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Abstract

Place cells in the hippocampus (HC) are active when an animal visits a cer-

tain location (referred to as a place field) within an environment. Grid cells in

the medial entorhinal cortex (MEC) respond at multiple locations, with firing

fields that form a periodic and hexagonal tiling of the environment. The joint



activity of grid and place cell populations, as a function of location, forms a

neural code for space. In this manuscript, we develop an understanding of the

relationships between coding theoretically relevant properties of the combined

activity of these populations and how these properties limit the robustness of

this representation to noise induced interference. These relationships are revis-

ited by measuring the performances of biologically realizable algorithms im-

plemented by networks of place and grid cell populations, as well as constraint

neurons, which perform de-noising operations. Contributions of this work in-

clude the investigation of coding theoretic limitations of the mammalian neural

code for location and how communication between grid and place cell networks

may improve the accuracy of each population’s representation. Simulations

demonstrate that de-noising mechanisms analyzed here can significantly im-

prove fidelity of this neural representation of space. Further, patterns observed

in connectivity of each population of simulated cells predict that anti-Hebbian

learning drives decreases in inter-HC-MEC connectivity along the dorsoventral

axis.
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1 Introduction

Place cells are a class of spatially modulated neuron with an approximately

bivariate Gaussian tuning curve centered on a particular location in the environ-

ment, and have been identified in the hippocampus (O’Keefe and Dostrovsky,

1971; O’Keefe, 1976; Ekstrom et al., 2003). Grid cells are spatially modulated

neurons with firing fields that form a periodic and hexagonal tiling of the en-

vironment, and are found in the entorhinal cortex (EC) of rats, mice, bats, and

humans (Hafting et al., 2005; Fyhn et al., 2008; Yartsev et al., 2011; Doeller

et al., 2010; Jacobs et al., 2013). Grid cells are clustered in discrete modules

wherein cells share grid scale (Stensola et al., 2012). Anatomically, both cell

types share a dorsoventral organization, with cells possessing wider receptive

fields distributed towards the ventral end (Strange et al., 2014; Stensola et al.,

2012). It is known that the rat grid cell network requires communication from

the hippocampus to maintain grid-like activity (Bonnevie et al., 2013), and that

a significant improvement in accuracy of the rodent place cell representation is

tightly correlated with the emergence of the grid cell network (Muessig et al.,

2015). However, the mechanisms by which these networks communicate and

how each may bolster the other’s accuracy are unknown. Objectives of this

work include the investigation of coding theoretic limitations of the mammalian
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neural code for location and how communication between grid and place cell

networks may improve the accuracy of each population’s representation.

Associative memories are a class of biologically implementable content ad-

dressable memory consisting of networks of neurons, a learning rule, and in

some instances, a separate recall process (Hopfield, 1982; Amit and Treves,

1989). This means that they can be exploited to stabilize the states of their con-

stituent neurons to match a previously memorized network state if enough of

the network already lies in this state. The information capacity of the simplest

of these constructions is quite limited: n
2 logn

bits, for a network of n binary

neurons (McEliece et al., 1987) . However, recent advances by Salavati et al.

take advantage of sparse neural coding and non-binary neurons to design an

associative memory with information storage capacity exponential in the num-

ber of neurons (Salavati et al., 2014). Sparse connectivity confers the memory

network with other performance improvements: infrequent spiking implies re-

duced energy costs and faster convergence to a stable state.

In communications, this principle is leveraged by low density parity check

codes (LDPC), a class of linear block code whose power (in coding and decod-

ing complexity) depends on sparsity of the code’s parity check matrix. Com-

monly, de-noising a LDPC code involves iteratively passing messages along
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edges of a bipartite graph consisting of a collection of nodes that stores and

updates an estimate of the originally transmitted word connected to a collection

of nodes that computes the code’s parity check equations (Chen and Fossorier,

2002; Declercq and Fossorier, 2007). Recent developments in the intersection

of coding theory and machine learning demonstrate that neural networks can

learn an approximation of a LDPC code’s parity structure, and by executing be-

lief propagation algorithms recover memorized patterns in the presence of noise

(Salavati et al., 2014).

Nature provides myriad circumstances in which many neural computations

(e.g., object recognition, acoustic source localization, and self localization)

must be executed robustly in the presence of neural noise if the organism is

to survive. We propose a de-noising mechanism for populations of grid and

place cells, in the form of the associative memories described in (Salavati et al.,

2014), (Karbasi et al., 2014), and (Karbasi et al., 2013), which takes advantage

of coding theoretic properties of these populations to ameliorate the negative

impacts of noise. We observe that after learning, average connectivity between

place cells and grid modules decreases with increasing place field size for each

module. We demonstrate that the effectiveness of the proposed de-noising al-

gorithm relies on the biological organization of grid cells into discrete modules.
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Additional contributions of this work include the coding model and de-noising

systems themselves, as a framework in which to characterize limits on fidelity

of cooperating neural codes subject to noise (for physical position or other vari-

ables such as the auditory code studied in (Aronov et al., 2017)), and improved

clarity about how parameterization of grid and place cell populations affects

these fundamental information and coding theoretic limits.

Redundancy in receptive field (RF) population codes is known to confer

improvements in decoding accuracy when a small tolerance to error is intro-

duced (expressed in this case, in the stimulus space to which we decode) (Curto

et al., 2013). To our knowledge we are the first to investigate coding theo-

retic impacts of redundancy in grid cell populations. We study the impact of

this redundancy on decoding accuracy by comparing de-noising and decoding

performance across codes of varying redundancies. We demonstrate that af-

ter de-noising, a maximum likelihood (ML) estimator reliably decodes position

from population activity with small position estimation error in the presence of

bounded noise. Overall, our work shows that the biological organization of grid

cells into modules may be necessary for optimal self localization.

This paper is organized sectionally. In section 1 we introduce a few key con-

cepts and present the main results. Section 2 introduces the theoretical frame-
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work upon which our model is built, describing code construction, de-noising

network, learning algorithms, and de-noising algorithms in sections 2.1, 2.2,

2.3, and 2.4, respectively. Section 3.1 presents results of all coding theoretic

analysis and experimentation. Section 3.2 annotates results of the aforemen-

tioned learning algorithms. Section 3.3 describes outcomes of performance

tests of the de-noising algorithms. Section 4, consists of discussion of these

results, their implications, limitations, and a physiologically testable hypothesis

they inform.

