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Collective Secrecy Over the K -Transmitter
Multiple Access Channel

Yanling Chen , O. Ozan Koyluoglu, and A. J. Han Vinck

Abstract— This paper studies the problem of secure commu-
nication over a K -transmitter multiple access channel (MAC)
in the presence of an external eavesdropper, subject to a
collective secrecy constraint (i.e., information leakage rate to
an eavesdropper on a collection of messages that are from
a pre-specified subset of the K transmitters, say S ⊆ K =
{1, 2, . . . , K}, is made vanishing). Since secrecy is of concern
only to transmitters {i|i ∈ S} but not to transmitters {i|i ∈ S c},
where S c = K\S, different transmission strategies could be
employed at transmitters {i|i ∈ S c}. Consider the following two
scenarios: 1) transmitters {i|i ∈ S c} use deterministic encoders
(which are conventionally used for MAC without secrecy), com-
peting for the channel resource (i.e., being competitive) and
2) transmitters {i|i ∈ S c} use stochastic encoders, helping
to hide other transmitters’ messages from the eavesdropper
(i.e., being cooperative). As a result, we establish the respective
S-collective secrecy achievable rate regions and demonstrate the
advantage of being cooperative theoretically and numerically.
To this end, in addition to the standard techniques, our results
build upon two techniques. The first is a generalization of Chia-El
Gamal’s lemma on entropy bound for a set of codewords
given partial information. The second is to utilize a compact
representation of a list of sets that, together with submodular
properties of mutual information functions involved, leads to
an efficient Fourier-Motzkin elimination. These two approaches
allow us to derive achievable regions in this work, and could also
be of independent interest in other context.

Index Terms— Mulitiple access channel, capacity region,
secrecy, Fourier-Motzkin elimination, submodular function.

I. INTRODUCTION

MULTIPLE access channel (MAC) is an important
branch in the extensive field of the multiple-user com-

munication. It is particularly of interest in wireless commu-
nications, as it corresponds to the scenario where a single
physical channel is utilized by multiple transmitters such as
in an ad-hoc network. For the problem of communicating
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independent sources over an MAC without any secrecy
constraint, Ahlswede [2] first studied the 2-transmitter and
3-transmitter cases and determined the respective capacity
regions; whilst Liao [3] considered the general K -transmitter
MAC and fully characterized its capacity region. There are
also many studies on different extensions of MAC, such as
MAC with correlated sources [4]–[6], and MAC with feedback
[7], [8]. An extensive survey on the information-theoretic
aspects of MAC was given by van der Meulen [9].

Inspired by the pioneering works of Wyner [10] and
Csiszár and Körner [11] that studied the information theoretic
secrecy of a point-to-point communication in the presence of
an external eavesdropper, MAC with an external eavesdropper
was first introduced in [12]. In particular, [12] focused on a
degraded Gaussian MAC with K -transmitters and established
achievable rate regions subject to a pre-specified secrecy
measure; while a discrete memoryless 2-transmitter MAC with
an external eavesdropper was considered in [13]. In addition
to the (joint) secrecy constraint at the eavesdropper, the model
in [13] also takes into account the generalized feedback
that may enable cooperation between trusted transmitters.
Achievable secrecy rate regions were derived. Further works
on MAC with an external eavesdropper include but not limited
to [14]–[16] that focused on the Gaussian scenario; Refer-
ences [17] and [18] that investigated MAC with a stronger
secrecy criteria (i.e., the amount of information leakage from
both messages to the eavesdropper is made vanishing). Note
that [18] considered an MAC where encoders have limited
access to common randomness or they may share a con-
ferencing link. However, the secrecy capacity region of the
MAC with an external eavesdropper, even for the 2-transmitter
case, still remains open. Besides, there is a relevant direction,
i.e., the 2-transmitter MAC with confidential messages (with-
out an external eavesdropper) [19]–[21], worth mentioning.
More specifically, the MAC with one (resp. two) confidential
message (resp. messages) that was introduced in [19] (resp.
in [20]), generalizes the classic MAC in that one (resp. each)
user receives also channel output, and views the other as an
eavesdropper. Note that both models were well studied in [21].

In this paper, we consider the secure communication over a
K -transmitter MAC subject to a collective secrecy constraint
(i.e., information leakage rate on a collection of messages that
are from a pre-specified subset of the K transmitters, say S ⊆
K = {1, 2, . . . , K }, to an eavesdropper is made vanishing).
The channel model is shown in Fig. 1. The motivation of
this collective secrecy comes from the fact that in a multi-
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Fig. 1. K -transmitter DM-MAC with an external eavesdropper.

user setting, the secrecy of the respective messages is of
great concern only to some users, but not to all. Just as the
social network users could configure their privacy settings,
the K transmitters in the MAC scenario could also decide
whether they would like to keep their messages secret from
the eavesdropper (i.e., vote for secrecy) or not (i.e., vote
for efficiency). The goal is to find the fundamental trade-off
between the efficiency and secrecy subject to the concerns
of the K transmitters. Since secrecy is of concern only to
transmitters {i |i ∈ S} but not to transmitters {i |i ∈ Sc},
where Sc = K\S, different transmission strategies could be
employed at transmitters {i |i ∈ Sc}.More specifically, we con-
sider the following two scenarios: 1) transmitters {i |i ∈ Sc}
use deterministic encoders (which are conventionally used for
MAC without secrecy), competing for the channel resource
(i.e., being competitive); and 2) transmitters {i |i ∈ Sc}
use stochastic encoders, helping to hide other transmitters’
messages from the eavesdropper (i.e., being cooperative). As a
general result, we establish the respective collective secrecy
achievable rate regions and demonstrate the advantage of
being cooperative theoretically and numerically. To this end,
in addition to the standard methods (e.g., secrecy coding with
a stochastic encoder and a joint typical decoder), our results
build upon two techniques. The first is a generalization of
Chia-El Gamal’s lemma [22, Lemma 1] on entropy bound
for a set of codewords given partial information. The second
is to utilize a compact representation of a list of sets that,
together with the submodular properties of mutual informa-
tion functions involved, leads to an efficient Fourier-Motzkin
elimination. These two approaches allow to derive achievable
regions in this work, and could also be of independent interest
in other context. An interesting observation is that, our general
result includes a joint secrecy rate region as a special case
result (i.e., K transmitter all vote for secrecy). Moreover,
the obtained joint secrecy rate region is a submodular poly-
hedron (similar to the capacity region of the K -transmitter
MAC [3], [5], [23, Th. 4.5]). Note that one important property
of the submodular polyhedron is that, although the polyhedron
itself is described by an exponential number of inequalities
(i.e., 2K − 1), the extreme points and facets can be easily
characterized. And, a game-theoretic interpretation of the joint
secrecy rate region can be easily developed by following a
similar argument to [24].

The rest of the paper is organized as follows. Section II
introduces the system model; Section III presents the neces-
sary mathematical tools; Section IV gives the main results,
i.e., the S-collective secrecy rate region, detailed proofs of
which are provided in Section IV-A (for the achievability)

and Section IV-B (for the efficient elimination); Additionally,
some numerical results are provided in Section V. Section VI
discusses how to extend our results to other settings, and
Section VII concludes the paper. To enhance the flow, some
details are relegated to the appendix.

II. SYSTEM MODEL

Consider a discrete memoryless MAC (DM-MAC) with K
transmitters, one legitimate receiver, and one passive eaves-
dropper, which is defined by p(y, z|x1, x2, . . . , xK ). The trans-
mitter i, aims to send message mi , to the legitimate receiver,
where i ∈ K = {1, 2, . . . , K }. Define rate Ri at transmitter i
by

Ri = 1

n
H (Mi ), for i ∈ K.

Suppose that xn
i is the channel input at transmitter i , and the

channel outputs at the legitimate receiver and eavesdropper are
yn and zn , respectively. By the discrete memoryless nature of
the channel (without any feedback), we have

p(yn, zn|xn
1 , xn

2 , . . . , xn
K ) =

n∏

i=1

p(yi , zi |x1,i , x2,i , . . . , xK ,i ).

A (2nR1 , 2nR2 , . . . , 2nRK , n) secrecy code Cn for the DM-MAC
consists of

• K message sets M1,M2, . . . ,MK , where mi ∈ Mi =
[1 : 2nRi ] for i ∈ K;

• K encoders each assigning a codeword xn
i to message mi

for i ∈ K; and
• One decoder at the legitimate receiver that declares an

estimate of (m1,m2, . . . ,mK ) say (m̂1, m̂2, . . . , m̂K ) or
an error to the received sequence yn.

Following the conventional definition as given in [25, (7.31)],
we define the average probability of decoding error at the
legitimate receiver by

Pn
e (Cn) = 1

2n[R1+···+RK ] Pr

{
⋃

i∈K
{mi �= m̂i }|Cn

}
. (1)

Note that Pn
e (Cn) = Pr

{
⋃

i∈K
{Mi �= M̂i }|Cn

}
if

M1,M2, . . . ,MK are uniformly distributed over their
corresponding message sets. For any fixed S ⊆ K of size
|S| = S, denote MS = {Mi |i ∈ S}. Define the S-collective
information leakage rate of the messages from transmitters
that belong to the set S by

RL ,S(Cn) = 1

n
I (MS ; Zn|Cn).

The rate pair (R1, R2, . . . , RK ) is said to be achievable
under the S-collective secrecy constraint, if there exists a
sequence of (2nR1 , 2nR2 , . . . , 2nRK , n) codes {Cn} such that

Pn
e (Cn) ≤ �n, (2)

RL ,S (Cn) ≤ τn, (3)

lim
n→∞ �n = 0 and lim

n→∞ τn = 0. (4)
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Clearly, the S-collective secrecy implies the T -collective
secrecy for any T ⊆ S. Remarkably, in case of S = K,
(3) corresponds to the joint secrecy constraint that is well
studied in the literature.

