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Abstract: Communication networks have had a transformative impact on our soci-
ety as they have revolutionized almost all aspects of human interaction. The explosive
growth of data traffic has led to an increased demand on improving the reliability,
efficiency and security aspects of the systems. In this paper, we focus on the multiple
access channel, a communication model where several transmitters communicate to a
common receiver (e.g., a cellular telephone network) in the presence of an external
eavesdropper. The goal is to explore the competitive yet cooperative relationship be-
tween the transmitters in order to obtain an efficient communication under a certain
reliability and security guarantee. Moreover, we take a special look into the inner and
outer bounds on the secrecy capacity regions over the 2-transmitter DM-MAC with a
degraded eavesdropper (assuming that both transmitters are cooperative). We notice
that the inner and outer bounds differentiate themselves in the permissible sets of input
distributions and thus not tight in general. This leaves the problem of secrecy capacity
regions still open.
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1 Introduction

1.1 Ubiquitous communication

Over the last decades, wireless communication has transformed from a niche

technology into an indispensable part of life. The combination of ubiquitous cel-

lular phone service and rapid growth of the Internet has created an environment

where consumers desire seamless, high quality connectivity at all times and from

virtually all locations. In fact, we are entering a new paradigm of information

technology called Ambient Intelligence (AmI) that brings smartness to living and

business environments to make them more sensitive, adaptive, autonomous and

personalized to human needs. Towards AmI, ubiquitous communication severs

as a key technology.



Most traditional wireless systems are based on the cellular methodology,

where the area to be covered is broken into geographical cells. A base station (or

access point) is placed in each cell, and the wireless users in each cell communi-

cate exclusively with the corresponding base station, which acts as a gateway to

the rest of the network. The single cell model shown in Fig. 1, in which there is a

base station and multiple mobile devices. When the base station is transmitting

messages to the mobiles, the channel is referred to as a downlink or broadcast

channel (BC). Conversely, when the mobiles are transmitting messages to the

base station, the channel is referred to as an uplink or multiple-access channel

(MAC). Both BC and MAC are two important branches in the extensive field of

the multiple-user communication. In this paper, we mainly focus on the MAC.

Base station

Downlink
(Broadcast)

· · ·

Uplink
(Multiple-Access)

Mobile devices

Figure 1: Cellular channel model.

1.2 Previous studies on MAC

The study of MAC can be traced back to the classic papers from the 70s. For the

discrete memoryless MAC (DM-MAC) with independent messages, Ahlswede [1]

first studied the 2-transmitter and 3-transmitter cases and determined the re-

spective capacity regions; whilst Liao [2] considered the general K-transmitter

DM-MAC and fully characterized its capacity region. There are also many stud-

ies on different extensions of MAC, such as MAC with correlated sources [3, 4, 5]

and the Gaussian MAC [6]. An extensive survey on the information-theoretic as-

pects of MAC was given in [7].

Another remarkable result on MAC is that the capacity region of a memo-

ryless MAC can be increased by feedback, unlike the capacity of a single user

memoryless channel. Especially, Gaarder and Wolf [8], Cover and Leung-Yan-

Cheong [9], by providing examples of the binary erasure MAC and the Gaussian

MAC, respectively, showed that feedback will enlarge the capacity region of the

2-transmitter MAC. Several general achievable rate regions for the 2-transmitter

MAC with noiseless feedback (MAC-FB) were established by Cover and Leung

[10], Carleial [11], Bross and Lapidoth [12], Venkataramanan and Pradhan [13];



a dependence balance based outer bound was provided in [14]; and constructive

coding strategies that exploit feedback were discussed in [15, 16, 17, 18, 19, 33].

Nevertheless, the capacity region of the 2-transmitter MAC-FB remains un-

known in general, except for a special class, in which at least one input is a

function of the output and the other input [20].

1.3 Secrecy over MAC: Transmitting confidential information

Nowadays, general awareness of user privacy in society has increased, leading to

a greater focus on the protection of user metadata and communication [21, 22].

Inspired by the pioneering works of Wyner [23] and Csiszár and Körner [24] that

studied the information theoretic secrecy for a point-to-point communication

in the presence of an external eavesdropper, MAC with an external eavesdrop-

per was first introduced in [25]. In particular, [25] focused on a K-transmitter

Gaussian MAC with a degraded external eavesdropper and established several

achievable rate regions subject to pre-specified secrecy levels; while a later work

[26] extends the results of [25] to the general Gaussian MAC and general Gaus-

sian two-way channel (TWC).

For the discrete case, a 2-transmitter DM-MAC with an external eavesdrop-

per was considered in [27]. Note that the model in [27] took into account the

generalized feedback that may enable cooperation between transmitters; and, a

joint secrecy constraint (i.e., information leakage rate from both messages to the

eavesdropper is made vanishing) was imposed at the eavesdropper. Achievable

secrecy rate regions were derived in [27]. Additional studies include [28] and [29]

that investigated MAC with a stronger secrecy criteria (i.e., the amount of in-

formation leakage from both messages to the eavesdropper is made vanishing).

Nevertheless, for the general 2-transmitter DM-MAC (e.g., with an eavesdropper

not necessarily degraded), the joint secrecy capacity region still remains open.

Besides, there is a relevant direction, i.e., the 2-transmitter MAC with con-

fidential messages (without an external eavesdropper) [34], worth mentioning.

More specifically, the MAC with one (resp. two) confidential message (resp.

messages) generalizes the classic 2-transmitter MAC in that one (resp. each)

transmitter receives also channel output, and views the other as an eavesdrop-

per. Note that both models were well studied in [34].

2 Secure communication over 2-transmitter DM-MAC

In this paper, we denote random variables U, V,X, etc. by capital letters, their

realizations by the corresponding lower case letters and their images (or ranges)

by calligraphic letters. In addition, we use X ∼ p(x) to denote the fact that

X has a probability mass function p(x). This convention applies to a vector of

random variables as well.
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Figure 2: 2-transmitter DM-MAC with an external eavesdropper.