2 Theoretical framework

2.1 A hybrid code

We consider a population of place and grid cells, a total ofN neurons. There

are M grid cell modules, each module, m, containing Jm neurons, and P place

cells. Throughout this manuscript, we use J to refer to the number of grid cells

in module 1, which - if grid cells are allocated to modules non-uniformly - is

not equal to each other module’s Ji. The firing rate of each grid cell is denoted

as gm,j , for m ∈ {1, · · · ,M} and j ∈ {1, · · · , Jm}. Place cells’ firing rates are

denoted as pi, for i ∈ {1, . . . , P}. The activity of this population, as a function
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of location `, is represented by

xi(`) =


gm,j(`), i =

m−1∑
k=1

Jk + j, i ≤
M∑
m=1

Jm

pi−MJ(`), i >
M∑
m=1

Jm

where the location dependent mean firing rates of the grid cells, gm,j(`), are

given by the following two-dimensional distributions resembling von Mises

density functions,

gm,j(s) =
fmax

Z
exp

[
3∑

k=1

cos
(

4

λm
√

3
u (θk − θm,j)

)
· (s− cm,j) +

3

2
)− 1

]
,

(1)

where u(θk−θm,j) is a unit vector in the direction of θk−θm,j , s ∈ [0, L]×[0, L]

is the position stimulus, cm,j , θm,j , and λm are the grid cell’s spatial phase off-

set, orientation offset, and scaling ratio. The angles of the sinusoids composing

the grid pattern (i.e., θk) were taken to be ideal values about which the measure-

ments presented in (Stensola et al., 2012) appear to fluctuate. More precisely,

we choose θk ∈ {−60◦, 0◦, 60◦}. A scaling ratio of λ defines the scale of mod-

ulem as λm = λ1(λ)m−1. Z is a normalizing constant (≈ 2.857399), and fmax is

the grid cell’s maximum firing rate. Unless otherwise stated, θm,j is chosen so as

to mirror the observations in (Stensola et al., 2012): θm,j is identical across grid

cells in the same module (i.e., for indicesm, i, j, θm,i = θm,j), and these orienta-

tion offsets are selected randomly. In two dimensions, place cells have bivariate
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Gaussian tuning curves, with mean ξ ∈ [0, L]× [0, L], correlation, ρ ∈ [−1
2
, 1
2
]

(chosen uniformly randomly), and covariance
( σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
, where σ1 and σ2

are chosen independently and uniformly randomly from [0.9λ1, 1.1λM ]. We re-

quire that σ1 and σ2 depend on λ1 so that both grid and place cell receptive fields

lie in similar spatial scales.

module m=1 module m=M
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Figure 1: Concatenation of activities of grid and place cells (shown with typical

idealized model receptive fields) to form the hybrid code

A hybrid codebook: C codewords, of lengthN = P +
M∑
m=1

Jm, are generated

by choosing locations from the vertices of a square lattice imposed on the plane,

with unit area equal to (∆L)2, and total area equal to L2. C is assembled by

placing these codewords in its rows, and represents the states of the grid and
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place cells when stimulated with these positions.

2.2 De-noising network

Two high-capacity associative memory designs are considered to test the

hybrid code’s resilience to noise. In each case, the memory network is a bi-

partite graph consisting of N pattern neurons (i.e., grid and place cells) and nc

constraint neurons. In the un-clustered design, all constraint neurons are con-

nected to a random set of pattern neurons. In the clustered configuration, the

constraint neurons were split into M distinct clusters of n constraint neurons

per cluster, with each cluster connected to a distinct grid module. Each cluster’s

constraint neurons were connected randomly to pattern neurons, chosen from a

set consisting of every grid cell in the corresponding module, and every place

cell.
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(a)

module m=1 module m=M

g1,1 g1,J1 gM,1 gM,JM p1 pPp2g1,2 gM,2

cnc
cnc-1

c1

(b)

module m=1 module m=M

g1,1 g1,J1 gM,1 gM,JM p1 pPp2

c1,1 c1,n cM,1 cM,n

g1,2 gM,2

 

Figure 2: (a) Structure of an un-clustered de-noising network - considered as

a baseline for comparison to the neurophysiologically inspired systematic clus-

tering scheme (b) Structure of a systematically clustered de-noising network in

which clusters of constraint neurons connect to all place cells but only to the

corresponding module of grid cells.

We also consider a foil to this systematic clustering architecture organized

by grid modules: Grid and place cells are randomly assigned to clusters. Fig-

ures 2a and 2b depict the general connectivity structure of the un-clustered and

clustered designs, respectively. In both the clustered and un-clustered config-
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urations, a neurally plausible modified version of Oja’s subspace learning rule

was applied to learn the code, i.e., a sparse connectivity matrix is found such

that the weights of connections from constraint neurons to pattern neurons lie

orthogonal to the code space (i.e., the space spanned by C) (Oja and Kohonen,

1988). This way, constraint neuron connectivity converges to the parity struc-

ture of the code and may be utilized in de-noising operations.

2.3 Code construction via subspace learning

Before we can use the de-noising system to correct corrupted codewords,

it must learn (i.e., adapt its weights for) the hybrid code. This process is com-

plete when the constraint neurons may be read to determine if the states of the

pattern neurons map to a valid codeword. Formally, this amounts to finding a

connectivity matrix, W (Wi,j is the synaptic weight between constraint neuron i

and pattern neuron j), whose rows are approximately perpendicular to the code

space. A procedure to procure such a matrix is outlined in (Oja and Kohonen,

1988), and improved in (Salavati et al., 2014). Note here that this learning pro-

cess is not a model for the development of either grid or place cells’ apparent

receptive fields nor their remapping, as in (Monaco and Abbott, 2011). These

algorithms begin with a random set of vectors, and for each, seeks a nearby
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vector orthogonal to C (i.e., a vector onto which each element of C has minimal

projection). We implement this in Algorithm 1 (a derivation of this algorithm

can be found in the appendix). In the clustered design, Algorithm 1 is applied

to each cluster’s local connectivity matrix. Note that here, all arithmetic on the

synaptic weights, Wi,j is performed in R, while arithmetic on states of neurons

(i.e., their firing rates), is quantized to the nearest integer in [0, Q−1]. The max-

imum firing rate, fmax = Q − 1, is identical for all neurons. With each update,

w ← w − αt(y(x − yw
‖w‖2 ) + ηΓ(w, θ)), where θ is a sparsity threshold, η is a

penalty coefficient, y = xTw is the scalar projection of x onto w, and αt is the

learning rate at iteration t. Γ is a sparsity enforcing function, approximating the

gradient of a penalty function, g(w) =
m∑
k=1

tanh(σwk
2), which, for appropri-

ate choices of σ, penalizes non-sparse solutions early in the learning procedure

(Salavati et al., 2014).
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Algorithm 1 Neural Learning
Input: set of C patterns, C, stopping point, ε

Output: learned weights matrix, W

1: for rows, w, of W do

2: for t ∈ {1, ..., Tmax} do

3: αt ← max{ 50·α0

50+log10(t)
, 0.005}

4: θt ← θ0
t

5: for c ∈ C do

6: if ‖c‖ > ε then

7: αt ← α0

‖c‖2

8: end if

9: w← Dale(update(c,w, αt, θt, η))

10: end for

11: if ‖Cw′‖ < ε then

12: break

13: end if

14: t← t+ 1

15: end for

16: for components, wi of w do

17: if |wi| ≤ ε then

18: wi ← 0

19: end if

20: end for

21: end for

14



As in (Salavati et al., 2014), to speed up learning, we approximate Γ = ∇g

with

Γ(wt, θt) =


wt : |wt| ≤ θt

0 : otherwise

This update rule is a an improved approximation to Oja’s Hebbian learning algo-

rithm (Oja and Kohonen, 1988), with advantages in both biological plausibility

and computational complexity. For connections of fixed type (i.e., inhibitory

vs. excitatory), Oja’s rule alone is biologically dubious without the inclusion of

many constraint neurons to manage this change in type. Dale’s Principle states

that real synaptic connections change type rarely, if ever (Eccles, 1976). In ac-

cordance with this principle, our update rule does not allow weights to change

sign. This is accomplished after the updated weights are determined: If the sign

has changed after applying the update, set the new weight to a value just above

(resp. just below) zero if the previous weight was positive (resp. negative).