Remark 1: The S-collective secrecy defined by (3), together
with (4), guarantees a kind of asymptotic perfect secrecy
for a specific subset of users S (in the manner that
lim

n→∞ RL ,S(Cn) = 0, unlike the perfect secrecy that requires

RL ,S(Cn) = 0 [26]). We note that this definition is different
from the δ-collective secrecy defined in [12], which measures
the normalized equivocations, requires that

�T = H (MT |Zn)

H (MT )
≥ δ, ∀T ⊆ K, (5)

and guarantees a certain degree of secrecy for all subsets of
users. Nevertheless, as δ approaches to 1, then the δ-collective
secrecy by (5) guarantees the asymptotic perfect secrecy for
the ensemble of users ( [14, Definition 2]), which is equivalent
to the K-collective secrecy (i.e., joint secrecy) in our defini-
tion. Therefore, [14, Definition 3] actually established a joint
secrecy rate region for the K -transmitter Gaussian MAC.

Remark 2: We remark that the S-collective secrecy defined
by (3), is a weak secrecy metric. It is actually possible
to strengthen our weak secrecy results under some stronger
alternatives without any rate loss on the achievable regions.
This will be discussed in more details in Section VI-B.

In this paper, we are interested in the achievable S-collective
secrecy rate region of the K -transmitter DM-MAC with an
external eavesdropper. For convenience, for any random vari-
ables W j for j ∈ J , and any fixed J ⊆ K, we denote
WJ = {Wi |i ∈ J }.

III. PRELIMINARY DEFINITIONS AND LEMMAS

Compared to the problem of reliable communication over
the K -transmitter DM-MAC, the challenges of secure com-
munication are twofold.

• First, an additional secrecy constraint is taken into
account. Previous studies on secure communication over
DM-MAC [13], [27] mainly focused on the 2-transmitter
case, and sub-binning techniques are used therein for
secrecy proofs (especially for deriving the sufficient rate
constraints for the pre-specified secrecy, which reflects the
resolvability of the eavesdropper’s channel). In general,
if using sub-binning techniques for the secrecy analysis
for the K -transmitter DM-MAC, it needs O(2K ) times
sub-binning the codebooks and O(2K ) cases analysis due
to the size of the sub-binned codebooks. The secrecy
proof soon becomes cumbersome for K > 2 (neverthe-
less, such a proof is available upon request). Besides,
the resolvability techniques, to best of our knowl-
edge, are developed only for the 2-transmitter case by
Steinberg [28].

• Secondly, stochastic encoders are often used in
the random coding stage for secure communication
(differently from the deterministic encoders for reliable
communication). To obtain a concise form of secrecy
rate region (in terms of the system’s parameters only),
the variables added due to the randomness for secrecy

need to be eliminated. Standardly, this can be done by
Fourier-Motzkin elimination procedure. However, it is
known that the Fourier-Motzkin elimination has a double
exponential complexity, which soon becomes infeasible
even by software [29] (e.g., for K ≥ 4 in our problem
setting).

In this section, we present the mathematical tools needed
to overcome these two challenges. Together with the stan-
dard methods, they will be used in the next section to
derive the achievable S-collective secrecy rate region for the
K -transmitter DM-MAC with an external eavesdropper.

A. Conditional Entropy Bound

Differently from the deterministic encoder that is often
sufficient for a reliable communication, a stochastic encoder is
preferred for a reliable and secure communication. The basic
idea is to trade rates for secrecy, by adding appropriate amount
of randomness in the codewords generation. Theoretically, it is
of great interest to find out the right amount of randomness
that gives the best trade off.

Typically, the sufficient amount of randomness is indicated
by a few rate conditions that are derived in the respective
secrecy analysis. Such examples include but are not limited to
[23, Lemma 22.1] for the wiretap channel, [22, Lemma 1]
for the broadcast channel with an external eavesdropper,
[27, Lemma 4] for the 2-transmitter DM-MAC with an
external eavesdropper. As a generalization, we give in the
following Lemma 1 for the K -transmitter DM-MAC with
an external eavesdropper. For convenience of comparison,
we list them (except [23, Lemma 22.1], since it is implied
by [22, Lemma 1]) in Table I.

Lemma 1: Let (Q, V1, V2, . . . , VK , Z) ∼ p(q)
∏

i∈K
p(vi |q)

p(z|v1, . . . , vK ), Rv,i ≥ 0 for i ∈ K, and � > 0. Let Qn be a
random sequence and each qn = (q(1), . . . , q(n)) distributed

according to
n∏

t=1
p(q(t)). For i ∈ K, let V n

i (li ), li ∈ [1 :
2nRv,i ], be a set of random sequences that are conditionally
independent given Qn and each vn

i = (vi (1), . . . , vi (n))

distributed according to
n∏

t=1
p(vi (t)|q(t)), and let C be the

codebook of (Qn, V n
1 (1), . . . , V n

K (2
nRv,K ). Let Li be the

random index with an arbitrary probability mass function
for i ∈ K. Then, if Pr{(Qn, V n

1 (L1), . . . , V n
K (L K ), Zn) ∈

T n
� (Q, V1, . . . , VK , Z)} → 1 as n → ∞ and

∑

j∈J
Rv, j ≥ I (VJ ; Z |Q), ∀J ⊆ K (6)

there exists a δn(�) → 0 as � → 0 and n → ∞, such that
for n sufficiently large

H (L1, L2, . . . , L K |Zn, Qn , C)

≤ n

⎡

⎣
∑

j∈K
Rv, j − I (V1, V2, . . . , VK ; Z |Q)

⎤

⎦+ nδ(�).

Proof: See a detailed proof in Appendix A.
Remark 3: We observe that the resolvability for the

2-transmitter MAC as discussed in [28] has a similar form as
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TABLE I

ENTROPY BOUNDS BY [22, LEMMA 1], [27, LEMMA 4] AND LEMMA 1

the required randomness for weak secrecy in [27, Lemma 4].
Therefore, we believe that Lemma 1 will shed light on the
resolvability theory for the K -transmitter MAC.

B. Compact Representation of a List of Sets

In this subsection, we introduce a compact representation
of a list of sets and explore its properties. Together with the
submodular properties of the mutual information functions that
are explored in the next subsection, the representation devel-
oped here will help us to significantly reduce the tremendous
computational complexity of the Fourier-Motzkin elimination
procedure in the next section.

Recall that K = {1, 2, . . . , K }. We have the following
definitions.

Definition 1: The indicator vector of a subset T of set K,
denoted by 1T , is a 1 × K vector, with the i -th element equal
to 1 if i ∈ T and 0 if i /∈ T , for 1 ≤ i ≤ K .

For instance, for K = 5, K = {1, 2, 3, 4, 5} and T =
{1, 3, 5}, we have 1T = [1 0 1 0 1], and 1∅ = [0 0 0 0 0].

Let {Ti |1 ≤ i ≤ t} be a list of t subsets of K.
Definition 2: The presence vector of {Ti |1 ≤ i ≤ t} is

defined to be t# =
t∑

i=1
1Ti , which counts the number of

presences of each element of K over {Ti |1 ≤ i ≤ t}.
Definition 3: A compact form of the element rearrangement

for {Ti |1 ≤ i ≤ t} is defined to be {T ∗
t,i |1 ≤ i ≤ t}, where

T ∗
t,i contains the elements that present at least i times from

all these t subsets, i.e.,

T ∗
t,i =

⋃

{ j1,..., ji }⊆[1:t ]

(
i⋂

k=1

T jk

)
.

Clearly, T ∗
t,t ⊆ T ∗

t,t−1 ⊆ · · · ⊆ T ∗
t,1. And, T ∗

t,i = ∅ for i > tmax,
where tmax is the largest element of t#. So {T ∗

t,i |1 ≤ i ≤ tmax}
is the compact form without the empty sets.

For instance, for K = 3, K = {1, 2, 3} and {Ti |1 ≤ i ≤ 3}
with T1 = {1},T2 = {1, 2}, T3 = {2, 3}. We have t# =
(2, 2, 1), tmax = 2, T ∗

3,1 = {1, 2, 3},T ∗
3,2 = {1, 2},T ∗

3,3 = ∅.
Note that the compact form without the empty sets is

uniquely determined by the presence vector t#. Suppose that
t# = {n1, . . . , nK }, with tmax as the largest element of t#.
By Definition 3, the list of sets {T ∗

t,i |1 ≤ i ≤ tmax} can be

uniquely determined by taking T ∗
t,i to be a set that contains

elements k ∈ K with nk ≥ i. As a direct consequence,
{T ∗

t,i |1 ≤ i ≤ tmax} is the compact form without the empty
sets for all lists that share the same presence vector t#.
Straightforwardly, we have the following lemmas.

Lemma 2: t# =
t∑

i=1
1Ti =

t∑
i=1

1T ∗
t,i

=
tmax∑
i=1

1T ∗
t,i
.

Lemma 3: Given two lists of sets {T1i |1 ≤ i ≤ t1} and
{T2i |1 ≤ i ≤ t2}, suppose their compact forms of the element
rearrangement are {T ∗

t1,1i |1 ≤ i ≤ t1} and {T ∗
t2,2i |1 ≤ i ≤ t2},

and their presence vectors are t1# and t2#, respectively.

1) If t1# = t2#, with tmax as the largest element, then we
have T ∗

t1,1i = T ∗
t2,2i for 1 ≤ i ≤ tmax and T ∗

t1,1 j =
T ∗

t2,2k = ∅ for tmax ≤ j ≤ t1 and tmax ≤ k ≤ t2.
2) If t2# is less than or equal to t1# (i.e., each component of

t2# is less than or equal to its corresponding component
of t1#), then we have T ∗

t2,2i ⊆ T ∗
t1,1i for 1 ≤ i ≤

min{t1, t2}.
Proof: See a detailed proof in Appendix B.

Lemma 4: Given a list of sets {Ti |1 ≤ i ≤ t − 1} and
another list (with one more set Tt included), i.e., {Ti |1 ≤
i ≤ t}, let {T ∗

t−1,i |1 ≤ i ≤ t −1} and {T ∗
t,i |1 ≤ i ≤ t} be their

compact forms of the element rearrangement, respectively.
We have

T ∗
t,i =

⎧
⎪⎨

⎪⎩

T ∗
t−1,1

⋃
Tt i = 1

T ∗
t−1,i

⋃(
T ∗

t−1,i−1

⋂
Tt

)
1 < i < t

T ∗
t−1,t−1

⋂
Tt i = t .