2.1 System model

In this paper, we focus on the 2-transmitter DM-MAC with an external eaves-

dropper, the model of which is shown in Fig. 2.

As its name suggests, it consists of 2 transmitters, one legitimate receiver,

and one passive eavesdropper, which is defined by the transition probability

p(y, z|x1, x2). The transmitter i, aims to send message mi, to the legitimate

receiver, where i ∈ {1, 2}. Define rate Ri at transmitter i by

Ri =
1

n
H(Mi), for i = 1, 2, (1)

where H(·) is the entropy function [30]. Suppose that xni is the channel input

at transmitter i, and the channel outputs at the legitimate receiver and eaves-

dropper are yn and zn, respectively. By the discrete memoryless nature of the

channel (without any feedback), we have

p(yn, zn|xn1 , xn2 ) =

n∏
i=1

p(yi, zi|x1,i, x2,i). (2)

Over such a channel model, the goal is to achieve a reliable and secure

communication. To do it, we first define a secrecy code. More specifically, a

(2nR1 , 2nR2 , n) secrecy code Cn for the 2-transmitter DM-MAC consists of

– 2 message sets M1,M2, where mi ∈Mi = [1 : 2nRi ] for i = 1, 2;

– 2 encoders each assigning a codeword xni to message mi for i = 1, 2; and

– 1 decoder at the legitimate receiver that declares an estimate of (m1,m2),

say (m̂1, m̂2), to the received sequence yn.



2.2 System requirements

Reliability at the legitimate receiver:

Define the average probability of decoding error at the legitimate receiver by

Pn
e (Cn) =

1

2n[R1+R2]

∑
m1∈M1

∑
m2∈M2

Pr

 ⋃
i∈{1,2}

{mi 6= m̂i}
∣∣ Cn

 . (3)

Note that Pn
e (Cn) = Pr

{
{M1 6= M̂1}

⋃
{M2 6= M̂2}|Cn

}
if M1,M2 are uniformly

distributed over their corresponding message sets.

Secrecy against the eavesdropper:

Suppose that the transmitters are aware of the presence of the passive eaves-

dropper. Briefly, we have the following scenarios:

– The secrecy of the messages is not of concern to both transmitters; or,

– The secrecy of the respective message is of concern only to one transmitter.

In more details, we have the following possibilities:

• Secrecy of M1 is required, but not M2. We define the information leakage

rate of M1 from transmitter 1 to the eavesdropper by

RL,{1}(Cn) =
1

n
I(M1;Zn|Cn), (4)

where I(·) is the mutual information function [30].

• Secrecy of M2 is required, but not M1. We define the information leakage

rate of M2 from transmitter 2 to the eavesdropper by

RL,{2}(Cn) =
1

n
I(M2;Zn|Cn). (5)

– The secrecy of the messages is of concern to both transmitters. In this sce-

nario, we have the following two cases:

• From end user point of view, each transmitter only cares about the se-

crecy of its own message. This is equivalent to limit

RL,{1},{2}(Cn) = RL,{1}(Cn) +RL,{2}(Cn). (6)

In this case, the correlation information between M1 and M2 may be

leaked to the eavesdropper, say M1 ⊕M2 but not M1, M2 individually.



• From the system designer’s perspective, the information leakage ofM1,M2

is considered jointly by defining

RL,{1,2}(Cn) =
1

n
I(M1,M2;Zn|Cn). (7)

Note thatRL,{1,2}(Cn)→ 0 implies thatRL,{1}(Cn)→ 0 andRL,{2}(Cn)→
0 and thus RL,{1},{2}(Cn) → 0. This is due to the non-negativity of the

mutual information and by definition, RL,{1,2} ≥ RL,{i} for i = 1, 2.

That is, imposing a limit on (7) implies limits on (4), (5) and (6) as

well. As the limit becomes arbitrarily small, the correlation information

between M1 and M2 may not be leaked to the eavesdropper in this case.

Cooperative or competitive transmission strategy at the transmitters:

If there is no secrecy concern, the transmitters are competitive since they have to

share the same channel resource. However, in case of a secure communication, the

transmitters can be also cooperative since the transmission of one user essentially

helps to hide the other user’s message from the eavesdropper. Especially in case

that only one message is required to be kept confidential from the eavesdropper,

the other transmitter may

– use a deterministic encoder (which is conventionally used for DM-MAC with-

out secrecy). The transmitter can compete in this case for the channel re-

source (i.e., being competitive); or,

– use a stochastic encoder (which is common in achieving information theoretic

secrecy), helping to hide other transmitter’ message from the eavesdropper

(i.e., being cooperative).

Considering that secrecy does not come for free, we assume that the transmitter

who demands secrecy for its message, will use the stochastic encoder. Thus,

– if there is no secrecy requirement from both transmitters, then both use

deterministic encoders, i.e., being competitive;

– if only one transmitter demands secrecy for its message, then it uses the

stochastic encoder, i.e., being cooperative; while, the other transmitter could

be either cooperative or competitive;

– if both transmitters demand secrecy for their messages, (including both the

individual or joint secrecy), then both use the stochastic encodes, i.e., being

cooperative.

We remark here that the deterministic encoder can be considered as a special

case of the stochastic encoder. Therefore, for the transmitter, being cooperative



will be at least as good as being competitive in achieving the desired transmission

rates. Recall the fact that being competitive is sufficient in achieving the capacity

region in case of no secrecy constraints, i.e., being cooperative does not provide

any gain in the reliable communication over MAC. However, the problem of our

interest is, if there is any gain in secure communication over MAC for being

cooperative; and if yes, how much is the gain?