Thus, when learning is complete, these weights will be small in magnitude and

are thresholded to zero.

In Algorithm 1, line 12 terminates learning of the current weight, w, if the

sum of the projections of w on each pattern is no more than ε away from zero,

that is, if the current weight vector is approximately orthogonal to the code

space. Lines 17-19 perform a thresholding operation that maps to zero any
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weight sufficiently small in magnitude. This is primarily to suppress numerical

errors and promote consistency, as in Line 11, we use ε as a small positive con-

stant. Note that since the weights processed on each iteration are independent of

those in other iterations, this algorithm can be readily parallelized so that each

constraint neuron learns its weights simultaneously.

2.4 De-noising and decoding

We implemented a Bit Flipping style neural de-noising process, which we

applied to both the clustered and un-clustered de-noising networks. For all con-

figurations (clustered and un-clustered, and for a fixed maximum number of

de-noising iterations, the bit flipping algorithm performs no worse than winner-

take-all. Moreover, since it requires only the additional implementation of par-

allel thresholding operations for each pattern neuron, a biological realization of

their inclusions is no less plausible. The goal of this algorithm is to recover the

correct activity pattern, x, which has been corrupted by noise, and as such, is

currently (and errantly) represented by a noisy version, xn = x + n, where n

is this noise pattern. Since each weight vector is nearly perpendicular to ev-

ery pattern, for a matrix of weights, W , xnW ′ reveals inconsistencies in xn,
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which the de-noising algorithm seeks to correct in the feedback stage 1. In de-

noising, feedback weights from constraint neurons to pattern neurons are taken

to be equal to the corresponding feed-forward weight (i.e., synaptic connectiv-

ity is symmetric). The clustered de-noising process begins with Algorithm 3,

in which each cluster attempts to detect errant pattern neurons. If no errors are

detected, the process is complete. Otherwise, Algorithm 2 is invoked for each

cluster that detected errant neurons. This and other de-noising processes are

discussed in greater detail in (Karbasi et al., 2013) and (Salavati et al., 2014).

Note that this de-noising mechanism differs from error correction methods pre-

sented in (Fiete et al., 2008) and (Stemmler et al., 2015) in that information

contributed by place cells only reaches grid cells through constraint neurons,

and place information contributed by grid cells at module i only reaches other

modules through constraint neurons if connectivity allows.

In order to quantify the information content of the population, we estimated

the location encoded by the population using a maximum likelihood decoder

in 4 different schemes. Joint hybrid decoding utilizes information from all

cells. Grid (resp. place) only decoding utilizes information from only grid (resp.

place) cells. Grid decoding conditioned on place response performs decoding

1To see this, consider that xnW
′ = (x+ n)W ′ = xW ′ + nW ′ ≈ 0 + nW ′
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using only information provided by the grid cells, however, the only candidate

locations considered for the estimate are those that are not impossible given the

place cell activity.
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Algorithm 2 Modular Recall
Input: local weights for this cluster, W , maximum number of iterations, Tmax,

noisy subpattern, x, feedback threshold, φ

Output: de-noised subpattern, d

1: d← x

2: while t < Tmax do

3: y← xW ′

4: if ‖y‖ < ε then

5: break;

6: end if

7: f ← |y′|·|W |
m∑
i=1
|W |

8: for each pattern neuron,j do

9: if fj ≥ φ then fj = sign(xj)

10: else fj = 0

11: end if

12: end for

d← d− f

13: end while
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Algorithm 3 Sequential de-noising

Input: local weights, Wi, for each cluster, i ∈ {1, ...,M}, noisy pattern, xn,

stopping threshold, ε

Output: de-noised pattern, xd

1: xd ← xn

2: while t < Tmax and a cluster has an unsatisfied constraint do

3: for each cluster, i ∈ {1, ...,M} do

4: x← subpattern corresponding to cluster i

5: d← Modular Recall(x,Wi)

6: if |dWi| ≤ ε then

7: xd(cluster i’s subpattern indices)← d

8: end if

9: end for

10: t← t+ 1

11: end while
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3 Results

3.1 Coding theoretic results

We now endeavor to disentangle the connections between grid and place cell

parameter choices and coding theoretically relevant dependent variables and un-

derstand these links. The results presented here motivate the questions answered

in Section 3.3, in which we investigate how the coding parameters studied here

limit fidelity and error correction capability of the corresponding representation

of space. We begin our investigation of coding theoretic properties of the hybrid

code by defining a measure of redundancy of grid cell population response: µp.

More precisely, we define µp, a hybrid code’s spatial phase multiplicity, as the

number of grid cells with the same phase in the same module (e.g., if µp = 5,

in a module with 20 grid cells, there must be 4 unique spatial phases). This

replication of grid cell phases can be considered as a repetition code in the ac-

tivity of the grid cell population. In (Wennberg, 2015), it is revealed that there

may be a highly non-uniform distribution of phases among grid cells. Consid-

ering replication of grid cells (i.e., modules consisting of multiple grid cells of

the same phase) allows us to investigate coding theoretic repercussions of this

phenomenon. Inspired by (Mosheiff et al., 2017), for each of these regimes, we
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consider two distributions of grid cells to modules: uniform and non-uniform.

Mosheiff et al. find in (Mosheiff et al., 2017) that choosing Jm ∝ 1
λm−1 pro-

duces a more efficient representation of space. When modeling the non-uniform

allocation of grid cells to modules, we chose Jm =
⌊

J
λm−1

⌋
, since the scale of

modulem is defined as λm = λ1(λ)m−1. Neural recordings show that the small-

est scale is λ1 ≈ 40 cm (the value used here) (Stensola et al., 2012).

We construct a codebook matrix, C, by placing elements of C in its rows.

We computed normalized rank of the code, R = rank(C)
N
∈ [0, 1] as a function of

the grid scaling ratio. Normalized rank is an indicator of a code’s density, ex-

pressed as the fraction of possible dimensions of the code space occupied by a

particular code. R is an important feature to consider since a code’s dimension-

ality determines the dimensionality of it’s null space, the object that is learned

by the de-noising network. As discussed in (Salavati et al., 2014), if we suppose

that C ⊂ Rn, and dim(C) = k < n, then there are n − k mutually orthogonal

vectors that are also orthogonal to our code space (e.g., any basis for the null

space of the code), each representing one valid constraint equation. Thus rank

provides a fundamental limit on the number of unique effective constraint nodes

the de-noising network may learn.