Proof: See a detailed proof in Appendix C.
Lemma 5: Given a list of sets {Ti |1 ≤ i ≤ t}, and its

compact form of the element rearrangement {T ∗
t,i |1 ≤ i ≤ t},

for any S ⊆ K, the compact form of the list of sets {Ti ∩S|1 ≤
i ≤ t} is {T ∗

t,i ∩ S|1 ≤ i ≤ t}.
Proof: See a detailed proof in Appendix D.

Lemma 6: Let {T ∗
t,0i |1 ≤ i ≤ t} and {T ∗

t,1i |1 ≤ i ≤ t} be
the compact forms of the element rearrangement for {T0i |1 ≤
i ≤ t} and {T1i |1 ≤ i ≤ t}, respectively. If for all 1 ≤ i ≤ t,
T0i ⊆ S ⊆ K and T1i ⊆ Sc = K\S, then {T ∗

t,0i ∪ T ∗
t,1i |1 ≤

i ≤ t} is the compact form of the element rearrangement for
{T0i ∪ T1i |1 ≤ i ≤ t}.

Proof: See a detailed proof in Appendix E.
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C. Property of Submodular Set Functions

Denote the power set of K, i.e., the set of all subsets of K,
as PK. We have the following definitions.

Definition 4: A set function f : PK → R, assigns each
subset T ⊆ K a value fT .

Definition 5: A set function f is submodular if for every
T1,T2 ⊆ K, we have

fT1 + fT2 ≥ fT1∩T2 + fT1∪T2 .

And, a function f is called supermodular if − f is submodular.
A function that is both submodular and supermodular is called
a modular function.

Lemma 7: Given {Ti |1 ≤ i ≤ t} as a list of t subsets
of K, its compact form of the element rearrangement {T ∗

t,i |1 ≤
i ≤ t}, and a submodular function f : PK → R, we have

t∑

i=1

fTi ≥
t∑

i=1

fT ∗
t,i
.

Proof: The proof can be done by induction. A detailed
proof is given in Appendix F.

Remark 4: Lemma 7 considers the sum value of f over a
list of sets. In particular, over all the lists of sets which share
the same compact form (see Definition 3), it finds the local
minimum extreme point at the list of sets in the compact form.
As submodular functions have found immense applications
in economics, game theory, electrical networks and machine
learning and so on, we believe that Lemma 7 could be of
interest also in those domains.

1) Some Submodular Mutual Information Functions:
Consider a set of discrete random variables (Q, V1, V2,
. . . , VK ,Y, Z). The values of I (VT ; Y |VT c , Q) and
I (VT ; Z |Q), for a fixed T ⊆ K and T c = K\T , are
functions of the probability distributions for (Q, VK,Y ) and
(Q, VT , Z), respectively. Their properties as a function of
the probability distribution are well understood.

On the other hand, once the probability distribution for
random variables (Q, V1, V2, . . . , VK ,Y, Z) is given and fixed,
e.g., (Q, V1, V2, . . . , VK ,Y, Z) ∼ p(q)

∏
i∈K

p(vi |q)p(y, z|v1,

. . . , vK ), then we have 2K conditional mutual information by
I (VT ; Y |VT c , Q) and 2K mutual information by I (VT ; Z |Q),
for all T ∈ PK. More specifically, we define for any T ∈ PK,

b+
T = I (VT ; Y |VT c , Q), (7)

b−
T = I (VT ; Z |Q), (8)

bT = I (VT ; Y |VT c , Q)− I (VT ; Z |Q). (9)

Thus, we can regard b+, b− and b as set functions from the
set PK into the set of real numbers. In particular, we put
b+
∅ = b−

∅ = 0 (and thus b∅ = 0). Properties of the thus defined
(conditional) mutual information as set functions (i.e., b+, b−)
need to be further explored. Note that the non-negativity
of b+, b− in Shannon’s sense and the submodularity of b+
have been recognized [5]. Interestingly, −b− and b are also
submodular.

Lemma 8: For ∀T1,T2 ⊆ K, we have

1) (Submodularity of b+) b+
T1

+ b+
T2

≥ b+
T1∩T2

+ b+
T1∪T2

;

2) (Supermodularity of b−) b−
T1

+ b−
T2

≤ b−
T1∩T2

+ b−
T1∪T2

;
3) (Submodularity of b) bT1 + bT2 ≥ bT1∩T2 + bT1∪T2 .

Proof: Note that Lemma 8-1), i.e., the submodularity
of b+, has been discussed in [5, Lemma 3.1]. We include
it here for the sake of completeness. A detailed proof of
Lemma 8-2) is given in Appendix G. And, Lemma 8-3) is,
by defintion, a direct consequence of Lemma 8-1) and
Lemma 8-2).

As a direct consequence of Lemma 7 and Lemma 8, we have
the following corollary.

Corollary 1: Given {Ti |1 ≤ i ≤ t} as a list of t subsets
of K, and its compact form of the element rearrangement
{T ∗

t,i |1 ≤ i ≤ t}, we have

1)
t∑

i=1
b+
Ti

≥
t∑

i=1
b+
T ∗

t,i
;

2)
t∑

i=1
b−
Ti

≤
t∑

i=1
b−
T ∗

t,i
;

3)
t∑

i=1
bTi ≥

t∑
i=1

bT ∗
t,i
.

Remark 5: Note that the polymatroidal property of the con-
ditional mutual information function b+, i.e., submodularity
together with b+

∅ = 0 and monotonicity (b+
T1

≤ b+
T2

for
T1 ⊆ T2), was discussed in [5, Lemma 3.1]; while the
polymatroidal property of the entropy functions was discussed
in [30]. Both were pointed out explicitly to be fundamental
when we deal with the interdependence of random variables in
the analysis of multiple-user communication networks. To this
end, we believe the submodularity of −b−, b and Corollary 1
(i.e., the generalized submodularity of b+,−b− and b), could
be a valuable addition.

Remarkably, b+ (as defined in (7)) is used to describe
the polymatroidal structure of the capacity region of the
K -transmitter MAC with correlated sources in [5]. And in this
paper, as we show in Corollary 2, the joint secrecy rate region
of the K -transmitter MAC with an external eavesdropper is
a submodular polyhedron associated with the submodular
function b (as defined in (9)).

IV. K -TRANSMITTER DM-MAC WITH

AN EXTERNAL EAVESDROPPER

In this section, we give achievable S-collective secrecy
rate regions of the K -transmitter DM-MAC with an external
eavesdropper for the following two scenarios:

1) with competitive transmitters {i |i ∈ Sc}, where trans-
mitters {i |i ∈ Sc} use deterministic encoders (which
are conventionally used for MAC without secrecy),
competing for the channel resource;

2) with cooperative transmitters {i |i ∈ Sc}, where trans-
mitters {i |i ∈ Sc} use stochastic encoders, help-
ing to hide other transmitters’ messages from the
eavesdropper.

As a general result, we have the following theorem.
Theorem 4.1: An achievable S-collective secrecy rate

region of the K -transmitter DM-MAC with an external eaves-
dropper is given by the union of non-negative rate pairs
(R1, R2, . . . , RK ) that are defined by
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1) for the case with competitive transmitters {i |i ∈ Sc} :
∑

j∈T0∪T1

R j −
∑

j∈T2

R j

≤ I (VT0∪T1; Y |V(T0∪T1)
c , Q)− I (VT0∪T2 ; Z |Q),

∀T0 ⊆ S & T1, T2 ⊆ Sc, (10)

2) for the case with cooperative transmitters {i |i ∈ Sc} :
∑

j∈T0∪{T1\T2}
R j

≤ I (VT0∪T1; Y |V(T0∪T1)
c , Q)− I (VT0∪T2 ; Z |Q),

∀T0 ⊆ S & T2 ⊆ T1 ⊆ Sc, (11)

where the union is over input probability distributions that
factor as p(q)

∏
i∈K

p(vi |q)p(xi |vi ).

Remark 6: It is easy to see that (10) and (11) differ only at
the choices of T1,T2, where the choices for the former include
the ones for the later. As a direct consequence, the region
defined by (10) is in general smaller than the one defined
by (11). In other words, transmitters {i |i ∈ Sc}, although
they do not demand to keep their messages secret from the
eavesdropper, they could help the secure transmission of
the messages from other transmitters (in achieving a larger
secrecy region), by using the stochastic encoders instead of
the deterministic ones. In particular, at S = K, both regions
in (10) and (11) reduce to an achievable joint secrecy rate
region as given in the following corollary.

Corollary 2: [1, Th. 7] An achievable joint secrecy rate
region of the K -transmitter DM-MAC with an external eaves-
dropper is given by the union of non-negative rate pairs
(R1, R2, . . . , RK ) defined by
∑

j∈T
R j ≤ I (VT ; Y |VT c , Q) − I (VT ; Z |Q), ∀T ⊆ K,

where the union is over input probability distributions that
factor as p(q)

∏
i∈K

p(vi |q)p(xi |vi ).

Remark 7: Setting Z = ∅ and taking Vi = Xi for
i ∈ K, Corollary 2 reduces to the capacity region of the
K -transmitter MAC [3], [23, Th. 4.5]. Moreover, applying
the standard discretization procedure [23], one can extend
Corollary 2 to the Gaussian case. Further taking Vi =
Xi for i ∈ K, one recovers the joint secrecy rate region
for the K -transmitter Gaussian MAC that is established
in [14, Definition 3]. Besides, Corollary 2 generalizes the
joint secrecy result for 2-transmitter DM-MAC in [27, Th. 2]
that improves [13, (8)] with channel prefixing as demonstrated
in [27].

A. Achievability Proof of Theorem 4.1

Fix p(q) and p(vi |q), p(xi |vi ) for i ∈ K. Generate a

random sequence qn , where p(qn) =
n∏

t=1
p(q(t)) with each

entry chosen as i.i.d. p(q). The sequence qn is given to every
node in the system.

1) Codebook Generation: To construct codebook Ci for
i ∈ K, randomly generate 2n[Ri +Ri,r ] i.i.d. sequences
vn

i (mi ,mi,r ), with (mi ,mi,r ) ∈ [1 : 2nRi ] × [1 : 2nRi,r ],
each with probability p(vn

i |qn) =
n∏

t=1
p(vi (t)|q(t)). Every

node in the network knows these codebooks. Denote the
overall codebook as C. Note that for the case of competitive
transmitters {i |i ∈ Sc}, we have Ri,r = 0 for those i ∈ Sc.