2.3 System throughput

If there exists a sequence of (2nR1 , 2nR2 , n) codes {Cn} such that

Pn
e (Cn) ≤ εn and lim

n→∞
εn = 0, (8)

RL(Cn) ≤ τn and lim
n→∞

τn = 0, (9)

then the rate pair (R1, R2) is said to be achievable under the secrecy constraint

defined by (9). Note that (8) is the reliability constraint; and (9) is the secrecy

constraint. In particular, if RL(Cn) in (9) is defined by (4), or (5), or (7), it

corresponds to the S-collective secrecy that is introduced in [31], for S being

{1}, {2} or {1, 2}, respectively. More specifically, (R1, R2) is said to be

1) {1}-collective secrecy achievable, if RL(Cn) is defined by (4);

2) {2}-collective secrecy achievable, if RL(Cn) is defined by (5);

3) individual secrecy achievable, if RL(Cn) is defined by (6);

4) {1, 2}-collective or joint secrecy achievable, if RL(Cn) is defined by (7).

Clearly, for given reliability and secrecy constraints, the union of all the achiev-

able rate pairs gives the respective achievable rate regions, providing fundamen-

tal limits on the system throughput.

3 Discussions

3.1 Impact of different secrecy requirements

Recall that S-collective secrecy is studied in [31], which includes all the instances

of the above discussed secrecy requirements except the individual secrecy. Never-

theless, the individual secrecy has been studied in [32] together with joint secrecy

for the 2-transmitter DM-MAC with an external eavesdropper. In addition, the

capacity region in case of no secrecy constraint has been characterized [1] (see

also [30, Theorem 4.3]). Therefore, we could give a rather complete review on

the achievable rate regions under different secrecy constraints.



Table 1: 2-transmitter DM-MAC with an external eavesdropper: under different

secrecy constraints with both transmitters being cooperative.

Rate region Input distribution

C :
No secrecy

[30, Theorem 4.3]

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ I(X2;Y |X1, Q)

R1 +R2 ≤ I(X1, X2;Y |Q)

(Q,X1, X2) ∼ p(q)p(x1|q)p(x2|q)

R{1} :

{1} − collective secrecy
1
nI(M1;Zn)→ 0

[31, Theorem 1]

R2 ≤ I(V2;Y |V1, Q)

R1 ≤ min

{
I(V1;Y |V2, Q)− I(V1;Z|Q)

I(V1, V2;Y |Q)− I(V1, V2;Z|Q)

}
R1 +R2 ≤ I(V1, V2;Y |Q)− I(V1;Z|Q)

(Q,V1, V2, X1, X2) ∼ p(q)
2∏

i=1

p(vi|q)p(xi|vi)

such that I(V2;Z|Q) ≤ I(V2;Y |V1, Q)

R{2} :

{2} − collective secrecy
1
nI(M2;Zn)→ 0

[31, Theorem 1]

R1 ≤ I(V1;Y |V2, Q)

R2 ≤ min

{
I(V2;Y |V1, Q)− I(V2;Z|Q)

I(V1, V2;Y |Q)− I(V1, V2;Z|Q)

}
R1 +R2 ≤ I(V1, V2;Y |Q)− I(V2;Z|Q)

(Q,V1, V2, X1, X2) ∼ p(q)
2∏

i=1

p(vi|q)p(xi|vi)

such that I(V1;Z|Q) ≤ I(V1;Y |V2, Q)

R{1},{2} :

Individual secrecy [32, Theorem 1]
1
nI(M1;Zn)→ 0
1
nI(M2;Zn)→ 0

R1 ≤ I(V1;Y |V2, Q)− I(V1;Z|Q)

R2 ≤ I(V2;Y |V1, Q)− I(V2;Z|Q)

max{R1, R2} ≤ I(V1, V2;Y |Q)− I(V1, V2;Z|Q)

R1 +R2 ≤ I(V1, V2;Y |Q)− I(V1;Z|Q)− I(V2;Z|Q)

(Q,V1, V2, X1, X2) ∼ p(q)
2∏

i=1

p(vi|q)p(xi|vi)

R{1,2} :

{1, 2} − collective secrecy

i.e., joint secrecy [32, Theorem 2]
1
nI(M1,M2;Zn)→ 0

R1 ≤ I(V1;Y |V2, Q)− I(V1;Z|Q)

R2 ≤ I(V2;Y |V1, Q)− I(V2;Z|Q)

R1 +R2 ≤ I(V1, V2;Y |Q)− I(V1, V2;Z|Q)

(Q,V1, V2, X1, X2) ∼ p(q)
2∏

i=1

p(vi|q)p(xi|vi)

For a fair comparison, we consider the optimistic case that both transmit-

ter are cooperative in all scenarios. In Table 1, we provide the respective regions

corresponding to the 5 different secrecy strengths (in which 4 secrecy constraints

are as discussed above and the additional one is no secrecy constraint). In par-

ticular, we denote the S-collective secrecy region to be RS for S ∈ {1, 2}, S 6= ∅,
C for the case of no secrecy, and R{1},{2} for the individual secrecy rate region.

We provide a numerical illustration in Fig. 3, where we plotted all these re-

gions for a 2-transmitter DM-MAC with an external eavesdropper, where the

channel from (X1, X2) to Y is a binary multiplier MAC (i.e., Y = X1 ·X2), and

Z is a degraded version of Y through a binary symmetric channel (BSC) with

crossover probability p = 0.1. Note that V1, V2 are taken as binary for the calcu-

lations. Not surprisingly, we observe that R{1,2} ⊆ R{1},{2} ⊆ R{1} or R{2} ⊆ C,
where R{1,2} is enclosed by (red) dashed lines; R{1},{2} by (yellow) dotted lines;

R{1} and R{2} by dash-dotted lines (blue for R{1} and forest-green for R{2}, re-

spectively); and C by (green) solid lines. Note that the inclusion relation of these

regions is due to the correspondingly relaxed secrecy strengths. That is, more

stringent is the secrecy requirement, smaller is the correspondingly achievable

secrecy region. Another interesting observation is that R{1},{2} ⊂ R{1} ∩ R{2}.
In other words, R{1},{2} = R{1} ∩ R{2} does not hold. This implies that there

are rate pairs achievable for either the secrecy of M1 or the secrecy of M2, but

not the secrecy of M1 and secrecy of M2 simultaneously (i.e., individual secrecy).

