MDS code and
represent the resulting elements with P1 = p1,1:10 for D1,
P2 = p2,1:10 for D2, and P3 = p3,1:10 for D3. We have

[
ui,1:3

]  1 1 . . . 1
αi,1 αi,2 . . . αi,10
α2
i,1 α2

i,2 . . . α2
i,10

 =
[
pi,1:10

]
. (6)

These elements are grouped in a specific way placed into
array as represented in Fig. 1 where each codeword symbol

p1,1 p1,2 p1,3 p1,4 p1,5

p1,6 p1,7 p1,8 p1,9 p1,10

p2,1 p2,2 p2,3 p2,4 p2,5

p2,6 p2,7 p2,8 p2,9 p2,10

p3,1 p3,2 p3,3 p3,4 p3,5

p3,6 p3,7 p3,8 p3,9 p3,10

1

2

3

c1 c2 c3 c4

c15

c6 c7 c8 c9 c10

c11 c12 c13 c14

c5

Fig. 1. MDS codewords corresponding to each sub-data are placed as symbols
of the code according to the underlying projective plane.

contains two elements each coming from two of the different
sets P1,P2,P3. Thus, each row now can be taken as [5, 3]
MDS code. Here, we can think of the generator matrix G of
overall code C as consisting of 15 thick columns each of size
2 thin columns (corresponding to 2 different sub-data). Note
that, the code can tolerate erasure of any m = 2 symbols
per row plus any s = 3 symbols hence allowing recovery
from PMDS erasure pattern since the remaining 12 elements
(6 symbols) have at least 3 elements (3 thin columns) per
sub-data from which each of the sub-data can be recovered
and so is the original array. The general construction using a
projective plane of order p is as follows.
Construction II. Assume we have a data D of size r(n −
m), and consider a projective plane of order p with PMDS
parameters satisfying (n−m)p = s and r = p2+ p+1. First,
partition D into r = p2 + p + 1 sub-data, where p = s

n−m .
Then, encode each sub-data using [n(p+1), n−m] MDS code
and distribute the resulting n(p + 1) elements for each sub-
data evenly to p+1 different rows (according to the underlying
projective plane).

As a result of this construction, symbols in each row stores
elements from p + 1 distinct sub-data, hence a row can be
considered as an [n, n −m] MDS code since puncturing np
coordinates from [n(p+1), n−m] MDS code results in [n, n−
m] MDS code. We now show that erasure of any m symbols
per row plus any s symbols can be tolerated.
Proof. Consider the generator matrix G which has r sub-
block-matrix (corresponding to the rows), each having n thick
columns (corresponding to symbols in each row). Each of
these thick columns also have p + 1 thin columns. Erasure
of any m nodes per row is same as puncturing any m thick
columns from each of the r sub-block-matrix. In addition,
any s erasures corresponds to puncturing any additional s
thick columns. Puncturing any m thick columns from each of
the r sub-block-matrix has the same effect on each sub-data.
However, the additional s erasures may have different effect
on different sub-data depending on the erasure pattern. Since
any two blocks in the projective plane has only one common
point, any s ≥ 2 thick columns contains at least one common
sub-data. Considering the worst case of having all s punctured
thick columns containing one common sub-data, the remaining
thick columns contain at least n(p + 1) −m(p + 1) − s thin
columns for each of the sub-data. Since we have p = s

n−m
in the code construction, we have at least n(p+ 1)−m(p+
1) − p(n − m) = n − m thin columns for each of the sub-
data. Therefore, using these n−m thin columns, each of the
sub-data can be decoded using the underlying MDS code and
the original array can be reconstructed.

Although this construction requires lower field size, q ≥
n(p + 1), it is not rate optimal. The original data is of size
r(n−m) and storage cost is rn(p+1) yielding rate as R(II) =
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Fig. 2. Rate ratio of Construction II for various projective plane orders.

n−m
n(p+1) and we have R(II)

R∗ = p2+p+1
(p+1)(p2+1) . For different values

of p, we evaluate this ratio in Fig. 2. Note that for p = 6,
there is no projective plane known. As the projective plane
order increases, the rate ratio decreases and the required field
size increases. One observation is that with projective plane
construction, the system may tolerate even more than any s
additional erasures (since construction is designed to tolerate
the worst case of s). For example, using projective plane of
order p = 1 for (m = 2, r = 3, n = 5) we can tolerate %100
of s ≤ 3, %64.29 of s = 4 and none of s ≥ 5.
Construction III. Assume we have a data D and consider an
(v, κ, λ = 1)-resolvable balanced incomplete design (RBIBD)
satisfying s = (n−m)(v−κ)

κ−1 and r = v(v−1)
κ(κ−1) . First, partition D

into v sub-data. Then, encode each sub-data using [n(v−1)κ−1 , n−
m] MDS code and distribute the resulting n(v−1)

κ−1 elements for
each sub-data according to the underlying RBIBD.

A row in r × n array stores symbols from the same set
of κ sub-data and since each sub-data is repeated v−1

κ−1 times,
each row stores n symbols for each of the κ sub-data. That
is, each row can be represented by a block of RBIBD. Any
m erasures per row results in erasure of m(v−1)

κ−1 for each sub-
data. Furthermore, assume the worst case that is the additional
s erasures also occur involving a common sub-data, then at
least n(v−1)

κ−1 −
m(v−1)
κ−1 − s symbols remain for each sub-data.

Since s = (n−m)(v−κ)
κ−1 , we have at least n −m symbols for

each sub-data, which is enough to decode each sub-data using
the underlying MDS code and from which the original data
can be decoded. Construction III yields rate suboptimal PMDS
as R(III) = (n−m)(κ−1)

n(v−1) and we have R(III)

R∗ = (κ−1)v
v2−v−vκ+κ2 .

For example, using (9, 3, 1)-RBIBD results in R(III)

R∗ = 1
3 .
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APPENDIX

The proof follows from the linearized property of the poly-
nomial utilized in the Gabidulin code. (The proof is given in
Lemma 9 and 23 of [13] for the general case of having vector
symbols. See also [17]. We provide a summary here for the
scalar case.) Consider row i which encodes symbols xi,1:n−m
into yi:1:n = xi,n−mGMDS. Here, representing the correspond-
ing evaluation points with gi,j for row i, we have, as k =
n−m, xi,1:k = (f(gi,1), f(gi,2), · · · , f(gi,k)). Now, denoting
GMDS as k × n matrix with entries [Gh,j ] for h = 1, · · · , k

and j = 1, · · · , n, we have yi,j =
k∑
h=1

f(gi,h)Gh,j . Due to the

linearized property of f(·), we have yi,j = f(
k∑
h=1

Gh,jgi,h).

Denote this new evaluation points as g̃i,j =
k∑
h=1

Gh,jgi,h.

These points given by g̃i,1:n span the space spanned by the
set gi,1:k. Consider a set Si ⊆ {1, · · · , n} of size li. Due
to the full rankness of the matrix GMDS, the set of points
{g̃i,j , j ∈ Si} span a min{li, k} dimensional space in the
space spanned by gi,1:k. Also, as the points in different rows,
say gi,1:k and gĩ,1:k for i 6= ĩ, are independent, we have linear
independence of g̃i,1:n and g̃ĩ,1:n for any i 6= ĩ. Hence, the
symbols in S = ∪ri=1Si correspond to the evaluations of

the underlying linearized polynomial f(·) at
r∑
i=1

min{li, k}

linearly independent (over Fq) points from Fqm .
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