2) Encoding: For i ∈ K, transmitter i , to send message mi ,
randomly and uniformly chooses mi,r ∈ [1 : 2nRi,r ] and
finds vn

i (mi ,mi,r ). Then, given the codeword vn
i (mi ,mi,r ), it

generates xn
i according to

n∑
t=1

p(xi (t)|vi (t)) and transmits this

sequence to the channel.
3) Decoding: The legitimate receiver, upon receiving yn ,

finds vn
1 (m̂1, m̂1,r ), vn

2 (m̂2, m̂2,r ), . . . , v
n
K (m̂K , m̂K ,r ) such

that (vn
1 (m̂1, m̂1,r ), v

n
2 (m̂2, m̂2,r ), . . . , v

n
K (m̂K , m̂K ,r ), yn) is

jointly typical.
4) Analysis of the Error Probability of Decoding: Consider

the expected value of the error probability of decoding over
the ensemble of random codes C, i.e., Pe = E [Pe(C)] .
Note that here C denotes the random variable that represents
the randomly generated codebook that adhere to the above
scheme. From the decoding analysis for the multiple access
channel, see, e.g., [23], Pe can be made approximately zero
as n → ∞ if∑

j∈J
[R j + R j,r ] ≤ I (VJ ; Y |VJ c , Q), ∀J ⊆ K. (12)

5) Analysis of S-Collective Secrecy: For the S-collective
secrecy as defined in (3), we need to show that
E
[
RL ,S(C)

] ≤ τn, for given S ⊆ K. To this end, we show
its equivalent form that H (MS |Zn, Qn, C) ≥ n

∑
j∈S

R j − nτn

as this implies I (MS ; Zn|C) ≤ I (MS ; Zn, Qn |C) ≤ nτn . This
can be done by applying the following lemma:

Lemma 9: For a fixed S ⊆ K, we have
H (MS |Zn, Qn, C) ≥ n

∑
i∈S

Ri − nτn if

∑

j∈J∩Sc

R j +
∑

j∈J
R j,r ≥ I (VJ ; Z |Q), ∀J ⊆ K. (13)

Proof: See a detailed proof in Appendix H.
Summarizing the requirements for a reliable communication

under the S-collective secrecy constraint, we have the follow-
ing rate conditions:

• the non-negativity for rates;
• the conditions for a reliable communication to the legit-

imate receiver, i.e., (12); and
• the conditions for S-collective secrecy of the messages at

the eavesdropper, i.e., (13).
That is, we have the following system of inequalities:

Ri , R j,r ≥ 0, ∀i ∈ K, ∀ j ∈ Sc;
∑

j∈J
R j +

∑

j∈J
R j,r ≤ I (VJ ; Y |VJ c , Q), ∀J ⊆ K;

∑

j∈J∩Sc

R j +
∑

j∈J
R j,r ≥ I (VJ ; Z |Q), ∀J ⊆ K.

(14)
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(Note that Ri,r ≥ 0 for i ∈ S are redundant due to the last
inequality in (14) with J = {i} for i ∈ S and the non-
negativity of mutual information I (V{i}; Z |Q) for those i ∈ S.)
To obtain the desired region of {Ri |i ∈ K}, the variables
of {Ri,r |i ∈ K} are to be eliminated. To do that, we first
eliminate the variables of {Ri,r |i ∈ S} and then the variables
of {Ri,r |i ∈ Sc}.

B. Efficient Elimination

In this subsection, we first eliminate the variables of
{Ri,r |i ∈ S}. Note that this is sufficient to derive the region
for the case of competitive transmitters {i |i ∈ Sc} where
R j,r = 0 for j ∈ Sc; while to derive the region for the
case of cooperative transmitters {i |i ∈ Sc}, we need to further
eliminate the variables of {Ri,r |i ∈ Sc}.

1) Eliminating the Variables of {Ri,r |i ∈ S}: Let x� =
[R1 R2 · · · RK ]T , x�� = [R1,r R2,r · · · RK ,r ]T . A rep-
resentation of the system (14) (without the rate conditions
Ri , R j,r ≥ 0 for i ∈ K and j ∈ Sc, since they will not
be involved in the elimination but will be included in the final
derived region) can be written as follows:

1J x� + 1J∩Sc x�� + 1J∩Sx�� ≤ b+
J , ∀J ⊆ K; (15)

−1J∩Sc x� − 1J∩Sc x�� − 1J∩Sx�� ≤ −b−
J , ∀J ⊆ K, (16)

where
• 1J is the 1 × K indicator vector of the subset J of the

set K (as defined in Definition 1);
• b+

Ji
= I (VJi ; Y |VJ c

i
, Q) (as defined in (7));

• b−
Ji

= I (VJi ; Z |Q) (as defined in (8)).

Note that 1J∩Sc x�� involves only variables of {Ri,r |i ∈ Sc};
whilst 1J∩Sx�� involves only variables of {Ri,r |i ∈ S}.
To eliminate the variables of {Ri,r |i ∈ S}, according to [31],
we are looking for a final system (in terms of {Ri |i ∈ K}
and {Ri,r |i ∈ Sc} only), where each inequation of the final
system is a linear combinatory with positive coefficients of
inequations of initial system (as a consequence of Fourier’s
elimination). For the system defined by (14), we find that the
final system (after eliminating {Ri,r |i ∈ S}) is the following
(together with the non-negativity of rates):

1J1x� − 1J2∩Sc x� + 1J1∩Sc x�� − 1J2∩Sc x�� ≤ b+
J1

− b−
J2
,

∀J1,J2 ⊆ K, J1 ∩ S = J2 ∩ S, (17)

where (17) is obtained by summing up the realizations of (15)
at J = J1 and (16) at J = J2, where J1,J2 ⊆ K with
J1 ∩S = J2 ∩S. To prove that (17) defines the final system,
we show in the following that any other linear combinatory
with positive coefficients of inequations of initial system, will
produce only redundant inequations.

Without loss of generality, we consider a linear combinatory
with positive coefficients of inequations of the initial system
as a summation of realizations of (15) at {J+

i |1 ≤ i ≤ n+}
and (16) at {J−

i |1 ≤ i ≤ n−}. To result in an inequation not
involving the variables of {Ri,r |i ∈ S}, we have

n+∑

i=1

1J +
i ∩S =

n−∑

i=1

1J −
i ∩S . (18)

And, the resulting inequation is

n+∑

i=1

1J +
i

x�−
n−∑

i=1

1J−
i ∩Sc x�+

n+∑

i=1

1J +
i ∩Sc x�� −

n−∑

i=1

1J −
i ∩Sc x��

≤
n+∑

i=1

b+
J +

i
−

n−∑

i=1

b−
J −

i
. (19)

Let {J ∗
n+,i |1 ≤ i ≤ n+} and {J ∗

n−,i |1 ≤ i ≤ n−} be
the compact forms of the element rearrangement (definition
of which is given in Definition 3) for {J +

i |1 ≤ i ≤ n+}
and {J −

i |1 ≤ i ≤ n−}, respectively. Then, according to
Lemma 5, {J ∗

n+,i ∩ S|1 ≤ i ≤ n+} and {J ∗
n−,i ∩ S|1 ≤

i ≤ n−} are the compact forms of the element rearrangement
for {J +

i ∩ S|1 ≤ i ≤ n+} and {J −
i ∩ S|1 ≤ i ≤ n−},

respectively. Note that (18) implies that {J+
i ∩ S|1 ≤ i ≤

n+} and {J−
i ∩ S|1 ≤ i ≤ n−} share the same presence

vector (according to Definition 2), say c#. Denote the largest
element of c# to be cmax. Then, according to Lemma 3-1),
we have

J ∗
n+,i ∩ S = J ∗

n−,i ∩ S, for 1 ≤ i ≤ cmax, (20)

J ∗
n+,i ∩ S = ∅, i.e., J ∗

n+,i = J ∗
n+,i ∩ Sc,

for cmax + 1 ≤ i ≤ n+, (21)

J ∗
n−,i ∩ S = ∅, i.e., J ∗

n−,i = J ∗
n−,i ∩ Sc,

for cmax + 1 ≤ i ≤ n−. (22)

Now consider the system defined by (17). We have the
followings.

• Taking (J1,J2) = (J ∗
n+,i ,J

∗
n−,i ) in (17) for 1 ≤ i ≤

cmax and summing them up, we obtain

cmax∑

i=1

1J ∗
n+,i

x� −
cmax∑

i=1

1J ∗
n−,i ∩Sc x� +

cmax∑

i=1

1J ∗
n+,i ∩Sc x��

−
cmax∑

i=1

1J ∗
n−,i ∩Sc x�� ≤

cmax∑

i=1

[
b+
J ∗

n+,i
− b−

J ∗
n−,i

]
. (23)

• Taking (J1,J2) = (J ∗
n+,i ,∅) in (17) for cmax + 1 ≤ i ≤

n+ and summing them up, we obtain

n+∑

i=cmax+1

1J ∗
n+,i

x� +
n+∑

i=cmax+1

1J ∗
n+,i

x��

(a)=
n+∑

i=cmax+1

1J ∗
n+,i

x� +
n+∑

i=cmax+1

1J ∗
n+,i ∩Sc x��

≤
n+∑

i=cmax+1

b+
J ∗

n+,i
, (24)

where (a) is due to (21).
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• Taking (J1,J2) = (∅,J ∗
n−,i ) in (17) for cmax + 1 ≤ i ≤

n− and summing them up, we obtain

−
n−∑

i=cmax+1

1J ∗
n−,i

x� −
n−∑

i=cmax+1

1J ∗
n−,i

x��

(b)= −
n−∑

i=cmax+1

1J ∗
n−,i ∩Sc x� −

n−∑

i=cmax+1

1J ∗
n−,i ∩Sc x��

≤ −
n−∑

i=cmax+1

b−
J ∗

n−,i
, (25)

where (b) is due to (22).
Putting (23), (24) and (25) together, we obtain:

n+∑

i=1

1J ∗
n+,i

x� −
n−∑

i=1

1J ∗
n−,i ∩Sc x� +

n+∑

i=1

1J ∗
n+,i ∩Sc x��

−
n−∑

i=1

1J ∗
n−,i ∩Sc x�� ≤

n+∑

i=1

b+
J ∗

n+,i
−

n−∑

i=1

b−
J ∗

n−,i
. (26)