3.2 Impact of transmitters being cooperative or competitive

Recall the fact that being cooperative does not provide any gain in the reliable

communication over MAC (i.e., no secrecy requirement). However, we wonder if

it is still the case in the secure communication over MAC.



Figure 3: Achievable rate regions for a binary multiplier 2-transmitter MAC

with a degraded eavesdropper, with different secrecy constraints but cooperative

transmitters. See [31, Fig. 2(b)].

Table 2: 2-transmitter DM-MAC with an external eavesdropper: {1}-collective

secrecy.

Competitive Transmitter 2, [31, (10) in Theorem 1] Cooperative Transmitter 2, [31, (11) in Theorem 1]

Rate region

R2 ≥ I(V2;Z|Q)

R2 ≤ I(V2;Y |V1, Q)

R1 ≤ min

{
I(V1;Y |V2, Q)− I(V1;Z|Q)

I(V1, V2;Y |Q)− I(V1, V2;Z|Q)

}
R1 −R2 ≤ I(V1;Y |V2, Q)− I(V1, V2;Z|Q)

R1 +R2 ≤ I(V1, V2;Y |Q)− I(V1;Z|Q)

R2 ≤ I(V2;Y |V1, Q)

R1 ≤ min

{
I(V1;Y |V2, Q)− I(V1;Z|Q)

I(V1, V2;Y |Q)− I(V1, V2;Z|Q)

}
R1 +R2 ≤ I(V1, V2;Y |Q)− I(V1;Z|Q)

Input distribution (Q,V1, V2, X1, X2) ∼ p(q)
2∏

i=1

p(vi|q)p(xi|vi) such that I(V2;Z|Q) ≤ I(V2;Y |V1, Q)

Consider the specific case that transmitter 1 would like to keep its message

secret from the eavesdropper; while transmitter 2 not. That is, transmitter 1

uses a stochastic encoder for the purpose of secrecy of M1; while transmitter

2 may take a conventional deterministic encoder for being competitive for the

same channel resource; or take a stochastic encoder for being cooperative to help

to hide M1 from the eavesdropper. According to [31, Theorem 1], we have two

achievable regions corresponding to these two different transmission strategies

at transmitter 2, and we provide them in Table 2.



Figure 4: Achievable rate regions for a binary input adder 2-transmitter MAC

with a degraded eavesdropper, where transmitter 1 demands the secrecy but not

transmitter 2. See [31, Fig. 2(a)].

Moreover, a numerical illustration is provided in Fig. 4, where we show the

advantage of transmitter 2 being cooperative (in obtaining a larger secrecy rate

region) by a concrete example. Consider the 2-transmitter DM-MAC with an

external eavesdropper, where the channel from (X1, X2) to Y is a binary input

adder MAC (i.e., Y = X1 +X2), and Z is a degraded version of Y with p(z|y) =

1−p for z = y and p(z|y) = p for z = y+1 (mod 3), where p = 0.1. In Fig. 4, we

depict the respective achievable regions (with binary V1, V2 for the calculations),

where the one enclosed by (magenta) dotted lines is for the case of transmitter

2 being competitive; and the one enclosed by (blue) dash-dotted lines is for the

case of transmitter 2 being cooperative. The capacity region (without secrecy

constraint) is also plotted for reference purpose, which is enclosed by the (green)

solid lines.

As one can see in Fig. 4, in case of transmitter 2 being cooperative, the region

is strictly larger than the case of transmitter 2 being competitive. In particular,

a big gap in the achievable secret rate R1 can be observed at R2 = 0. The gap

indicates that transmitter 2 can indeed help the secret transmission of transmit-

ter 1 by sending random signals to jam the eavesdropper. (This is similar to the

cooperative jamming observed in the Gaussian scenario [26], but as its counter-



Table 3: 2-transmitter DM-MAC with an external eavesdropper: inner bounds

on rate region under different secrecy constraints.

Rate region Input distribution

R{1} :

{1} − collective secrecy
1
nI(M1;Zn)→ 0

[31, Theorem 1]

R2 ≤ I(X2;Y |X1, Q)

R1 ≤ min

{
I(X1;Y |X2, Q)− I(X1;Z|Q)

I(X1, X2;Y |Q)− I(X1, X2;Z|Q)

}
R1 +R2 ≤ I(X1, X2;Y |Q)− I(X1;Z|Q) (Q,X1, X2) ∼ p(q)p(x1|q)p(x2|q)

R{2} :

{2} − collective secrecy
1
nI(M2;Zn)→ 0

[31, Theorem 1]

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ min

{
I(X2;Y |X1, Q)− I(X2;Z|Q)

I(X1, X2;Y |Q)− I(X1, X2;Z|Q)

}
R1 +R2 ≤ I(X1, X2;Y |Q)− I(X2;Z|Q)

R{1},{2} :

Individual secrecy [32, Theorem 1]
1
nI(M1;Zn)→ 0
1
nI(M2;Zn)→ 0

R1 ≤ I(X1;Y |X2, Q)− I(X1;Z|Q)

R2 ≤ I(X2;Y |X1, Q)− I(X2;Z|Q)

max{R1, R2} ≤ I(X1, X2;Y |Q)− I(X1, X2;Z|Q)

R1 +R2 ≤ I(X1, X2;Y |Q)− I(X1;Z|Q)− I(X2;Z|Q)

R{1,2} :