The grid cell code is known to be dense (Fiete et al., 2008). This is especially
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pronounced when all orientations and phases are chosen randomly (uniformly

from [0, 2π] and [0, L] × [0, L] respectively), where for all choices of other pa-

rameters, the hybrid code achieves full rank at low rate. That is to say that the

experimentally observed properties of the grid cell code described in (Stensola

et al., 2012) produce a measurable decrease in rank compared to typical ranks

observed when all orientations and phases are chosen randomly.
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Figure 3: Code rank (R) vs. number of place cells (P ) for a uniform allocation

of grid cells. Increasing phase multiplicity (µp) produces a code with low rank

until sufficiently many place cells are included in the code that additional place

cells contribute only redundant location information. Here (and in any other

plot containing them) error bars show standard error of the mean. The codes

with µp = 1 exhibit slightly greater variability in R (i.e., larger SEM) than

those with µp = 5. N = 80 + P .

Place cell activity forms a relatively sparse code (for enough cells, and a

sufficiently large environment), thus combining populations of grid and place

cells realizes codes that are sparser than the grid cell component of the code.

When µp = 1, a hybrid code with no place cells achieves the largest normalized

rank. Since place cells communicate redundant information, their inclusion also
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reduces rank, which is precisely the trend observed in Figure 3. However, this

appears to reverse when µp > 1, for a sufficiently small number of participating

place cells. This occurs because rendering grid cells redundant by increasing

phase multiplicity lowers the rank of the grid-only component of the code. Con-

sequently, including place cells increases rank, until the information contributed

by the place cells reaches its maximum, at which point the inclusion of addi-

tional place cells only lowers rank. Error bars (measuring SEM) are included

due to the stochastic nature of instantiating certain parameters (e.g., ξ, which is

always chosen uniformly randomly from the set of quantized locations).

We also computed rank, R, as a function of code rate, r = C
N

(number of

locations represented per neuron), a measure of spatial resolution and efficiency

of the encoding (i.e., for a fixed L, a higher code rate, r, is obtained by lowering

∆L or by decreasing N ). It is their common demoninator (N ) that links the

dependence on population size of both rank and rate. When phases are chosen

randomly, low rank is difficult to obtain at all but the smallest of code rates

tested (r ∈ [0, 1] and µp > 1 may result in low ranks if enough place cells are

included). In contrast, Figure 4 shows that codes spanning the spectrum of nor-

malized ranks may be instantiated over a wide range of rates with appropriate

choice of parameters. Further, this indicates that redundancy reduces dimen-
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sionality so low ranks are achievable even at rates much greater than biologi-

cally relevant. Later, it will be shown that this low dimensionality is important

in constructing sparse and readily de-noisable representations of space. Figure

4 demonstrates that without the redundancy introduced by increasing µp > 1,

a hybrid code that encodes in 90 neurons more than 90 locations in a 9 m2 en-

vironment has full rank. However when µp > 1, there is a stark drop in the

maximum rank achieved. As shown, when µp > 1, one may encode orders of

magnitude more locations while maintaining low dimensionality. This trend is

observed in each configuration shown, and when grid cells are allocated to mod-

ules non-uniformly. Thus both dense and sparse hybrid codes may be developed

with proper choices of redundancy parameters.
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Figure 4: Code rank (R) vs. logarithm of code rate (log10(r)) for grid cell

organization choices consistent with observations in (Stensola et al., 2012) with

M = 4, J = 20, P ∈ {10, 100}, grid cells allocated to modules uniformly, and

µp ∈ {1, 4, 5}. Without grid cell phase redundancy, rank saturates for relatively

small rates. In contrast, when phase redundancy is imposed on the grid cell

population, low ranks are achievable at a wide range of rates. In each case

considered here, N = 80 + P .
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Figure 5: Minimum distance (d) vs. code rate (r), for grid cell organization

consistent with observations in (Stensola et al., 2012), withM = 4, and P = 10.

Data corresponding to µp = 1 are marked with dashed curves, and µp = 5 by

dot-dashed curves. In order to ensure N = 90, we choose J = 20 in the

uniform case and J = 32 in the non-uniform case. For r > 20, d decreases

with increases in r and µp. However, for small r and grid cells allocated to

modules non-uniformly, increasing µp evokes an increase in d. The apparent

ordering of configurations considered extends to much larger r than shown here

(specifically, we probed r ≤ 106).

A code’s resilience to neural noise can be assessed by the minimum pair-

wise (Euclidean) distance between codewords, (d). Traditionally, Hamming
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distance is used as the operative metric for characterizing minimum distance of

a code. However, in cases when soft information is used by the decoder, Eu-

clidean distance can prove to be more useful. Higher d (i.e., larger distances

between codewords) corresponds to a more noise tolerant neural representation

of space (Lin and Costello, 1983). In fact, ideally all errors induced by noise

with amplitude less than
⌊
d−1
2

⌋
are correctable (Lin and Costello, 1983)(Sreeni-

vasan and Fiete, 2011) (for an intuitive illustration of this, see appendix 5.4).

We computed d as a function of rate, r, for different phase multiplicities, µp,

(Fig. 5). For each configuration there is a trade-off between d and r. Since rank

tends to increase and saturate with rate, this is also a tradeoff between d and

rank. When the rate is low, a low resolution of location is targeted: d is larger,

so more erroneous neurons may be corrected. Note that for a fixed value of r,

the codes with µp = 5 have slightly smaller d, and that this difference grows to

saturation as r increases. Interestingly, at high rates, the decrease in d produced

by increasing µp is much smaller for the population with grid cells distributed

to modules non-uniformly. This observation applies for the highest rates for

which computation of d is tractable with modern high performance computers:

r < 106. Thus for a fixed r and large enough µp, the code with grid cells al-

located to modules non-uniformly should exhibit measurably better de-noising
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performance. We test this prediction by simulating the de-noising process and

collecting statistics presented in Figures 10 through 14. Surprisingly, for small

r, with a uniform allocation of grid cells to modules, increases in µp appear

to effect small decreases in d, while when grid cells are allocated to modules

non-uniformly, increases in µp produce small but discernable increases in d.

For environments of a fixed size, x2maxcm2, and a hybrid code with N neu-

rons, varying code rates implies quantizations of space with varying unit width

(∆L = xmax√
C

). Since rate, r = C
N

, ∆L = xmax√
Nr

. Thus the spatial sampling period,

∆L is inversely proportional to
√
r. In order to ensure we probed reasonable

code rates, we estimate the typical perceivable spatial period of a rat (through

its place cells) by considering its running speed (ranging from .1 to 100 cm
s ), and

average ISI of 150ms (Gupta et al., 2012), which bounds neural sampling pe-

riods for space, implying that ∆L should lie somewhere in [0.15, 15]cm. Code

rates considered in this work assume ∆L < 15cm. To satisfy curiosity, and

probe rate dependent phenomena at even greater rates, the smallest ∆L consid-

ered is 0.0022cm.