Comparing (19) and (26), we notice that
• the LHS of (19) is the same as the LHS of (26):

LHS of (19) =
n+∑

i=1

1J +
i

x� −
n−∑

i=1

1J −
i ∩Sc x�

+
n+∑

i=1

1J+
i ∩Sc x�� −

n−∑

i=1

1J −
i ∩Sc x��

(c)=
n+∑

i=1

1J ∗
n+,i

x� −
n−∑

i=1

1J ∗
n−,i ∩Sc x�

+
n+∑

i=1

1J ∗
n+,i ∩Sc x�� −

n−∑

i=1

1J ∗
n−,i ∩Sc x��

= LHS of (26),

where (c) is due to Lemma 2 and Lemma 5.
• the RHS of (19) is always equal to or larger than the

RHS of (26):

RHS of (19) =
n+∑

i=1

b+
J+

i
−

n−∑

i=1

b−
J −

i

(d)≥
n+∑

i=1

b+
J ∗

n+,i
−

n−∑

i=1

b−
J ∗

n−,i

= RHS of (26),

where (d) is according to Corollary 1.
That is, (19) is redundant since it is already implied by (26),
which is derived as a linear combinatory with positive coeffi-
cients of inequations of the system defined by (17). So far,
(17) together with the non-negativity of rates establish the
desired final system (after eliminating {Ri,r |i ∈ S}). Letting
T0 = J1 ∩S = J2 ∩S, T1 = J1 ∩Sc and T2 = J2 ∩Sc, (17)
can be rewritten in the following form:

1T0∪T1 x� − 1T2x� + 1T1x�� − 1T2x�� ≤ b+
T0∪T1

− b−
T0∪T2

,

∀T0 ⊆ S & T1, T2 ⊆ Sc. (27)

Recall that for the case of competitive transmitters
{i |i ∈ Sc}, we have Ri,r = 0 for i ∈ Sc and thus
1T1x�� = 1T2x�� = 0 for T1,T2 ⊆ Sc in (27). We obtain

1T0∪T1 x� − 1T2x� ≤ b+
T0∪T1

− b−
T0∪T2

,

∀T0 ⊆ S & T1, T2 ⊆ Sc,

i.e., (10), which defines the achievable secrecy region for the
case of competitive transmitters {i |i ∈ Sc}.

2) Eliminating the Variables of {Ri,r |i ∈ Sc}: For the case
of cooperative transmitters {i |i ∈ Sc}, we have obtained so
far a system defined by (27) together with the non-negativity
of rates, i.e.,

−R j,r ≤ 0, ∀ j ∈ Sc. (28)

The remaining task here is to further eliminate the variables
of {Ri,r |i ∈ Sc}.

Having a close look into (27), if taking T2 ⊆ T1 in (27),
we obtain

1T0∪{T1\T2}x
� ≤ b+

T0∪T1
− b−

T0∪T2
,

∀T0 ⊆ S & T1 ⊆ T2 ⊆ Sc. (29)

In the following, we show that (29) establishes the final system
after eliminating the variables of {Ri,r |i ∈ Sc}.

Consider a linear combinatory with positive coefficients of
inequations of (27) and (28) (that results in an inequation not
involving the variables of {Ri,r |i ∈ Sc}) as a summation of
realizations of (27) at (T0,T1,T2) = (T0i ,T1i ,T2i ), where
T0i ⊆ S and T1i ,T2i ∈ Sc for 1 ≤ i ≤ t and (28)
(if necessary). Let t1# and t2# be the presence vectors (as
defined in Definition 2) of {T1i |1 ≤ i ≤ t} and {T2i |1 ≤ i ≤ t},
respectively. To result in an inequation not involving the
variables of {Ri,r |i ∈ Sc}, t2# must be less than or equal to t1#.
More specifically, let t1# − t2# = [n1 n2 · · · nK ]. We have
n j = 0 for j ∈ S (since T1i , T2i ⊆ Sc) and n j ≥ 0 for j ∈ Sc.
Multiplying n j to (28) for j ∈ Sc, summing them up together
with realizations of (27) at (T0,T1,T2) = (T0i ,T1i ,T2i ) for
1 ≤ i ≤ t, we obtain

t∑

i=1

1T0i∪T1i x
� −

t∑

i=1

1T2i x
� ≤

t∑

i=1

b+
T0i∪T1i

−
t∑

i=1

b−
T0i∪T2i

.

(30)

Let {T ∗
t,0i |1 ≤ i ≤ t}, {T ∗

t,1i |1 ≤ i ≤ t} and {T ∗
t,2i |1 ≤

i ≤ t} be the compact forms of the element rearrangement
for {T0i |1 ≤ i ≤ t}, {T1i |1 ≤ i ≤ t} and {T2i |1 ≤ i ≤ t},
respectively. Then, according to Lemma 6, {T ∗

t,0i ∪ T ∗
t,1i |1 ≤

i ≤ t}, {T ∗
t,0i ∪ T ∗

t,2i |1 ≤ i ≤ t} are the compact forms of the
element rearrangement for {T0i ∪ T1i |1 ≤ i ≤ t} and {T0i ∪
T2i |1 ≤ i ≤ t}, respectively. Since t2# is less than or equal
to t1#, according to Lemma 3-2), we have T ∗

t,2i ⊆ T ∗
t,1i . Now

consider (29). If we sum up its realizations at (T0,T1,T2) =
(T ∗

t,0i ,T ∗
t,1i ,T ∗

t,2i ) for 1 ≤ i ≤ t, we obtain

t∑

i=1

1T ∗
t,0i ∪{T ∗

t,1i \T ∗
t,2i }x

� ≤
t∑

i=1

b+
T ∗

t,0i ∪T ∗
t,1i

−
t∑

i=1

b−
T ∗

t,0i∪T ∗
t,2i
.

(31)
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Fig. 2. Achievable rate regions under different transmission strategies and secrecy constraints: (a) a binary input adder 2-transmitter MAC with a degraded
eavesdropper, with fixed S = {1} but different transmission strategies; (b): a binary multiplier 2-transmitter MAC with a degraded eavesdropper, with different S
but cooperative transmitters Sc.

Comparing (30) and (31), we notice that
• the LHS of (30) is the same as the LHS of (31):

LHS of (30) =
t∑

i=1

1T0i∪T1i x
� −

t∑

i=1

1T2i x
�

(e)=
t∑

i=1

1T ∗
t,0i∪T ∗

t,1i
x� −

t∑

i=1

1T ∗
t,2i

x�

( f )= 1T ∗
t,0i ∪{T ∗

t,1i \T ∗
t,2i }x

�

= LHS of (31),

where (e) is due to Lemma 2 and Lemma 6; and ( f )
is due to the fact that for 1 ≤ i ≤ t, T ∗

t,0i ⊆ S and
T ∗

t,2i ⊆ T ∗
t,1i ⊆ Sc.

• the RHS of (30) is always equal to or larger than the
RHS of (31):

RHS of (30) =
t∑

i=1

b+
T0i∪T1i

−
t∑

i=1

b−
T0i∪T2i

(g)≥
t∑

i=1

b+
T ∗

t,0i ∪T ∗
t,1i

−
t∑

i=1

b−
T ∗

t,0i∪T ∗
t,2i

= RHS of (31),

where (g) is according to Lemma 6 and Corollary 1.
That is, (30) is redundant since it is already implied by (31),
which is derived as a linear combinatory with positive coef-
ficients of inequations of the system defined by (29). As a
conclusion, (29) establishes the desired secrecy rate region for
the case of cooperative transmitters {i |i ∈ Sc}.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to
illustrate the impact on the respective achievable rate regions
by employing different transmission strategies at transmitters
{i |i ∈ Sc} and imposing different secrecy constraints.

A. Impact by Different Transmission Strategies at
Transmitters {i |i ∈ Sc}

For simplicity, we take K = 2 and S = {1}, i.e., transmit-
ter 1 would like to keep its message secret from the eaves-
dropper; while transmitter 2 not. In particular, transmitter 1
uses a stochastic encoder for the purpose of secrecy; while
transmitter 2 may take a conventional deterministic encoder
for being competitive for the same channel resource; or take
a stochastic encoder for being cooperative to help to hide
transmitter 1’s message from the eavesdropper. According to
Theorem 1, we have two achievable regions corresponding to
these two different transmission strategies at transmitter 2, and
we provide them in Table II. Note that the same regions can
be derived by applying Fourier-Motzkin elimination via [29].

As pointed out in Remark 6, a larger secrecy rate region
is expected in case of transmitter 2 being cooperative.
In Fig. 2(a), we graphically demonstrate the advantage of
transmitter 2 being cooperative by a concrete example. Con-
sider a 2-transmitter DM-MAC with an external eavesdropper,
where the channel from (X1, X2) to Y is a binary input adder
MAC, and Z is a degraded version of Y with p(z|y) = 1 − p
for z = y and p(z|y) = p for z = y + 1 (mod 3), where
p = 0.1. In Fig. 2(a), we depict the respective achievable
regions (with binary V1, V2 for the calculations), where the
one enclosed by (magenta) dotted lines is for the case of
transmitter 2 being competitive; and the one enclosed by
(blue) dash-dotted lines is for the case of transmitter 2 being
cooperative. The capacity region (without secrecy constraint)
is also plotted for reference purpose, which is enclosed by
the (green) solid lines.

As expected, we see that in case of transmitter 2 being
cooperative, the region is strictly larger than the case of
transmitter 2 being competitive. In particular, a big gap in
the achievable secret rate R1 can be observed at R2 = 0.
The gap indicates that transmitter 2 can indeed help the secret
transmission of transmitter 1 by sending random signals to jam
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TABLE II

2-TRANSMITTER DM-MAC WITH AN EXTERNAL EAVESDROPPER: {1}-COLLECTIVE SECRECY

TABLE III

2-TRANSMITTER DM-MAC WITH AN EXTERNAL EAVESDROPPER: (11) UNDER DIFFERENT SECRECY CONSTRAINTS

the eavesdropper. (This is similar to the cooperative jamming
observed in the Gaussian scenario [14], but as its counterpart
in the discrete setting.) Even in case that transmitter 2 uses
a deterministic encoder, its transmission at low rates to some
extent, could help transmitter 1 to achieve a larger secrecy
rate. However, the advantage of using cooperative transmission
strategy at transmitter 2, diminishes or even vanishes espe-
cially when R2 is at high rates. This is because of the bounded
sum rate capacity, due to the fact that both transmitters share
the same channel resource.