{1, 2} − collective secrecy

i.e., joint secrecy [32, Theorem 2]
1
nI(M1,M2;Zn)→ 0

R1 ≤ I(X1;Y |X2, Q)− I(X1;Z|Q)

R2 ≤ I(X2;Y |X1, Q)− I(X2;Z|Q)

R1 +R2 ≤ I(X1, X2;Y |Q)− I(X1, X2;Z|Q)

part in the discrete setting. More specifically, in this case, transmitter 2 have two

ways of cooperation, one is to utilize codewords that carry randomization (bo-

gus) messages and the other is to utilize additional noise in mapping codewords

to channel inputs (channel prefixing)). Even in case that transmitter 2 uses a

deterministic encoder, its transmission at low rates to some extent, could help

transmitter 1 to achieve a larger secrecy rate. However, the advantage of using

cooperative transmission strategy at transmitter 2, diminishes or even vanishes

especially when R2 is at high rates. This is because of the bounded sum rate

capacity, due to the fact that the same channel resource is shared by both trans-

mitters. This observation provides interesting insights into the competitive yet

cooperative relationship between the transmitters in a secure communication,

unlike their simple competitive relationship in a reliable communication.

4 Fundamental limits on the system performance

For simplicity, we only consider the special case that the channel to the eaves-

dropper is degraded to the one to the legitimate receiver, referred to as 2-

transmitter DM-MAC with a degraded eavesdropper. In this section, we provide

inner bounds and outer bounds on the secrecy capacity regions in Table 3 and

Table 4, respectively, while assuming that both transmitters are cooperative.

4.1 Inner bounds on the secrecy capacity regions

The inner bounds are given in Table 3, which can be obtained by taking V1 = X1

and V2 = X2 in the achievable rate regions in Table 1. Remarkably, here the input

variables (Q,X1, X2) have a distribution in form of p(q)p(x1|q)p(x2|q).



Table 4: 2-transmitter DM-MAC with an external eavesdropper: outer bounds

on rate region under different secrecy constraints.

Rate region Input distribution

R{1} :
{1} − collective secrecy

1
nI(M1;Zn)→ 0

R2 ≤ I(X2;Y |X1, Q)

R1 ≤ min

{
I(X1;Y |X2, Q)− I(X1;Z|Q)

I(X1, X2;Y |Q)− I(X1, X2;Z|Q)

}
R1 +R2 ≤ I(X1, X2;Y |Q)− I(X1;Z|Q) (Q,X1, X2) ∼ p(q)p(x1, x2|q)

R{2} :
{2} − collective secrecy

1
nI(M2;Zn)→ 0

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ min

{
I(X2;Y |X1, Q)− I(X2;Z|Q)

I(X1, X2;Y |Q)− I(X1, X2;Z|Q)

}
R1 +R2 ≤ I(X1, X2;Y |Q)− I(X2;Z|Q)

R{1},{2} :

Individual secrecy
1
nI(M1;Zn)→ 0
1
nI(M2;Zn)→ 0

R1 ≤ I(X1;Y |X2, Q)− I(X1;Z|Q)

R2 ≤ I(X2;Y |X1, Q)− I(X2;Z|Q)

max{R1, R2} ≤ I(X1, X2;Y |Q)− I(X1, X2;Z|Q)

R1 +R2 ≤ I(X1, X2;Y |Q)− I(X1;Z|Q)− I(X2;Z|Q)

R{1,2} :

{1, 2} − collective secrecy

i.e., joint secrecy
1
nI(M1,M2;Zn)→ 0

R1 ≤ I(X1;Y |X2, Q)− I(X1;Z|Q)

R2 ≤ I(X2;Y |X1, Q)− I(X2;Z|Q)

R1 +R2 ≤ I(X1, X2;Y |Q)− I(X1, X2;Z|Q)

4.2 Outer bounds on the secrecy capacity regions

The outer bounds are given in Table 4. As one may notice, they enjoy the

same expressions as those for the corresponding inner bounds in Table 3; but

differentiate themselves in the allowable input distribution for (Q,X1, X2), here

in form of p(q)p(x1, x2|q).
To establish the outer bounds, we need the following lemma, which proof is

provided in Appendix A.

Lemma 1. Consider a discrete memoryless channel defined by p(y, z|x1, x2) and

assume that Z is a degraded version of Y. We have

I(Xn
1 , X

n
2 ;Y n) ≤nI(X1, X2;Y |Q); (10)

I(Xn
1 ;Y n|Xn

2 ) ≤nI(X1;Y |X2, Q); (11)

I(Xn
2 ;Y n|Xn

1 ) ≤nI(X2;Y |X1, Q); (12)

I(Xn
1 , X

n
2 ;Zn) =nI(X1, X2;Z|Q); (13)

I(Xn
1 ;Zn) ≥nI(X1;Z|Q); (14)

I(Xn
2 ;Zn) ≥nI(X2;Z|Q), (15)

where Q = (ZT−1, T ), X1 = X1,T , X2 = X2,T , Z = ZT , and T is a random

variable that is uniformly distributed over [1 : n].

4.2.1 Without secrecy constraint

First we consider the general outer bounds on R1, R2 and R1 + R2, for the 2-

transmitter MAC with a degraded eavesdropper (without secrecy constraint).

We have the followings:

nR1 =H(M1)



(a)

≤H(M1)−H(M1|Y n, Xn
2 ) + nλ1(εn)

=I(M1;Y n, Xn
2 ) + nλ1(εn)

(b)

≤I(Xn
1 ;Y n|Xn

2 ) + nλ1(εn) (16)

(c)

≤nI(X1;Y |X2, Q) + nλ1(εn), (17)

where (a) is due to reliability constraint (8), Fano’s inequality and taking λ1(εn) =

1/n+ εnR1; (b) is due to the Markov chain M1 → Xn
1 → (Xn

2 , Y
n) and the fact

that Xn
1 and Xn

2 are independent; and (c) is by applying (11) in Lemma 1.

