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Abstract—We study the data reliability problem for devices forming a dynamic distributed storage system. Such systems are
commonplace in traditional cloud storage applications where storage node failures and updates are frequent. We consider the
application of regenerating codes for file maintenance. Such codes require lower bandwidth to regenerate lost data fragments
compared to file replication or reconstruction. We investigate threshold-based repair strategies where data repair is initiated after a
threshold number of data fragments have been lost. We show that at a low departure-to-repair rate regime, in which repairs are
initiated after several nodes have left the system outperforms if repairs are initiated after a single node departure. This optimality is
reversed when the node turnover is high. We further compare distributed and centralized repair strategies and derive the optimal repair
threshold for minimizing the average repair cost per unit of time. In addition, we examine cooperative repair strategies and show
performance improvements. We investigate several models for the time needed for node repair including a simple fixed time model and
a more realistic model that takes into account the number of repaired nodes. Finally, an extended model where additional failures are
allowed during the repair process is investigated.

Index Terms—Distributed storage, regenerating codes, dynamic cloud, mobile cloud, data reliability.
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1 INTRODUCTION

D ISTRIBUTED storage systems (DSS) offer a high de-
gree of reliability by replicating or coding data across

multiple storage nodes [1], [2]. If some limited number of
storage nodes fail, the original content can be recovered by
downloading data fragments from healthy storage nodes.
The amount of data that needs to be downloaded for repair
is typically referred to as the repair bandwidth. In almost all
DSS scenarios, the set of devices that comprise the system is
dynamic. In traditional cloud storage applications, the num-
ber of storage nodes varies over time, as storage nodes are
frequently taken offline due to failure or to apply updates
[3]. The repair bandwidth is a substantial fraction of the
overall network traffic generated within datacenters and a
major driver of datacenter costs [4]. In other emerging DSS
paradigms such as edge computing [5] and mobile cloud
storage systems [6]–[8], the storage node dynamics can be
higher as devices frequently enter and leave the system.

Reliability is one of the challenges in these networks [9].
Also, caching at the edge has been proposed as an effective
approach to reduce backhaul usage and latency in content
retrieval and gains using coding techniques are significant
in such scenarios [10]. The so-called mobile cloud storage
systems reduce the traffic load of the already over-burdened
infrastructure network and improve content availability in
the event of network outages. Furthermore, local caching
and content distribution from a community of mobile de-
vices may be employed, when backhaul connectivity is
intermittent [6]–[8]. As an example, consider a tactical net-
work such as a temporary military camp or tactical teams
being deployed in the field. Soldiers carrying mobile devices
may store information in a distributed fashion to improve
reliability and reduce the risk of information exposure in
the event of a capture. Another relevant application domain
is that of delay tolerant networks (DTNs). Many developing
regions in the world rely on networks where the reachback
to infrastructure is intermittent and with high delay (could
be in the order of days). The majority of users in those
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Fig. 1: File maintenance in a mobile cloud storage system.

areas have access to mobile devices rather than a stationary
storage device such as a desktop computer. Storing data
in a mobile DSS can i increase the storage reliability while
providing efficient access.

In this paper, we consider a dynamic DSS setup where
nodes leave and enter the DSS leading to partial data loss.
We focus on a mobile cloud scenario where data is stored
within a geographically-limited area A by a community of
mobile devices, as shown in Fig. 1. For ease of illustration,
we consider a single file F . A user within A can download
F from the mobile devices via direct communication links
without accessing the network infrastructure. When a mo-
bile device storing any fragment of F exitsA, its stored data
is lost. To deal with such losses, redundancy is introduced in
the form of data replication or coding [1], [2]. In replication
storage, copies of F are stored at multiple devices within
the community. More sophisticated coding schemes such as
erasure coding achieve the same reliability at lower storage
overhead [12], [13]. Despite the application of coding, a
stored file F will eventually be lost when enough mobile
devices (storage nodes) depart from A. To maintain F over
long time periods, the mobile cloud system must be capable
of recovering the lost data. A repair scenario is shown in
Fig. 1. Lost data is recovered by downloading fragments
from the storage nodes that remain within A.

When multiple files are stored withinA, the code used to
reliably store files can differ depending on the file type and
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size. In fact, it is common for DSS to use different encodings
with different access frequency (hot vs. cold data), which an
be dynamically updated [11]. Our framework expresses the
optimal file maintenance strategy as a function of the code
parameters and can therefore be applied to any regeneration
code. The repair strategy can be individualized for every
file type based on the applied code and the storage node
dynamics. In the multiple file case, additional signaling
overhead (e.g., a beaconing protocol) is required to maintain
the state of each file, either at a leader node, or distributed.

The file maintenance problem for distributed storage
systems has been primarily studied assuming that erasure
codes are applied for redundancy [12], [14]. However, era-
sure codes are not repair bandwidth-efficient. The repair
bandwidth can be reduced by applying regenerating codes,
which allow fragment recovery without file reconstruction
(see [15]–[18] and references therein). Although regenerating
codes lower the repair bandwidth (per single node repair),
the design of an efficient repair strategy for a dynamic DSS
involves cost optimizations with respect to many parame-
ters, including the code redundancy factor, the node depar-
ture and fragment repair rates, the threshold for initiating
repair operations, and the available network bandwidth.
In this paper, we study the problem of minimizing the file
maintenance cost, as a function of the network dynamics, the code
parameters, and the communication model for repairing lost data
fragments. Specifically, we make the following contributions.