B. Impact by Different Secrecy Constraints
For K = 2, there are 4 different secrecy strengths that are

implied by different choices of S ⊆ K :
• as S = ∅, it corresponds to the case of no secrecy;
• as S = {1} or {2}, it corresponds to {1}-collective

secrecy or {2}-collective secrecy, respectively; and,
• as S = {1, 2}, it corresponds to the joint secrecy.

Note that the individual secrecy is not included by S-collective
secrecy for any specific choice of S; while it has been studied
in [27] together with joint secrecy.

To ensure a fair comparison on the respective achievable
regions, we use (11) for the calculations of the S-collective
secrecy rate regions (i.e., stochastic encoders are used at all
transmitters, as in [27]). (Note that the regions for cases of no
secrecy and joint secrecy can be calculated directly according
to Corollary 2, see Remark 7.) Together with the individual
secrecy rate region from [27, Th. 2], we provide in Table III the
respective regions corresponding to these 5 different secrecy
strengths. Denote the S-collective secrecy region to be RS

for S �= ∅ and C for S = ∅, and the individual secrecy
region for 2-transmitter MAC by R{1},{2}. From Table III, it is
easy to see that both C and R{1,2} are consistent with the
existing results in the literature for the 2-transmitter DM-MAC
(see [23, Th. 4.3] and [27, Th. 2]).

More specifically, in Fig. 2(b), we plotted all these regions
for a 2-transmitter DM-MAC with an external eavesdropper,
where the channel from (X1, X2) to Y is a binary multiplier
MAC, and Z is a degraded version of Y through a binary
symmetric channel (BSC) with crossover probability p = 0.1.
Note that V1, V2 are taken as binary for the calculations.
Not surprisingly, we observe that R{1,2} ⊆ R{1},{2} ⊆
R{1} or R{2} ⊆ C, where R{1,2} is enclosed by (red) dashed
lines; R{1},{2} by (yellow) dotted lines; R{1} and R{2} by
dash-dotted lines (blue for R{1} and forest-green for R{2},
respectively); and C by (green) solid lines. Note that the inclu-
sion relation of these regions is due to the correspondingly
relaxed secrecy strengths. That is, more stringent is the secrecy
requirement, smaller is the correspondingly achievable secrecy
region.

VI. EXTENDING RESULTS TO OTHER SCENARIOS

A. Extending Results to Scenarios With More Than One
Eavesdropper or Legitimate Receiver

In our model, we only consider the scenario with one
legitimate receiver and one external eavesdropper. However,
our analysis, (especially the secrecy analysis as given in
Lemma 9), can be conveniently applied to scenarios in dif-
ferent settings to derive the desired rate conditions.

For instance, consider the discrete memoryless interference
channel (DM-IC) with confidential messages that is defined
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Fig. 3. DM-IC with confidential messages.

by p(y1, y2|x1, x2), the model of which is shown in Fig. 3.
Here two transmitters wish to send independent, confidential
messages to their respective receivers (while treating the
unintended receiver as an eavesdropper). This communication
model was studied in [32].

At the transmitters, we use the same encoding scheme as
given in Section IV-A, (this is different from [32], where
R1,r , R2,r are fixed therein); while at the legitimate receiver i,
a typical set decoding is employed to decode Mi (by finding
vn

i (m̂i , m̂i,r ) such that (vn
i (m̂i , m̂i,r ), yn

i ) is joint typical).
Following the standard argument as given in [32, Sec. V-A],
if

R1 + R1,r ≤ I (V1; Y1|Q)
R2 + R2,r ≤ I (V2; Y2|Q) (32)

hold, then there exists a code Cn , such that M1,M2 can be
decoded at the respective receivers with an arbitrary small
probability of decoding error. For the confidentiality of M1
from receiver 2, (i.e., 1

n I (M1; Y n
2 |Cn) → 0), we have the

following rate conditions according to Lemma 9 (by taking
K = {1, 2}, S = {1} and Z = Y2):

R1,r ≥ I (V1; Y2|Q)
R2 + R2,r ≥ I (V2; Y2|Q)

R2 + R1,r + R2,r ≥ I (V1, V2; Y2|Q) (33)

Similarly, for the confidentiality of M2 from receiver 1,
(i.e., 1

n I (M2; Y n
1 |Cn) → 0), we have by Lemma 9:

R1 + R1,r ≥ I (V1; Y1|Q)
R2,r ≥ I (V2; Y1|Q)

R1 + R1,r + R2,r ≥ I (V1, V2; Y1|Q) (34)

Thus we obtain a secrecy rate region defined by the following
constraints: the non-negativity for rates; the conditions for a
reliable communication, i.e., (32); and the conditions for the
confidentialty of the messages, i.e., (33) and (34). Eliminat-
ing R1,r , R2,r (e.g., by applying Fourier-Motzkin procedure
via [29]), we get

R1 ≤ I (V1; Y1|Q)− I (V1; Y2|V2, Q)

R2 ≤ I (V2; Y2|Q)− I (V2; Y1|V1, Q)

which recovers the result given by [32, Th. 2].

B. Strengthening Secrecy Results From Weak to Strong

Note that we use the weak secrecy metric in this paper,
i.e., a vanishing information leakage rate to the eavesdropper:
1
n I (MS ; Zn) → 0 as n → ∞. The weakness of this metric
from a cryptographic standpoint has been highlighted in [33]
and [34]. Instead, several stronger alternatives have been
advocated such as

• the one based on the variational distance [35]:
V (PMS Zn , PMS PZn ),

• the one based on the information leaked [33]:
I (MS ; Zn) = D(PMS Zn ||PMS PZn ),

• the effective secrecy [36], [37] measured by the unnor-
malized informational divergence D(PMS Zn ||PMS QZn )
(where QZn is the distribution that the eavesdropper
expects to observe when the source is not communicating
useful messages), and

• the semantic secrecy [38] defined by max
PM

I (M; Zn).

To attain the strong secrecy, different methods have been
proposed, such as graph-coloring techniques [33], privacy
amplification [34], and channel resolvability/output statis-
tics [35]–[37], [39]–[41]. However, the proofs for strong
secrecy are often cumbersome (a reason why the weak secrecy
is so far the most adopted secrecy metric, especially for the
multi-user settings). In fact, the weak secrecy approach follows
the pioneering works of [10] and [11]. The rather standard
and direct analysis makes our result self-contained and more
accessible to readers. It not only reveals insights into the
structure of the secrecy rate region for K -transmitter MAC,
but also lays a common foundation to scenarios that may have
different criteria of strong secrecy.

Nevertheless, in the following we give an instance to
strengthen our achievability result from weak to strong. For
simplicity, we only consider the joint secrecy case and the
strong secrecy is defined in terms of variational distance. The
idea is to use the framework proposed in [40], which is based
on the duality between channel and source coding problem and
uses pmf (i.e., probability mass function) approximation argu-
ments instead of typicality. Consider the dual source coding
problem where a joint source is with distribution PX1···X K Y Z =
PX1 · · · PX K PY Z |X1···X K . For i ∈ K, the realizations of Xn

i , are
randomly binned twice, to form Mi = φi (Xn

i ) ∈ [1 : 2nRi ] and
Mi,r = ψi (Xn

i ) ∈ [1 : 2nRi,r ]. (We ignore here the prefixing
and time-sharing random variables that play no crucial role in
the analysis.) By [40, Th. 1], if

∑

j∈J
[R j + R j,r ] ≤ H (XJ |Z), ∀J ⊆ K, (35)

then {M j ,M j,r }K
j=1 are nearly jointly uniformly distributed

(hence independent) and independent of Zn. Thus the strong
joint secrecy in terms of variational distance can be fulfilled;
whilst by [40, Lemma 1], if

∑

j∈J
R j,r ≥ H (XJ |XJ c ,Y ), ∀J ⊆ K, (36)

then {M j }K
j=1 will be nearly perfectly decoded from Y n and

{M j,r }K
j=1, thus fulfilling the reliability constraint. Denote

c+
J = H (XJ |Z) and c−

J = H (XJ |XJ c ,Y ). For fixed
(X1, X2, . . . , X K ,Y, Z) ∼ PX1 · · · PX K PY Z |X1···X K , we note
that c+

J and c−
J are submodular and supermodular set func-

tions, respectively. This is similar to b+
J and b−

J as defined
in (7) and (8). Therefore, we can apply the same approach as
in this paper to eliminate {R j,r | j ∈ K} on the system defined
by (35) and (36). Further, taking into account the prefixing &
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time sharing, one can then obtain Corollary 2 under a stronger
secrecy criterion.

VII. CONCLUDING REMARKS

In this paper, we studied the problem of secure communi-
cation over a K -transmitter MAC subject to an S-collective
secrecy constraint. As a general result, we established the
respective achievable secrecy rate regions by considering
transmitters {i |i ∈ Sc} for being competitive or cooperative.
Remarkably, our secrecy proof is based on a lemma that is a
generalization of Chia-El Gamal’s lemma [22, Lemma 1] on
entropy bound for a set of codewords given partial information.
And, a concise rate region (of system parameter only) is
derived by utilizing a compact representation of a list of sets
together with the submodularity of the mutual information
functions (thus avoiding the double-exponential computational
complexity of the Fourier-Motzkin elimination). We showed
the effectiveness of these two approaches in deriving the
secrecy rate region in this work. We believe these new tools
could also be of independent interest in other context.

APPENDIX A
PROOF OF LEMMA 1

To prove Lemma 1, we need to show that the
inequality H (L1, L2, . . . , L K |Zn, Qn, C) ≤ n

∑
i∈K

Rv,i −
nI (V1, V2, . . . , VK ; Z |Q)+nδn(�) holds if the rates fulfill (6).
To do this, given zn, let us define L as the set of indices
(l1, l2, . . . , lK ) such that

(qn, vn
1 (l1), v

n
2 (l2), . . . , v

n
K (lK ), zn)

∈ T n
� (Q, V1, V2, . . . , VK , Z).