A similar proof applies to bound R2. We have

nR2≤I(Xn
2 ;Y n|Xn

1 ) + nλ2(εn) (18)

≤nI(X2;Y |X1, Q) + nλ2(εn), (19)

where λ2(εn) = 1/n+ εnR2.

An outer bound on R1 +R2 could be obtained as follows:

n(R1 +R2) =H(M1,M2)

(d)

≤H(M1,M2)−H(M1,M2|Y n) + nλ(εn)

=I(M1,M2;Y n) + nλ(εn)

(e)

≤I(Xn
1 , X

n
2 ;Y n) + nλ(εn)

(f)

≤nI(X1, X2;Y |Q) + nλ(εn), (20)

where (d) is due to reliability constraint (8), Fano’s inequality and taking λ(εn) =

1/n+ εn(R1 +R2); (e) is due to the Markov chain (M1,M2)→ (Xn
1 , X

n
2 )→ Y n;

and (f) is by applying (10) in Lemma 1.

4.2.2 Under secrecy constraint 1
n
I(M1;Zn) → 0

Under secrecy constraint 1
nI(M1;Zn)→ 0, we could bound R1 as follows:

nR1 =H(M1)

(g)

≤H(M1|Zn)−H(M1|M2, Y
n, Zn) + nλ(εn, τn)

(h)

≤H(M1|Zn)−H(M1|M2, X
n
2 , Y

n, Zn) + nλ(εn, τn)

(i)
=H(M1|Zn)−H(M1|Xn

2 , Y
n, Zn) + nλ(εn, τn)

=I(M1;Xn
2 , Y

n|Zn) + 2nλ(εn, τn)

=H(Xn
2 , Y

n|Zn)−H(Xn
2 , Y

n|M1, Z
n) + nλ(εn, τn)



(h)

≤H(Xn
2 , Y

n|Zn)−H(Xn
2 , Y

n|M1, X
n
1 , Z

n) + nλ(εn, τn)

(i)
=H(Xn

2 , Y
n|Zn)−H(Xn

2 , Y
n|Xn

1 , Z
n) + nλ(εn, τn)

=I(Xn
1 ;Xn

2 , Y
n|Zn) + nλ(εn, τn)

=H(Xn
1 |Zn)−H(Xn

1 |Xn
2 , Y

n, Zn) + nλ(εn, τn)

(j)
=H(Xn

1 |Zn)−H(Xn
1 |Xn

2 , Y
n)−H(Xn

1 ) +H(Xn
1 |Xn

2 ) + nλ(εn, τn)

=I(Xn
1 ;Y n|Xn

2 )− I(Xn
1 ;Zn) + nλ(εn, τn) (21)

(k)

≤n [I(X1;Y |X2, Q)− I(X1;Z|Q)] + nλ(εn, τn) (22)

where (g) is due to reliability constraint (8), Fano’s inequality, the secrecy con-

straint (9) (i.e., 1
nI(M1;Zn) ≤ τn) and taking λ(τn, εn) = τn+1/n+εn(R1+R2);

(h) is by the fact that conditioning does not increase entropy; (i) is due to the

Markov chain M2 → Xn
2 → (M1, Y

n, Zn) and M1 → Xn
1 → (M2, Y

n, Zn); (j)

is due to the fact that Zn is a degraded version of Y n; and Xn
1 and Xn

2 are

independent; and (k) is by applying (11) and (14) in Lemma 1.

Besides, we note that

nR1≤nR1 + [nR2 + nτn − I(M1,M2;Zn)]

holds since

I(M1,M2;Zn) =I(M1;Zn) + I(M2;Zn|M1)≤nR2 + nτn;

where the inequality is due to the secrecy constrain (9) (i.e., 1
nI(M1;Zn) ≤ τn).

Therefore, we have

nR1 ≤n[R1 +R2]− I(M1,M2;Zn) + nτn

(l)

≤I(M1,M2;Y n)− I(M1,M2;Zn) + nλ(τn, εn)

(m)

≤ I(Xn
1 , X

n
2 ;Y n)− I(Xn

1 , X
n
2 ;Zn) + nλ(τn, εn)

(n)

≤n [I(X1, X2;Y |Q)− I(X1, X2;Z|Q)] + nλ(τn, εn), (23)

where (l) is due to reliability constraint (8), Fano’s inequality and taking λ(τn, εn) =

τn+1/n+εn(R1+R2); (m) is due to the Markov chain (M1,M2)→ (Xn
1 , X

n
2 )→

(Y n, Zn) and the fact that Zn is a degraded version of Y n; and (n) is by applying

(10) and (13) in Lemma 1.

Moreover, we have

nR1 =H(M1)

(o)

≤H(M1|Zn)−H(M1|Y n, Zn) + nλ(εn, τn)



=I(M1;Y n|Zn) + nλ(εn, τn)

(p)

≤I(Xn
1 ;Y n|Zn) + nλ(εn, τn)

=I(Xn
1 ;Y n)− I(Xn

1 ;Zn) + nλ(εn, τn), (24)

where (o) is due to reliability constraint (8), Fano’s inequality, the secrecy con-

straint (9) (i.e., 1
nI(M1;Zn) ≤ τn) and taking λ(τn, εn) = τn+1/n+εn(R1+R2);

(p) is by the Markov chain M2 → Xn
2 → (Y n, Zn) and the fact that Zn is a

degraded version of Y n.

Combining (24) (that is obtained under secrecy constraint 1
nI(M1;Zn)→ 0)

and (18) (that is obtained only under reliability constraint) and taking λ2(εn, τn) =

λ(εn, τn) + λ2(εn), we have

n(R1 +R2) ≤I(Xn
1 ;Y n)− I(Xn

1 ;Zn) + I(Xn
2 ;Y n|Xn

1 ) + nλ2(εn, τn)

=I(Xn
1 , X

n
2 ;Y n)− I(Xn

1 ;Zn) + nλ2(εn, τn)

(q)
=n [I(X1, X2;Y |Q)− I(X1;Z|Q)] + nλ2(τn, εn). (25)

where (q) is by applying (10) and (14) in Lemma 1.