In order to investigate how the fundamental limits on denoisability of the

code scale with the number of pattern neurons (i.e., grid and place cells), we

compute d as a function of N , independently varying P , M , {Ji}i∈{1,...,M}),
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fixing other paramters. As illustrated in Figure 6, minimum distance increases

exponentially with increases in N due to increases in number of place cells, P

and number of grid cells per module, Ji. In contrast, increases of M past a criti-

cal value cease to improve minimum distance because the spatial scale at which

higher order modules represent position fails to capture relevant differences in

location encoded. Notably, when all other parameters are fixed, non-uniform

allocations of grid cells to modules provides a code with inferior minimum dis-

tance. This is a consequence of the greater number of pattern neurons in the

uniform case, and can be considered the loss incurred in exchange for an in-

crease in coding efficiency (measured by number of neurons used to encode

position), as discussed in (Mosheiff et al., 2017).
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(a) (b) (c)

Figure 6: (a) Minimum distance, d, vs. number of grid modules, M , with

J = 20 grid cells in the first module, five-fold replication of grid cell phases

(i.e., µp = 5), uniform and non-uniform allocations of grid cells to modules,

and no place cells. In the uniform (resp. non-uniform) case, N = M · 20 (resp.

N =
M∑
m=1

⌊
20

λm−1

⌋
). (b) Minimum distance, d, vs. number of neurons in the first

module, J , for uniform and non-uniform allocations of grid cells to modules,

and no place cells. N is calculated as in (a). (c) Minimum distance, d, vs. num-

ber of place cells, P , for a population of place cells resembling those observed

in experiment (Nadel and O’Keefe, 1978; Muessig et al., 2015; Aronov et al.,

2017) with no grid cells (i.e., N = P ). A complete list of parameters may be

found in appendix 5.6.
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3.2 Code learning results

In order to study how Algorithm 1, neural learning, affects the de-noising

network, we assess the changes in connectivity that it produces. Typical learned

connectivity matrices and their associated normalized degree distributions (em-

pirical distributions of the number of connections emanating from pattern neu-

rons, normalized to the total number of pattern neurons,N ) are found in Figures

7 and 8. These demonstrate that for a typical hybrid code, the clustered network

has a sparser connectivity, with less variability in its sparsity compared to the

un-clustered network. This is because clustering enforces a tighter limit on the

number of pattern neurons to which a constraint neuron may connect. We sim-

ulated an ensemble of 4 modules of 20 grid cells each, together with 20 place

cells, which produced the following connectivity matrices and associated de-

gree distributions. Interestingly, in both cases, there are place cells (i.e., pattern

neurons with index exceeding 80) that are left unconnected to grid modules via

constraint neurons. An illustration of the learned weights matrix corresponding

to a randomly clustered de-noising network was omitted, as it is sparser, but

otherwise very similar to that of the un-clustered weights image.
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Figure 7: Image of typical synaptic weight matrices learned by two de-noising

networks for a hybrid code with M = 4, J = 20 and P = 20. In this example,

N = 100 and nc = 64.

Figure 8: Degree distributions of the connectivity matrices shown in Figure 7

Figure 9 depicts the average connection strength between place cells and

grid modules, where the connection strength between place cell p and grid mod-
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ule m is defined as 1
nc

(
∑
(i,j)

|wi,jwi,p|), where i indexes constraint neurons, and

j indexes grid cells in module m. Note here that connectivity does not imply

direct synaptic connection, but effective connectivity through constraint neu-

rons. Results were obtained from configurations with M = 4, J = 20 and

P = 20; connectivities depicted are averaged over 50 networks. Place cells

are ordered by increasing size of receptive field. This trend appears for any

µp > 1 (i.e., whenever the responses of at least some grid cells are replicated

by instantiating multiple grid cells with the same phase in the same module). In

the modularly clustered case, average connectivity (between place cells and all

grid modules) appears to decrease with increasing place cell size, as compared

to a random clustering which produces nearly the same connectivity for each

place cell. This phenomenon was not observed when grid cell phases and ori-

entation offsets were chosen randomly and does not appear in the un-clustered

configuration.
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Figure 9: Average connectivities between place cells (index along the x-axis)

and grid modules for configurations with M = 4, J = 20, P = 20 , N = 100,

and nc = 64. Place cell indices are ordered from smallest to largest receptive

field size; grid cell phases were uniformly distributed on the environment. Grid

cells were uniformly distributed to modules. Connection strengths depicted are

averaged over 50 networks.

3.3 De-noising and Decoding Results

In order to study the relationship between coding theoretically relevant vari-

ables, population parameters, de-noising network configuration, and fidelity

of the hybrid code’s representation of space, we empirically evaluate the de-

noising network’s performance. To measure the effectiveness of the de-noising

36



network, we first perturb the states (i.e., firing rates) of the grid and place cells

by incrementing or decrementing randomly and clipping to the boundaries of

[0, Q− 1]. A pattern error occurs if after de-noising, any entry of the de-noised

pattern differs from the corresponding component of the original pattern. A

symbol error occurs each time any symbol of the de-noised pattern differs from

the corresponding symbol of the correct pattern. For identical populations of

grid and place cells (M = 4, J = 20, and P = 10), in pattern error rate,

the clustered network dramatically outperforms the un-clustered (when the grid

cells have sufficient redundancy), and the modular clustering scheme always

outperforms the random clustering scheme. By fixing the size of the popula-

tions we compare, we ensure no improvement in d results from a larger N .

Figure 10 depicts pattern error rate (Ppe) for a clustered hybrid code, with vary-

ing phase multiplicity. The missing configuration (consisting of a randomly

clustered network with a code with a non-uniform allocation of grid cells to

modules) had 100 percent pattern error rate for every non-zero number of ini-

tial errors. This shows that for a small number of initial errors, the full pattern

of population activity corresponding to the correct location may be recovered,

but that in general, this is rarely possible. That only the modularly clustered

de-noising networks are able to achieve low Ppe shows that the biological or-
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ganization of grid cells into discrete modules, is important for high quality self

localization in the presence of noise. Further, clustering is the only way to

achieve such a small Ppe, since no un-clustered de-noising network consistently

reduced Ppe below 0.99. It is surprising that the modularly clustered de-noising

mechanism achieves a better Ppe when de-noising hybrid codes with uniform

allocations of grid cells to modules (as compared to non-uniform allocations of

grid cells to modules), as Figure 5 demonstrates that such codes tend to have a

larger minimum distance at any rate probed. This result also demonstrates that

whether grid cells are distributed uniformly to modules has a smaller impact on

Ppe than µp. That the codes with larger µp tend to outperform those with µp = 1

is also surprising, since at high rates (in Figure 10, r ≈ 103) codes with larger

µp are restricted to smaller d.
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Figure 10: Pattern error rate, Ppe, vs. initial number of errors, E, for a clustered

hybrid code with M = 4, J = 20 (in the networks with grid cells allocated to

modules non-uniformly, J = 32 to ensure N = 90 pattern neurons) and P =

10. Other configurations assessed (specifically, those with random redundancy

parameters and those with an un-clustered denoising network) have Ppe = 1 for

any initial number of errors. In each case considered, nc = R ·N . This choice

is discussed in further detail in Appendix 5.1.
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Figure 11: Symbol error rate, Pse, vs. initial number of errors, E, for clustered

and un-clustered hybrid codes. Here, each code utilizes a uniform distribution

of grid cells to modules, and deliberately chosen spatial phases and orientations

(i.e., so as to mirror those observed in (Stensola et al., 2012)). N = 90. The

dotted red curve (with no markers), log10(
initial number of errors

N
), is a threshold be-

tween regions of desirable and unacceptable Pse (i.e., log10(Pse) for a network

that performs no de-noising). For E < 10, configurations are ordered by in-

creasing Pse as ‘modular clustering, µp = 5’, ‘random clustering, µp = 5’,

‘modular clustering, µp = 1’, ‘no clustering, µp = 5’, ‘no clustering, µp = 1’,

‘random clustering, µp = 1’. As shown in the inset, for E < 5, configurations

with µp = 1 produce symbol error rates above log10(
initial number of errors

N
), that is,

they increase the number of symbol errors.