• We focus on threshold-based file maintenance strate-
gies, in which repairs are initiated when a threshold
number of fragments is lost. We analyze two com-
munication models, namely distributed repair and cen-
tralized repair. In distributed repair, the new storage
nodes independently download data from existing
nodes to recover lost fragments. In centralized repair,
a leader node first recovers F via reconstruction,
before regenerating and distributing the repaired
fragments to new storage nodes. In both scenarios,
we assume that repairs are performed in parallel
and there are no additional failures during fragment
recovery. This simplified model allows us to derive
closed-form expressions.

• We derive the optimal repair threshold that minimizes
the average repair cost per unit of time for each
communication model. Our results show that no one
strategy is optimal for all possible system configu-
rations and mobility patterns. At the low departure-
to-repair rate regime, repairing at the regeneration
threshold yields the optimal strategy. On the other
hand, at the high departure-to-repair rate regime,
regenerating after a single fragment loss minimizes
the average repair cost per unit of time.

• We further investigate the application of cooperative
repair codes. We show that the repair bandwidth is
minimized at full cooperation, i.e., when all nodes
to be repaired cooperate. We then investigate the
centralized repair of multiple node failures, which
suits our centralized repair model that is described
earlier. The advantage of such a model is that a leader
node does not need to download the file F , which
reduces the average repair cost per time.

• We revise the fixed-rate repair model originally as-
sumed in distributed and centralized repair with a
more realistic node-dependent model. In the latter,
the repair time depends on the number of nodes that
are repaired. We compare the resulting average re-
pair cost with our earlier model and show that in the
low departure-to-repair rate regime, the simplified
repair-all-at-one model faithfully approximates the
node-dependent one.

• We further consider a distributed repair model that
may involve additional failures during recovery. We
express the average repair cost through a system of
equations and verify our analytical findings through
simulations. Lastly, we compare all of the discussed
distributed repair models employing regenerating
codes.

• Our results indicate that the optimal threshold de-
pends on the departure-to-repair rate ratio and the
underlying code parameters. Furthermore, the aver-
age repair cost depends on the departure-to-repair
rate ratio as well as the underlying code parameters
in all scenarios discussed in the paper.

We emphasize that the applicability of our framework
extends beyond mobile storage system to any DSS where
fragment losses can occur. This includes popular wired
distributed storage architectures such as HDFS [3]. For
the wired domain, the departure-to-repair ratio represents
the dynamics between fragment loss due to storage node
failure, misconfiguration, or update and the rate of repair.
A notable difference between a wired DSS and the mobile
scenario is the expected regime for the departure-to-repair
ratio. The mean-time-to-failure (MTTF) for the wired DSS
is in the order of months [19] whereas a mobile DSS can
experience failures (departures) at a much higher rate. Nev-
ertheless, our framework characterizes the optimal repair
strategy for any rate regime.

The remainder of the paper is organized as follows.
In Section 2, we present related work. The system model
is presented in Section 3. We analyze threshold-based file
maintenance strategies in Section 4 and analytically com-
pare them in Section 5. In Section 6, we analyze codes with
cooperative repair and in Section 7, we extend the repair
process model to one that considers the number of nodes
that are repaired. Node departures during the repair phase
are considered in Section 8. We conclude in Section 9.

2 RELATED WORK

2.1 Coding in Distributed Storage

In reliable storage systems, information is replicated or
coded such that the original content can be recovered if
some limited fraction of the stored data is lost. Replication
is the most intuitive way to introduce redundancy. This
method refers to the maintenance of verbatim copies of the
same file F . Although replication is easy to implement, it
suffers from high storage and repair overhead.

2.1.1 Erasure Codes
Erasure codes incur less storage overhead compared to
replication while maintaining the same degree of reliability.
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Fig. 2: Storage of F using (a) a (n = 4, k = 2) erasure code and, (b) a (n = 4, k = 2, d = 3, α = 2, β = 1) regenerating code.

In particular, Maximum Distance Separable (MDS) codes
achieve the optimal tradeoff between failure tolerance and
storage overhead [20], [21]. An (n, k) MDS code encodes k
data chunks to n fragments and can tolerate up to n − k
fragment losses. Any k encoded fragments can be used to
reconstruct F . Fig. 2(a) shows the encoding process for a
file F of size 4MB using a (4, 2) erasure code. File F is split
into k = 2 chunks A and B, each of size 2MB. The two
chunks are then encoded into n = 4 fragments. The repair
bandwidth for this scheme equals the size of the original
file. Reed-Solomon codes are a classical example of MDS
codes and are deployed in many existing storage systems
(e.g. [13], [22]–[24]).