In summary, for R{1}, we have the general bounds (17), (19), (20) (obtained

under the reliability constraint only), and the bounds (22), (23) and (25) (ob-

tained under the additional secrecy constraint 1
nI(M1;Zn) → 0). We note that

(17) and (20) are redundant due to (22) and (25), respectively. Thus taking the

limit as n→∞ such that λ2(εn), λ(εn, τn), λ2(εn, τn)→ 0 in (19), (22), (23) and

(25), we establish the outer bound R{1} as given in Table 4.

4.2.3 Under secrecy constraint 1
n
I(M2;Zn) → 0:

A similar approach applies to establish the bound R{2}. In particular, we have

nR2 ≤I(Xn
2 ;Y n|Xn

1 )− I(Xn
2 ;Zn) + nλ(εn, τn) (26)

≤n [I(X2;Y |X1, Q)− I(X2;Z|Q)] + nλ(εn, τn); (27)

nR2 ≤n [I(X1, X2;Y |Q)− I(X1, X2;Z|Q)] + nλ(τn, εn) (28)

n(R1 +R2) ≤n [I(X1, X2;Y |Q)− I(X2;Z|Q)] + nλ1(τn, εn), (29)

where λ1(εn, τn) = λ(εn, τn) + λ1(εn).

4.2.4 Under secrecy constraint 1
n
I(M1;Zn) + 1

n
I(M2;Zn) → 0:

Combining (24) (that is obtained under secrecy constraint 1
nI(M1;Zn) → 0)

and (26) (that is obtained under secrecy constraint 1
nI(M2;Zn)→ 0), we have

n(R1 +R2) ≤ I(Xn
1 ;Y n)− I(Xn

1 ;Zn) + I(Xn
2 ;Y n|Xn

1 )− I(Xn
2 ;Zn) + 2nλ(εn, τn)



=I(Xn
1 , X

n
2 ;Y n)− I(Xn

1 ;Zn)− I(Xn
2 ;Zn) + 2nλ(εn, τn)

(r)

≤n [I(X1, X2;Y |Q)− I(X1;Z|Q)− I(X2;Z|Q)] + 2nλ(τn, εn). (30)

where (r) is by applying (10), (14) and (15) in Lemma 1.

Note that for R{1},{2}, we have not only the bound (30), but also the bounds

(19), (22), (23), (25) (those are valid under secrecy constraint 1
nI(M1;Zn)→ 0

), and the bounds (17), (27), (28), (29) (those are valid under secrecy constraint
1
nI(M2;Zn) → 0 ). We note that (17) and (19) are redundant due to (22) and

(27), respectively; (25) and (29) are redundant due to (30). Thus taking the limit

as n→∞ such that λ(εn, τn)→ 0 in (22), (23),(27), (28) and (30), we establish

the outer bound R{1},{2} as given in Table 4.

4.2.5 Under secrecy constraint 1
n
I(M1,M2;Zn) → 0:

n(R1 +R2) =H(M1,M2)

=H(M1,M2|Y n) + I(M1,M2;Y n)

(s)

≤I(M1,M2;Y n)− I(M1,M2;Zn) + nλ(εn, τn)

(t)

≤n [I(X1, X2;Y |Q)− I(X1, X2;Z|Q)] + nλ(τn, εn), (31)

where (s) is due to reliability constraint (8), Fano’s inequality, the secrecy con-

straint (9) (i.e., 1
nI(M1,M2;Zn) ≤ τn) and taking λ(τn, εn) = τn+1/n+εn(R1+

R2); and (t) follows the same arguments as for step (r).

ForR{1,2}, we have not only the bounds for individual rates in (22), (23), (27)

and (28) (those are valid under secrecy constraint 1
nI(M1;Zn) + 1

nI(M2;Zn)→
0), but also the bound on the sum-rate in (31). We note that (23) and (28) are

redundant due to (31). Thus taking the limit as n→∞ such that λ(εn, τn)→ 0

in (22), (23) and (31), we establish the outer bound R{1,2} as given in Table 4.

4.3 Discussion on the tightness on the inner and outer bounds

Unfortunately, the bounds are not tight in general. For simplicity, we denote

P1 = {(Q,X1, X2)|p(u, x1, x2) = p(q)p(x1|q)p(x2|q)},
P2 = {(Q,X1, X2)|p(u, x1, x2) = p(q)p(x1, x2|q)}.

Consider the extreme case with Z = ∅ under the joint secrecy constraint. Then

R{1,2} and R{1,2} reduce to
⋃
P1

R{1,2}(Z = ∅) and
⋃
P2

R{1,2}(Z = ∅), respectively,

where

R{1,2}(Z = ∅) =

(R1, R2)

∣∣∣∣∣∣
R1 ≤ I(X1;Y |X2, Q)

R2 ≤ I(X2;Y |X1, Q)

R1 +R2 ≤ I(X1, X2;Y |Q)

 . (32)



Interestingly, we see that

–
⋃
P1

R{1,2}(Z = ∅) is included by the Cover-Leung region for MAC-FB [10].

–
⋃
P2

R{1,2}(Z = ∅) is larger than the dependence balance based outer bound

[14] on the capacity region for MAC-FB.

Remarkably, the Cover-Leung region is not tight in general. An improvement

was proposed by Bross and Lapidoth [12] with an example demonstrating the

strict inclusion. Clearly, the same example also exhibits a distinct gap between⋃
P1

R{1,2}(Z = ∅) and
⋃
P2

R{1,2}(Z = ∅), as a special instance of R{1,2} and

R{1,2}. As a conclusion, for the 2-transmitter DM-MAC with an external eaves-

dropper, the respective secrecy capacity regions still remain unknown, even for

the degraded case.