40



Figure 11 shows symbol error rates of hybrid codes for several configura-

tions with deliberately chosen grid cell phases and orientations (i.e., so as to

mirror those observed in (Stensola et al., 2012). This demonstrates that gener-

ally, clustered de-noising networks do not offer improved symbol error rate, Pse,

compared to their un-clustered counterparts. However, for a small initial num-

ber of errors, when the grid cells exhibit sufficient redundancy in their phases,

a randomly clustered de-noising network is only outperformed by a modularly

clustered network. Figure 12 shows Pse for a hybrid code with deliberately

chosen phases and orientations, de-noised by a modularly clustered network.

Consistent with observations on pattern error rate, hybrid codes with grid cells

uniformly allocated to modules achieve better Pse. This may result from the fact

that d is larger for such codes when µp is small. However, this explanation is in-

complete as when µp = 5, a code generated by a non-uniform allocation of grid

cells to modules tends to achieve a larger minimum distance than those gener-

ated by uniform allocation of grid cells to modules. Plotted in both Figures 11

and 12 is a dotted red curve, log10(
initial number of errors

N
). This curve is a threshold

between regions of desirable and unacceptable Pse (i.e., log10(Pse) for a network

that performs no de-noising). To see this, consider a de-noising network that

does not change the initial number of errors, E. For this network, Pse = E
N

,
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so log10(Pse) = log10(E) − log10(N). Surprisingly, Figure 11 shows that for a

small initial number of errors, configurations with µp = 1 have log10(Pse) above

this threshold, that is, they increase the number of symbol errors! Figure 12

quantifies the loss incurred by the non-uniform allocation of grid cells to mod-

ules (i.e., Jm ∝ 1
λm−1 ) for a modularly clustered de-noising network. Note that

both grid cell allocation schemes produce networks that introduce additional

errors during de-noising when µp = 1 and E = 1, as these conditions result

in Pse >
E
N

. Note that for E > 1, no network introduces extraneous errors by

de-noising. Additionally, networks with µp = 5 dramatically outperform those

with µp = 1 when E is small.
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Figure 12: Symbol error rate, Pse, vs. initial number of errors, E, for uniform

and non-uniform clustered hybrid codes. Here, each de-noising network em-

ploys the modular clustering scheme. In each case, N = 90, M = 4, P = 10.

For grid cells allocated to modules uniformly (resp. non-uniformly), J = 20

(resp. J = 32). The dotted red curve, log10(
initial number of errors

N
), is a threshold

between regions of desirable and unacceptable Pse (i.e., log10(Pse) for a network

that performs no de-noising).
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Figure 13: MSE of decoding after de-noising for a hybrid code with M = 4,

J = 20, P = 10, and µp = 5, and deliberately chosen grid cell parameters

(i.e., so as to mirror those observed in (Stensola et al., 2012)). Grid cells are

allocated to modules uniformly, so N = 90. Here, nc = 64.

Figure 13 shows MSE of different decoding processes after de-noising for

a Hybrid code with M = 4, J = 20, P = 10, and µp = 5, for deliberately

chosen grid cell parameters (i.e., so as to mirror those observed in (Stensola

et al., 2012)). This plot demonstrates that an ideal observer decoder which con-

siders information from all cells outperforms all others for any initial number of

errors. This disparity may, in part, be accounted for by the difference between

the number of grid cells and the number of place cells. Figure 14 shows MSE

of joint hybrid decoding after de-noising for a hybrid code with µp = 5, for
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the configurations that achieved the best error correction performance in both

Ppe and Pse. This plot demonstrates that the code with grid cells distributed

to modules uniformly with a modularly clustered de-noising network achieves

the best decoding performance, outperforming its non-uniformly arranged ana-

logue. Since the code with a non-uniform allocation of grid cells to modules

had a larger minimum distance (compared to the same code with a uniform al-

location of grid cells to modules), this result challenges our earlier hypothesis

that codes with non-uniform allocations of grid cells across modules may be de-

noised more effectively. This is especially remarkable since in section 3.1, we

demonstrated that these codes achieve larger minimum distance for identical N

at large r, such as the rate considered in Figure 14. Further, this demonstrates

(in a natural metric of the stimulus space) that in the most redundant hybrid

code considered, a modularly clustered de-noising network is far superior to a

randomly clustered or un-clustered one. Interestingly, for a small number of

initially erroneous pattern neurons, the loss (in MSE) due to a lack of modular

clustering is much greater than the loss due to non-uniformity.
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Figure 14: MSE of decoding after neural de-noising (cm2) vs. initial number of

errors for a hybrid code with µp = 5, N = 90.

4 Discussion

We demonstrated that both dense and sparse hybrid codes may be con-

structed by proper choice of grid and place cell parameters. We also showed

that in the presence of neural noise, the activity of only those configurations

with sufficient redundancy in the grid cell component of the code may be con-

sistently de-noised. It is somewhat counterintuitive that populations with repli-
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cated grid cell responses (i.e., µp > 1) produce a more noise resilient code

(as shown in the de-noising performance results). This is surprising because

the populations with uniformly allocated grid cells and largest d are those with

unique spatial phases (i.e., µp = 1) (Figure 5). This result is counterintuitive (in

the biological sense) as in (Hafting et al., 2005), it is noted that the distribution

of grid cell phases observed in experiment did not deviate significantly from

uniformity. However, in a recently published M.S. thesis (Wennberg, 2015), it

is revealed that the distribution of spatial phase offsets of grid cells may be sig-

nificantly non-uniform. The dataset from which this conclusion is drawn was

obtained from rat 14147 in (Stensola et al., 2012). Our results imply that this

observed non-uniformity in distribution of grid cell phases provides value in

de-noisability and accuracy of decoding.

Our results reveal another suprise in Figure 5, in which, for µp > 1, codes

with non-uniform allocations of grid cells to modules achieve demonstrably

larger d. However, in Figure 12, the networks with µp = 5 and grid cells

allocated to modules uniformly achieve the smallest Pse. Further, in Figures 10

and 14, for a small number of initially erroneously signaling neurons (E), these

networks outperform those with grid cells allocated to modules non-uniformly.

These observations demonstrate that the hybrid code for space may trade off
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improvements in de-noising performance (in d) for efficiency of encoding (r)

by distributing grid cells to modules non-uniformly, as suggested in (Mosheiff

et al., 2017).