Then we show that the expected size of this list, over all
randomly generated codebooks, is upper bounded by

E(|L|) ≤ 1 +
2K −1∑

i=1

2n[Ii +δ(�)], (37)

where

Ii =
∑

j∈Ji

Rv, j − I (VJi ; Z |VJ c
i
, Q).

Here, {Ji |i ∈ [1 : 2K − 1]} are the 2K − 1 non-empty subsets
of K, and J c

i = K\Ji for i ∈ [1 : 2K − 1].
To prove this, one can note that

E(|L|) = Pr{(L1, L2, . . . , L K ) ∈ L}
+

∑

(l1,l2,...,lK ) �=(L1,L2,...,L K )

Pr{(l1, l2, . . . , lK ) ∈ L},

where (L1, L2, . . . , L K ) are the true indices chosen by
the sources. Since Pr{(qn, vn

1 (L1), . . . , v
n
K (L K ), zn) ∈

T n
� (Q, V1, . . . , VK , Z)} → 1 as n → ∞, the first term tends

to 1 as n → ∞. As for the second term, we can distinguish
(2K −1) cases according to the values of (l1, l2, . . . , lK ). More
specifically, for each Ji , i ∈ [1 : 2K − 1], we consider the
following case:

• l j �= L j for j ∈ Ji , and l j = L j for j ∈ J c
i . In

this case, in total there are at most 2
n
∑

j∈Ji

Rv, j
possible

(l1, l2, . . . , lK ). By the joint typicality lemma, we can
show that

Pr{(l1, l2, . . . , lK ) ∈ L} ≤ 2
−nI (VJi ;VJ c

i
,Z |Q)+nδ(�)

= 2−nI (VJi ;Z |VJi
c ,Q)+nδ(�),

where the equality is due to the fact that VJi and VJ c
i

are conditionally independent given Q.
Therefore, in this case, there are at most 2n[Ii +δ(�)]
number of (l1, l2, . . . , lK ) falling in the list L.

Summing up all the undetected errors for all these (2K − 1)
cases that correspond to Ji , i ∈ [1 : 2K − 1], we prove (37).

Furthermore, define the indicator variable E = 1 if
(L1, L2, . . . , L K ) ∈ L, and E = 0 otherwise. We have

H (L1, L2, . . . , L K |Zn, Qn , C)
≤ H (L1, L2, . . . , L K , E |Zn, Qn, C)
≤ H (E)+ H (L1, L2, . . . , L K |Zn, Qn, E, C)
≤ 1 + H (L1, L2, . . . , L K |Zn, Qn, E = 1, C)

+ Pr{E = 0}H (L1, L2, . . . , L K |C),
where the last inequality follows from the fact that
H (E) ≤ 1 since E is a binary random variable;
Pr{E = 1} ≤ 1 and conditioning reduces the
entropy, i.e., H (L1, L2, . . . , L K |Zn, Qn, E = 0, C) ≤
H (L1, L2, . . . , L K |C).

Note that Pr{E = 0} = Pr{(L1, L2, . . . , L K ) /∈ L}
can be made arbitrarily small as n → ∞, since
Pr{(qn, vn

1 (L1), . . . , v
n
K (L K ), zn) ∈ T n

� (Q, V1, . . . , VK ,
Z)} → 1 as n → ∞. Next, note that

H (L1, L2, . . . , L K |Zn, Qn, E = 1, C)
(a)= H (L1, L2, . . . , L K |Zn, Qn, E = 1, C,L, |L|)
≤ H (L1, L2, . . . , L K |E = 1,L, |L|)
=

∑

l∈supp(|L|)
Pr{|L| = l}H (L1, L2, . . . , L K |E =1,L, |L| = l)

(b)≤
∑

l∈supp(|L|)
Pr{|L| = l} log2(l)

= E(log2(|L|)) (c)≤ log2 (E(|L|))
(d)≤ n max{0, max

i∈[1:2K −1]
Ii } + K + nδ(�)

(e)≤ n

[
∑

i∈K
Rv,i − I (V1, V2, . . . , VK ; Z |Q)

]
+ K + nδ(�),

where (a) follows from the fact that L and |L| are functions of
the output Zn, given the codebook C and Qn; (b) is due to the
fact that, knowing E = 1, the sent indices (L1, L2, . . . , L K )
belong to the list L and the uncertainty is upper bounded by the
log cardinality of the list; (c) is due to the Jensen’s inequality;
(d) is by (37) along with an application of the log-sum-exp
inequality: log2

(∑
x∈X 2x

) ≤ maxx∈X x + log2 (|X |) ; and
(e) follows if the rates satisfies (6), i.e., for each J ⊆ K :∑
i∈J

Rv,i ≥ I (VJ ; Z). This, along with previous remarks
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yields the desired inequality (by re-defining δn(�) to be the
arbitrary small term O(�)+ (K + 1)/n).

APPENDIX B
PROOF OF LEMMA 3

If t1# = t2#, i.e., {T1i |1 ≤ i ≤ t1} and {T2i |1 ≤ i ≤ t2} share
the same presence vector with tmax as the largest element.
By Definition 2, they have the same number of presences
for each element of K, thus the same compact form of the
element rearrangement without the empty sets according to
Definition 3. This implies that T ∗

t1,1i = T ∗
t2,2i for 1 ≤ i ≤ tmax

and T ∗
t1,1 j = T ∗

t2,2k = ∅ for tmax ≤ j ≤ t1 and tmax ≤ k ≤ t2.
Suppose that t1# = [n�

1 · · · n�
K ] and t2# = [n��

1 · · · n��
K ].

By Definition 3, T ∗
t1,1i contains the elements k with n�

k ≥ i
and T ∗

t2,2i contains the elements k with n��
k ≥ i, for 1 ≤ i ≤

min{t1, t2}. If t2# is less than or equal to t1#, i.e., n��
k ≤ n�

k
for each k ∈ K, as a straightforward consequence, all the
elements in T ∗

t2,2i belong to T ∗
t1,1i as well. This implies that

T ∗
t2,2i ⊆ T ∗

t1,1i for 1 ≤ i ≤ min{t1, t2}.
APPENDIX C

PROOF OF LEMMA 4

The proof for i = 1, t is straightforward by definition. For
1 < i < t, we have the proof as shown in (38), as shown at
the bottom of this page, where (a) is by the definition of T ∗

t,i ;
(b) is due to the distributive law of the sets and (c) is by the
definition of T ∗

t−1,i and T ∗
t−1,i−1. This completes our proof of

Lemma 4.

APPENDIX D
PROOF OF LEMMA 5

Let {T̃ ∗
t,i |1 ≤ i ≤ t} be the compact form of the list of

sets {Ti ∩ S|1 ≤ i ≤ t}. We show in the following that T̃ ∗
t,i =

T ∗
t,i ∩S for 1 ≤ i ≤ t . Note that {T ∗

t,i |1 ≤ i ≤ t} is the compact
form of the element rearrangement to the list {Ti |1 ≤ i ≤ t}.

T̃ ∗
t,i

(a)=
⋃

{ j1,..., ji }⊆[1:t ]

(
i⋂

k=1

(
T jk

⋂
S
))

(b)=
⋃

{ j1,..., ji }⊆[1:t ]

((
i⋂

k=1

T jk

)
⋂

S
)

(c)=
⎛

⎝
⋃

{ j1,..., ji }⊆[1:t ]

(
i⋂

k=1

T jk

)⎞

⎠
⋂

S

(d)= T ∗
t,i

⋂
S

where (a) is by the definition of T̃ ∗
t,i , i.e., Definition 3; (b) is

by the associative law of the sets; (c) is by the distributive

law of the sets; and (d) is by the definition of T ∗
t,i according

to Definition 3. This completes our proof of Lemma 5.

APPENDIX E
PROOF OF LEMMA 6

Consider the list {T0i ∪ T1i |1 ≤ i ≤ t}. Suppose that
{T ∗

t,i |1 ≤ i ≤ t} is its compact form of the element rearrange-
ment. By Definition 3, we have

T ∗
t,i =

⋃

{ j1,..., ji }⊆[1:t ]

(
i⋂

k=1

(
T0 jk

⋃
T1 jk

))

(a)=
⋃

{ j1,..., ji }⊆[1:t ]

((
i⋂

k=1

T0 jk

)
⋃
(

i⋂

k=1

T1 jk

))

=
⎛

⎝
⋃

{ j1,..., ji }⊆[1:t ]

i⋂

k=1

T0 jk

⎞

⎠
⋃
⎛

⎝
⋃

{ j1,..., ji }⊆[1:t ]

i⋂

k=1

T1 jk

⎞

⎠

(b)= T ∗
t,0i

⋃
T ∗

t,1i ,

where (a) is due to the distributive law of the sets and the
fact that for all 1 ≤ i ≤ t, T0i ⊆ S and T1i ⊆ Sc; and (b) is
due to the fact that {T ∗

t,0i |1 ≤ i ≤ t} and {T ∗
t,1i |1 ≤ i ≤ t} are

the compact forms of the element rearrangement for {T0i |1 ≤
i ≤ t} and {T1i |1 ≤ i ≤ t}, respectively. As a conclusion,
{T ∗

t,0i ∪ T ∗
t,1i |1 ≤ i ≤ t} is the compact form of the element

rearrangement for {T0i ∪ T1i |1 ≤ i ≤ t}.

APPENDIX F
PROOF OF LEMMA 7

We give the proof of Lemma 7 by induction as follows.
• For t = 1, we have by definition T ∗

1,1 = T1. Thus,
fT1 = fT ∗

1,1
and the statement is true for t = 1.

• For t = 2, the statement is true by the submodularity of
the set function f .