5 Concluding remarks

In this paper, we review the secrecy results obtained for the 2-transmitter mul-

tiple access channel with an external eavesdropper. In particular, we discuss 5

secrecy strengths, from both end user’s perspective and system designer’s per-

spective. Both theoretical and numerical results are presented to show the impact

of different secrecy requirements on the respective achievable rate regions (or in

other words, the price paid for the required secrecy). Moreover, we look into the

case where either competitive or cooperative transmission strategies can be em-

ployed at the transmitter who does not demand secrecy for its message. Unlike

the reliable communication scenario where secrecy is not concerned, and it does

not make any difference for the transmitters for being either cooperative or com-

petitive, we show that in a secure communication over MAC, being cooperative

can significantly enlarge the corresponding achievable secrecy region.

Besides, assuming that both transmitters are cooperative, we take a special

look into the inner and outer bounds on the secrecy capacity regions over the

2-transmitter DM-MAC with a degraded eavesdropper. We notice that the inner

and outer bounds differentiate themselves in the permissible sets of input distri-

butions. Especially, we give an example to show that the bounds are not tight

in general. To close the gap, we need to either improve the achievable regions

or tighten the outer bounds. 2-transmitter multiple access channel is a rather

simple model, which has been extensively investigated and which results provide

insights into the open problems in multi-use communications. One can refer to

[31] for extended results on the secrecy rate regions for a multiple access chan-

nel with arbitrarily many transmitters, where a class of collective secrecy was

introduced and studied therein.



A Proof of Lemma 1

Proof. First we prove (10), i.e., I(Xn
1 , X

n
2 ;Y n) ≤ nI(X1, X2;Y |Q) as follows:

I(Xn
1 , X

n
2 ;Y n) =H(Y n)−H(Y n|Xn

1 , X
n
2 )

(a)
=

n∑
i=1

[
H(Yi|Y i−1)−H(Yi|X1,i, X2,i)

]
(b)
=

n∑
i=1

[
H(Yi|Y i−1, Zi−1)−H(Yi|X1,i, X2,i, Z

i−1)
]

(c)

≤
n∑

i=1

[
H(Yi|Zi−1)−H(Yi|X1,i, X2,i, Z

i−1)
]

(d)
=

n∑
i=1

I(X1,i, X2,i;Yi|Ui)

(e)
=nI(X1, X2;Y |U, T )

(f)
=nI(X1, X2;Y |Q),

where (a) is by the chain rule of the entropy and the discrete memoryless of

the channel; (b) is by the Markov chain Zi−1 → (X1,i, X2,i) → Yi and the

degradedness of the channel; (c) is by the fact that conditioning does not increase

entropy; and (d) is by the definition of Ui = Zi−1; (e) follows by standard

techniques of using a time sharing variable T , and redefining variables for single-

letter expressions. More specifically, we define U = ZT−1, X1 = X1,T , X2 = X2,T

and Z = ZT , where T is a random variable that is uniformly distributed over

[1 : n]; and (f) is by defining Q = (U, T ).

To prove (11), i.e., I(Xn
1 ;Y n|Xn

2 ) ≤ nI(X1;Y |X2, Q) we have the following.

I(Xn
1 ;Y n|Xn

2 ) =H(Y n|Xn
2 )−H(Y n|Xn

1 , X
n
2 )

(a)
=

n∑
i=1

[
H(Yi|Y i−1, Xn

2 )−H(Yi|X1,i, X2,i)
]

(b)
=

n∑
i=1

[
H(Yi|Y i−1, Zi−1, Xn

2 )−H(Yi|X1,i, X2,i, Z
i−1)

]
(c)

≤
n∑

i=1

[
H(Yi|X2,i, Z

i−1)−H(Yi|X1,i, X2,i, Z
i−1)

]
(d)
=

n∑
i=1

I(X1,i;Yi|X2,i, Ui)

(g)
=nI(X1;Y |X2, Q),



where (g) is by definitions of X1, X2, Y and Q in steps (e) and (f), respectively.

Note that similar steps can be applied to prove (12), i.e., I(Xn
2 ;Y n|Xn

1 ) ≤
nI(X2;Y |X1, Q).

Now we proceed to prove (13), i.e., I(Xn
1 , X

n
2 ;Zn) = nI(X1, X2;Y |Q).

I(Xn
1 , X

n
2 ;Zn) =H(Zn)−H(Zn|Xn

1 , X
n
2 )

(a)
=

n∑
i=1

[
H(Zi|Zi−1)−H(Zi|X1,i, X2,i)

]
(h)
=

n∑
i=1

[
H(Zi|Zi−1)−H(Zi|X1,i, X2,i, Z

i−1)
]

(d)
=

n∑
i=1

I(X1,i, X2,i;Zi|Ui)

(i)
=nI(X1, X2;Y |Q),

where (h) is by the Markov chain Zi−1 → (X1,i, X2,i) → Zi, and (i) follows by

definitions of X1, X2, Y and Q in steps (e) and (f), respectively.

To prove (14), i.e., I(Xn
1 ;Zn) ≥ nI(X1;Z|Q), we have the following.

I(Xn
1 ;Zn) =H(Zn)−H(Zn|Xn

1 )

(a)
=

n∑
i=1

[
H(Zi|Zi−1)−H(Zi|Zi−1, Xn

1 )
]

(c)

≥
n∑

i=1

[
H(Zi|Zi−1)−H(Zi|Zi−1, X1,i)

]
(d)
=

n∑
i=1

I(X1,i;Zi|Ui)

(j)
=nI(X1;Z|Q),

where (j) follows by definitions of X1, Z and Q in steps (e) and (f), respectively.

Similar steps can be applied to prove (15), i.e., I(Xn
2 ;Zn) ≥ nI(X2;Z|Q).
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