Hybrid codes of widely varying rank, minimum distance, and code rate (R,

d, and r, respectively) may be instantiated by choosing appropriate parame-

ters for the populations of grid and place cells, a fact that showcases the code’s

adaptability. This means that grid and place cells may participate in neural com-

putations that rely on assumptions other than those presented here, which insist

on a low dimensional code space and a sparse connectivity matrix. It is partic-

ularly difficult to characterize the tradeoff between code rate and d, presented

in Figure 5, as it indicates that for biologically reasonable values of r, increases

in µp should reduce a code’s minimum distance, d (a fundamental limit of the

code’s de-noisability). Surprisingly, the configuration with uniformly allocated

grid cells and µp = 5 tends to outperform the others in Ppe, Pse, and MSE. It

is possible that the de-noising networks presented here are incapable of achiev-

ing the codes’ error correction capacities in the cases considered. This would

allow for characteristics endowed by a larger µp to effect the stark differences

observed in de-noising efficacy and decoding accuracy. Furthermore, this ex-

planation seems likely, as coding theory suggests that the maximum number of
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correctable errors in a linear block code (as a function of d) can be computed

as t =
⌊
d−1
2

⌋
(Lin and Costello, 1983). For example, the strongest code (as

measured by largest value of d in Figure 5) achieves d ≈ 5 for intermediate r,

so t ≈ 2. Figure 10 corroborates this in demonstrating that pattern error rate

exceeds 0.5 (and quickly saturates at 1) for more than 2 errant pattern neurons.

We demonstrate that the chosen de-noising network architecture performs

satisfactorily for hybrid codes that fit its requirements regarding rank, and poorly

for those that do not. Additionally, we assessed average connectivity between

place cells of varying receptive field sizes and modules of grid cells by an-

alyzing the learned connectivity matrix. This analysis demonstrates that our

model place cells of smaller receptive field size are more strongly connected to

grid modules, and that they are most strongly connected to grid modules of the

smallest scale. Moreover, this result presents a physiologically testable hypoth-

esis. While difficult, two photon microscopy has been successfully employed

to accurately image the microscopic structure of nervous tissue (Svoboda and

Yasuda, 2006). One way to estimate connection strength between real neurons

is to count the number of boutons expressed on the pre-synaptic neurons, as-

suming that weight should be proportional to this number, though there may

be simpler ways to estimate connection strength (Bi and Poo, 1998). Thus, if
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groups of place cells connected via constraint neurons to several distinct grid

modules may be identified, this theoretical prediction - that connectivity be-

tween the hippocampus and MEC will decrease along the dorsoventral axis -

can be confirmed or refuted. Another interesting experiment is made possi-

ble by recent advances in optogenetics, which enable single cell resolution of

network activity for a population of inoculated cells (e.g., a collection of grid

cells, as in (Sun et al., 2015)). While technically challenging due to the physical

separation of each population in the brain, it should be possible to image simul-

taneous activity of grid and place cells at high temporal precision (Grewe et al.,

2010). From these measurements, for a set of quantized locations, simultane-

ous firing rates may be estimated (Theis et al., 2016). Then, the rank, rate, and

minimum distance of this empirical codebook may be computed to offer insight

about limits of noise tolerance of real spatial navigation circuitry. Of particular

interest is discovering the extent to which neural noise transiently varies such

attributes for grid and place cells in real brains, and how these coding theoretic

properties adapt (if at all) to changes in speed, context, and other variables.

In Figures 10, 12, 13, and 14, we demonstrate the differences in performance

of each network structure, and of the various decoding algorithms. The univer-

sal improvements from place only decoding to joint hybrid decoding show that
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highly accurate position estimation can be significantly more difficult without

both populations of cells. The discrepancy between ‘grid only decoding’ and

‘grid decoding conditioned on place response’ shows that even utilizing place

cell information indirectly (by eliminating candidate locations deemed impos-

sible given the state of the place cell population) yields a sizable improvement

in decoding accuracy when there are many place cells, or when place cells are

less noisy than grid cells. That the modularly clustered networks tend to best

the corresponding randomly clustered networks implies that the physiological

organization of grid cells by their spatial scale may provide a computational

advantage in de-noising and decoding. This notion is further supported by the

observation that a randomly clustered network sometimes introduces additional

errors by attempting to de-noise, as shown in Figure 11. This may be because

the un-clustered network is essentially a randomly clustered network that does

not take advantage of synergistic cluster computing. In any cluster, both grid

cells and place cells are able to correct each others’ errant activity. However,

under modular clustering, in order for a grid cell in module i to correct the ac-

tivity of a grid cell in a different module j, the activity of each neuron in module

i must be correct so that the activity of place cells (connected to both modules i

and j) will contradict and correct the erroneous activity.
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It should be noted here that the de-noising constraint neurons are a hypo-

thetical construct and need not reside in the hippocampus or MEC in order to

execute the previously described computations. Our conception of these con-

straint nodes is as single units. However, these may represent larger networks

of neurons performing identical computations. Furthermore, this work is not

intended to convince readers of the necessity or existence of these cells, only to

demonstrate tangible coding theoretic advantages conferred by constraint neu-

ron moderated communication between grid and place cells. Additionally, some

models of development of the grid and place cell networks demonstrate depen-

dence between properties of each populations’ apparent receptive fields that our

model is unable to capture (Monaco and Abbott, 2011). Thus, coding theo-

retic results presented here are confined to consideration of a more static code

than what is often observed in recordings of real neuronal populations. While

our model is limited in the sense that neurons are defined functionally (in con-

trast with biophysical models where behavior emerges from the time evolution

of the model’s physics), the learning algorithms considered are analogous to a

Hebbian plasticity and operations required for de-noising can be feasibly imple-

mented by networks of real neurons (if not by single units). Hence, the results

discussed here have potential implications about neural codes for other continu-
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ously valued stimuli (e.g., pitch of an auditory signal, another variable encoded

in the mammalian hippocampus (Aronov et al., 2017)).

Contributions of this work include the coding model and de-noising systems

themselves, as a framework in which to characterize limits on fidelity of cooper-

ating neural codes subject to noise (for physical position or other variables such

as the auditory pitch code studied in (Aronov et al., 2017)), and improved clarity

about how parameterization of grid and place cell populations affects these fun-

damental information and coding theoretic limits. Further development along

these threads of investigation of neural codes for space include studying coding

theoretic properties of more complete navigational codes including head direc-

tion cells, boundary vector cells, and time cells (Lever et al., 2009; Salz et al.,

2016; Taube et al., 1990). It would be most interesting to probe coding and

information theoretic properties of place cells that encode 3D space as demon-

strated to reside in the bat hippocampus (Yartsev et al., 2013). Even with these

classes of neuron, the hybrid code might be unable to encode and de-noise path

information without supplementary structure to process its sequentiality. One

strong candidate solution for this is to include so called hippocampal time cells.

Just as place cells code for distinct locations on paths through space, time cells

encode ordered moments in a temporally ordered sequence of events, precisely
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the information, which, when coupled with location, should allow for the en-

coding of paths (MacDonald et al., 2011).
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5 Appendix

5.1 Network size

N , the number of pattern neurons in a network is the sum of the sizes of

the constituent grid and place cell populations. When grid cells are allocated to

modules uniformly, N = P +M · J . Otherwise, N = P +
M∑
m=1

J
λm−1 .