• Assume that the statement is true for some natural number
t − 1. That is, for any {Ti |1 ≤ i ≤ t − 1} as a list of t − 1
subsets of K, and its compact form of element rearrangement

{T ∗
t−1,i |1 ≤ i ≤ t − 1}, we have

t−1∑
i=1

fTi ≥
t−1∑
i=1

fT ∗
t−1,i

. Now we

show that the statement is also true for t .

t∑

i=1

fTi =
t−1∑

i=1

fTi + fTt

(a)≥
t−1∑

i=1

fT ∗
t−1,i

+ fTt

T ∗
t,i

(a)=
⋃

{ j1,..., ji }⊆[1:t]

⎛

⎝
i⋂

k=1

T jk

⎞

⎠ (a)=
⎧
⎨

⎩
⋃

{ j1,..., ji }⊆[1:t−1]

⎛

⎝
i⋂

k=1

T jk

⎞

⎠

⎫
⎬

⎭
⋃
⎧
⎨

⎩
⋃

{ j1,..., ji−1}⊆[1:t−1]

⎛

⎝

⎛

⎝
i−1⋂

k=1

T jk

⎞

⎠
⋂

Tt

⎞

⎠

⎫
⎬

⎭

(b)=
⎧
⎨

⎩
⋃

{ j1,..., ji }⊆[1:t−1]

⎛

⎝
i⋂

k=1

T jk

⎞

⎠

⎫
⎬

⎭
⋃
⎧
⎨

⎩

⎛

⎝
⋃

{ j1,..., ji−1}⊆[1:t−1]

⎛

⎝
i−1⋂

k=1

T jk

⎞

⎠

⎞

⎠
⋂

Tt

⎫
⎬

⎭

(c)= T ∗
t−1,i

⋃(
T ∗

t−1,i−1

⋂
Tt

)
. (38)
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=
t−1∑

i=2

fT ∗
t−1,i

+
(

fT ∗
t−1,1

+ fTt

)

(b1)≥
t−1∑

i=2

fT ∗
t−1,i

+
(

fT ∗
t−1,1∩Tt + fT ∗

t−1,1∪Tt

)

(c1)=
t−1∑

i=3

fT ∗
t−1,i

+
(

fT ∗
t−1,2

+ fT ∗
t−1,1∩Tt

)
+ fT ∗

t,1

(b2)≥
t−1∑

i=3

fT ∗
t−1,i

+
(

fT ∗
t−1,2∩Tt + fT ∗

t−1,2∪
(
T ∗

t−1,1∩Tt

)
)

+ fT ∗
t,1

(c2)=
t−1∑

i=4

fT ∗
t−1,i

+
(

fT ∗
t−1,3

+ fT ∗
t−1,2∩Tt

)
+

2∑

i=1

fT ∗
t,i

...

(bt−1)≥ fT ∗
t−1,t−1∩Tt + fT ∗

t−1,t−1∪
(
T ∗

t−1,t−2∩Tt

) +
t−2∑

i=1

fT ∗
t,i

(ct−1)=
t∑

i=1

fT ∗
t,i
,

where (a) is due to the fact that the statement is true for t −1;
and for 1 ≤ j ≤ t − 1, step (b j ) holds by the submodularity

of f and the fact that T ∗
t−1, j ∩

(
T ∗

t−1, j−1 ∩ Tt

)
= T ∗

t−1, j ∩ Tt

for 2 ≤ j ≤ t − 1 (since T ∗
t−1, j ⊆ T ∗

t−1, j−1 by definition);
step (c j ) is by applying Lemma 4. In particular, (c1) is by
the fact that T ∗

t,1 = T ∗
t−1,1

⋃
Tt ; step (ct−1) is by the fact that

T ∗
t,t = T ∗

t−1,t−1

⋂
Tt ; and other intermediate steps are by the

fact that T ∗
t−1, j ∪

(
T ∗

t−1, j−1 ∩ Tt

)
= T ∗

t, j for 1 < j < t .

APPENDIX G
PROOF OF LEMMA 8-2)

Here we give the proof of Lemma 8-2) as follows:

b−
T1

+ b−
T2

(a)= I (VT1; Z |Q)+ I (VT2 ; Z |Q)
(b)= I (VT1∩T2 , VT1∩T c

2
; Z |Q)+ I (VT2 ; Z |Q)

(c)= I (VT1∩T2 ; Z |Q)+ I (VT1∩T c
2
; Z |VT1∩T2 , Q)+ I (VT2; Z |Q)

(d)≤ I (VT1∩T2 ; Z |Q)+ I (VT1∩T c
2
; Z |VT2, Q)+ I (VT2 ; Z |Q)

(e)= I (VT1∩T2 ; Z |Q)+ I (VT1∪T2 ; Z |Q),
(a)= b−

T1∩T2
+ b−

T1∪T2
,

where (a) is by the definition of b−
T ; (b) is by the fact that

T1 = (T1 ∩ T2) ∪ (T1 ∩ T c
2 ); (c) is by the chain rule of the

mutual information; (d) is by the fact that T2 = (T1 ∩ T2) ∪
(T c

1 ∩ T2) and

I (VT1∩T c
2
; Z |VT2, Q) = I (VT1∩T c

2
; VT1

c∩T2
, Z |VT1∩T2, Q)

≥ I (VT1∩T c
2
; Z |VT1∩T2, Q),

which holds since given (Q, VT1∩T2), VT1∩T c
2

and VT1
c∩T2

are
independent of each other; and (e) is due to the facts that
T1 ∪ T2 = T2 ∪ (T1 ∩ T c

2 ).

APPENDIX H
PROOF OF LEMMA 9

For a fixed S ⊆ K, consider H (MS |Zn, Qn, C). We have

H (MS |Zn, Qn, C)
= H (MS , Zn |Qn, C)− H (Zn|Qn, C)
= H (MK,MK,r , Zn|Qn, C)− H (MSc,MK,r |MS , Zn, Qn, C)

−H (Zn|Qn, C)
= H (MK,MK,r |Qn, C)+ H (Zn|MK,MK,r , Qn, C)

−H (Zn|Qn, C)− H (MSc,MK|MS , Zn, Qn, C)
(a)= H (MK,MK,r |Qn, C)

+H (Zn|V n
1 , V n

2 , . . . , V n
K ,MK,MK,r , Qn, C)

−H (Zn|Qn, C)− H (MSc,MK,r |MS , Zn, Qn, C)
(b)= n

∑

i∈K
[Ri + Ri,r ] + H (Zn|V n

1 , V n
2 , . . . , V n

K , Qn , C)

−H (Zn|Qn, C)− H (MSc,MK,r |MS , Zn, Qn, C)
(c)≥ n

∑

i∈K
[Ri + Ri,r ] − I (V n

1 , V n
2 , . . . , V n

K ; Zn|Qn, C)

−n

[
∑

i∈Sc

Ri +
∑

i∈K
Ri,r − I (V1, V2, . . . , VK ; Z |Q)+ εn

]

= n
∑

i∈S
Ri − nεn +

nI (V1, V2, . . . , VK ; Z |Q)− I (V n
1 , V n

2 , . . . , V n
K ; Zn|Qn, C)

(d)≥ n
∑

i∈S
Ri − nτn,

where (a) follows from the fact that V n
1 , V n

2 , . . . , V n
K are

functions of (M1,M1,r ), (M2,M2,r ), . . ., and (MK ,MK ,r ),
respectively, given Qn and C; (b) follows from the fact that
H (MK,MK,r |Qn, C) = n

∑
i∈K

[Ri +Ri,r ], and given Qn and C,

the Markov chain:(MK,MK) → (V n
1 , V n

2 , . . . , V n
K ) → Zn;

(c) follows from Lemma 1 (with Rv, j = R j,r for j ∈ S,
and Rv, j = R j + R j,r for j ∈ Sc = K\S)
by requiring

∑
j∈J

Rv, j ≥ I (VJ ; Z |Q),∀J ⊆ K,

i.e.,
∑

j∈J∩Sc
R j + ∑

j∈J
R j,r ≥ I (VJ ; Z |Q),∀J ⊆ K.

(d) due to the fact that I (V n
1 , V n

2 , . . . , V n
K ; Zn|Qn, C) ≤

n[I (V1, V2, . . . , VK ; Z |Q) + εn], the proof of which follows
the proof of [32, Lemma 3], and taking τn = 2εn.

ACKNOWLEDGEMENT

The authors would like to thank Prof. Matthieu Bloch for
pointing us the paper [40] and suggesting the example given
in Section VI-B to achieve a stronger secrecy notion.

REFERENCES

[1] Y. Chen, O. O. Koyluoglu, and H. Vinck, “Joint secrecy over the
K-transmitter multiple access channel,” in Proc. IEEE Inf. Theory
Workshop (ITW), Nov. 2017, pp. 394–398.

[2] R. Ahlswede, Multi-Way Communication Channels. Budapest, Hungary:
Akadémiai Kiadó, 1973.

[3] H. H.-J. Liao, “Multiple access channels,” Ph.D. dissertation, Dept.
Elect. Eng., Univ. Hawaii, Honolulu, HI, USA, 1972.



CHEN et al.: COLLECTIVE SECRECY OVER THE K -TRANSMITTER MAC 2293

[4] D. Slepian and J. K. Wolf, “A coding theorem for multiple access
channels with correlated sources,” Bell Syst. Tech. J., vol. 52, no. 7,
pp. 1037–1076, 1973.

[5] T. S. Han, “The capacity region of general multiple-access channel with
certain correlated sources,” Inf. Control, vol. 40, no. 1, pp. 37–60, 1979.

[6] T. M. Cover, A. El Gamal, and M. Salehi, “Multiple access channels
with arbitrarily correlated sources,” IEEE Trans. Inf. Theory, vol. IT-26,
no. 6, pp. 648–657, Nov. 1980.

[7] N. Gaarder and J. Wolf, “The capacity region of a multiple-access
discrete memoryless channel can increase with feedback (Corresp.),”
IEEE Trans. Inf. Theory, vol. IT-21, no. 1, pp. 100–102, Jan. 1975.

[8] T. Cover and C. Leung, “An achievable rate region for the multiple-
access channel with feedback,” IEEE Trans. Inf. Theory, vol. IT-27,
no. 3, pp. 292–298, May 1981.

[9] E. van der Meulen, “A survey of multi-way channels in information
theory: 1961-1976,” IEEE Trans. Inf. Theory, vol. 23, no. 1, pp. 1–37,
Jan. 1977.

[10] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8,
pp. 1355–1387, 1975.

[11] I. Csiszar and J. Korner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. IT-24, no. 3, pp. 339–348,
May 1978.

[12] E. Tekin and A. Yener, “The Gaussian multiple access wire-tap channel,”
IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5747–5755, Dec. 2008.
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