Since a code of normalized rank R admits at most N(1 − R) unique con-

straint equations (i.e., linear combinations of pattern neuron activities that eval-

uate to zero only when this activity forms a codeword and the functions com-

puted by constraint neurons), we use nc = N(1−R).
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5.2 Subspace learning

In (Oja and Karhunen, 1985), the authors propose an algorithm that is ca-

pable of computing a basis for the null space of a random matrix, A, which is

assumed to be the expected value of sample matrices, At. The update rule for

the matrix whose columns are the resulting basis vectors is

W̃t = Wt−1 + At−1Wt−1αt−1 (2)

Wt = W̃tR
−1
t , (3)

where αt is a diagonal (and compatible) matrix of gain factors. As in (Oja and

Karhunen, 1985), equations 2 and 3 may be re-written as operations on column

vectors, wt.

w̃t = wt−1 + αt−1At−1wt−1 (4)

wt =
w̃t

‖w̃t‖
, (5)

in which αt is the gain factor corresponding to the current column. This number

may be equivalently understood as a learning rate. Indeed in (Xu et al., 1991),

the authors show that for appropriate choices of At, the update rule is a form

of anti-Hebbian learning. In (Oja and Karhunen, 1985) the authors prove con-

vergence of this algorithm to the eigenvectors of A corresponding to the largest

eigenvalues. Further, when At is replaced by −At, wt converges to the eigen-
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vectors of A corresponding to the smallest eigenvalues. In (Oja and Karhunen,

1985), it is demonstrated that by combining equations 4 and 5, expanding as a

power series in αt, and ignoring second (and higher) order terms, we arrive at

wt = wt−1 + αt−1(At−1wt−1 −
wT
t At−1wt−1

wT
t−1wt−1

wt−1). (6)

The authors of (Salavati et al., 2014) chooseAt = (xTt xt)Pxt = xtx
T
t , the prod-

uct of projections onto the space spanned by xt, and define yt = xTt wt = wT
t xt.

In (Oja and Karhunen, 1985), it is mentioned that this update rule finds eigen-

vectors corresponding to the largest eigenvalue of At, or those corresponding

to the smallest eigenvalues of −At, when this matrix is used instead. Since At

is a projection matrix, it has rank 1. Thus it has one eigenvector with non-zero

eigenvalue, xt, and dim(x) − 1 eigenvectors with eigenvalue 0. Each of these

eigenvectors, v, is guaranteed to be perpendicular to x because Atv = 0v = 0,

that is, the v’s projection onto x has magnitude 0. By choosing xt ∈ C, with the

aforementioned choice for At, this algorithm should compute vectors approxi-

mately perpendicular to the code space.

Now, we may rewrite equation 6 as

wt = wt−1 − αt−1xt−1xTt−1wt−1 + αt−1
wT
t−1xt−1x

T
t−1wt−1

‖wt−1‖2
wt−1

= wt−1 − αt−1yt−1xt−1 + αt−1
y2t−1
‖wt−1‖2

wt−1. (7)
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To obtain a sparse basis for null(C), one may add to equation 7 a regularizing

term that penalizes non-sparse solutions. In particular, using ηΓ(wt−1, θt−1), as

considered in (Salavati et al., 2014), to arrive at

wt = wt−1 − αt−1(yt−1(xt−1 −
yt−1wt−1

‖wt−1‖2
))− αt−1ηΓ(wt−1, θt−1). (8)

5.3 Structure of the performance testing simulations

In order to evaluate the performance of the de-noising mechanisms proposed

here, we first generate codes from the parameters considered in appendix 5.6.

Then algorithm 1 is applied to the chosen de-noising network. After learning

is complete, in sequence, C randomly chosen codewords are corrupted and pre-

sented to the network to de-noise using algorithms 2 and 3. After the de-noising

process is complete, the de-noised pattern is assessed and performance is com-

puted incrementally.

5.4 How minimum distance limits ideal decoding

Suppose x and z are two codewords separated by their code’s minimum

distance, d, as shown in figure 15, and that during transmission of x, our channel

adds noise, n. If the magnitude of this noise (‖n‖) exceeds d
2
, then the received

word (y), may lie a distance t < d
2

away from z. As a result, a minimum
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distance decoder (which outputs the codeword nearest to the received word)

incorrectly declares that z was transmitted. If error events at the symbols of

codewords are independent and the probability of error does not depend on the

position of the symbol in question, as long as this probability does not exceed

1
2
, minimum distance decoding is maximum likelihood decoding.

Figure 15: An illustration of the relationship between minimum distance of a

code and its resilience to noise.

5.5 Parameter and variable definitions

Here we present a table of definitions considered in this manuscript.
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Parameter Definition

L Length of simulated square arena

C Number of locations (codewords) that comprise the code in ques-

tion

M Number of modules of grid cells

J Number of neurons in the first module of grid cells

P Number of place cells

µp Number of grid cells with the same phase in the same module

λ Scaling ratio between grid modules

λi Scale of the ith grid module

θm,j Orientation offset of the jth grid cell of module m

αt Learning rate at iteration t

ε Learning completion threshold

η Sparsity penalty coefficient

C Codebook: a collection of codewords formed by the simultaneous

activity of pattern neurons

C Codebook matrix constructed by placing elements of C in rows

R Normalized rank of the code, rank(C)
N

r Normalized code rate - number of locations represented per neuron

- C
N

d Minimum distance of a code (minimum among all distances be-

tween codewords)
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5.6 Choices of parameters

In learning, normalized weights are initialized randomly with degree d4 loge(n)e,

where n is the length of the weight vector. We used, θ0 = 0.031, η = 0.075, and

α0 = 0.95. In de-noising, we set φ = 0.95. Unless otherwise noted, dependent

variables measured and computed are mean values averaged over 100 networks.

Error bars represent standard error of the mean.

Here we present a table of parameters indexed by figure in this manuscript.

“N/A” in this appendix is taken to mean either that this parameter was varied or

was not used.
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Figure L (cm) C M J P λ λ1 (cm) µp ε

3 300 1000 4 20 N/A
√

(2) 40 N/A N/A

4 300 1000 N/A N/A N/A N/A 40 N/A N/A

5 300 N/A N/A N/A N/A
√

(2) 40 N/A N/A

6 300 N/A 4 20 10
√

(2) 40 N/A N/A

7 300 N/A 4 20 N/A
√

(2) 40 5 N/A

8 300 105 4 20 20
√

(2) 40 5 C10−3

9 300 105 4 20 20
√

(2) 40 5 C10−3

10 300 105 4 20 20
√

(2) 40 5 C10−3

11 300 105 4 20 10
√

(2) 40 N/A C10−3

12 300 105 4 20 10
√

(2) 40 N/A C10−3

13 300 105 4 20 10
√

(2) 40 N/A C10−3

14 300 105 4 20 10
√

(2) 40 5 C10−3

15 300 105 4 20 10
√

(2) 40 5 C10−3
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