2.1.2 Regenerating Codes
Although erasure codes offer significant savings in storage,
their repair bandwidth is suboptimal, a data amount equal
to the file size must be retrieved to repair a single fragment.
Regenerating codes, on the other hand, can recover lost frag-
ments without reconstructing the entire file, at the expense
of a small storage overhead. They were initially investigated
in the seminal work of Dimakis et al. [15], which focuses on
the following setup. A file F of sizeM symbols is encoded
into n fragments, each of size α symbols, such that (i) the
file can be reconstructed from any k fragments, and (ii) a lost
fragment can be repaired by downloading β ≤ α symbols
from any d ≥ k fragments, resulting in a repair bandwidth
of γ = dβ. Dimakis et al. characterized the tradeoff between
the per node storage (α) and the repair bandwidth (γ) [15].

Fig. 2(b) shows an example of a (n, k, d, α, β) =
(4, 2, 3, 2, 1) regenerating code. Here, the file F is split into
k = 2 chunks each of size α = 2MB. The chunks are
encoded in n = 4 fragments, with each fragment being
2MB. A failed node in this scenario can be regenerated by
retrieving fragments of size β = 1MB from d = 3 surviving
nodes. This yields a repair bandwidth of dβ = 3MB which
is less that kα = 4MB. Note, however, that regeneration can
be applied only if at least d fragments are available. If fewer
than d but more than k fragments remain available, the lost
fragments can only be repaired through file reconstruction.

During the repair process of regenerating codes, there is
no coordination among the nodes to be repaired. In [12],
[25]–[27], the authors consider the case where t storage
nodes are repaired simultaneously in a cooperative manner.
Specifically, referring to this set of t nodes as the newcomers,
and the existing nodes storing fragments of F as live nodes,
each newcomer contacts d live nodes and downloads β
symbols from each. Moreover, newcomers cooperate and

download β′ symbols from each of the remaining t − 1
newcomers. The tradeoff between per node storage and
repair bandwidth is established similarly to [15]. Rawat et
al. in [28] also consider the cooperative repair of t nodes such
that only one node among t nodes downloads data from live
nodes. After downloading the necessary information at the
leader node, the remaining t − 1 nodes are cooperatively
repaired. Two points corresponding to minimum storage
and minimum bandwidth regeneration are characterized.

2.2 Maintaining Distributed Storage Systems

In the work of Dimakis et al. [15] and the following works
for regenerating codes, the repair process usually refers
to regenerating a single failed node, i.e., due to hardware
failures. In the concept of mobile storage systems, a failed
node not necessarily occur due to a hardware failure but it
may also refer to a departure of the node from the mobile
network. Nevertheless, in order to maintain the capability of
such network, the lost information needs to be regenerated.
Furthermore, in the literature of regenerating codes, there
is often no preference to when to perform repair as eager
repair is the de facto approach to any failure. In our work,
we also consider the mobility rate of the storage systems
and propose optimal thresholds at which the repair process
is more efficient in terms of average cost of data transfer
over network per time.

In [29], [30], chubby local services for Google File System
and ZooKeeper for Yahoo! introduce coordination schemes
to handle large-scale systems. Our work here can be consid-
ered as a complimentary study on how to maintain data
availability in the case of mobility and therefore can be
combined with such schemes. However, it should be noted
that such systems may require a master node/server, which
resembles to our study on centralized repair.

In the context of mobile cloud systems, Pääkkönen et
al. considered a wireless device-to-device network used for
distributed storage [31]. The authors showed the energy
consumption for maintaining data using regenerating codes
is lower compared to retrieving a lost file from a remote
source. This result holds if the per-bit energy cost for com-
munication between the mobile devices is lower than the
cost for communicating with the remote source.

In a follow-up work, Pääkkönen et al. compared repli-
cation with regeneration for a similar wireless P2P storage
system [7]. They derived closed-form expressions for the ex-
pected total energy cost of file retrieval using replication and
regeneration. They showed that the expected total cost of 2-
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replication is lower than the cost of regeneration. However,
only an eager repair strategy was considered in the analysis.
Moreover, the advantages of regeneration were not fully
exploited by considering codes with different parameters.
Pääkkönen et al. also addressed the problem of tolerating
multiple simultaneous failures [32]. They investigated the
energy overhead of regenerating codes in a cellular network.
They showed that large energy gains can be obtained by
employing regenerating codes. These gains depend on the
file popularity. The authors provided decision rules for
choosing between simple caching, replication, regenerating
codes, based on numerical results on certain application
scenarios. In our work, we analytically provide decision
rules to choose optimal repair strategies that minimize the
repair bandwidth per unit of time. One additional benefit of
minimizing the repair bandwidth is that fewer repairs are
required, which also lowers the encoding/decoding needs
that can be computationally intensive. Although we do not
precisely characterize the impact of such costs, the optimal
repair strategies we propose implicitly lowers them.

Pedersen et al. recently studied the cost of content
caching on mobile devices using erasure codes [33]. They
derived analytical expressions for the cost of content down-
load and repair bandwidth as a function of the repair
interval. These expressions were used to evaluate the com-
munication cost of distributed storage for MDS codes, re-
generating codes, and locally repairable codes. Their results
show that in high churn, distributed storage can reduce
the communication cost compared to downloading from a
base station. They conclude that MDS codes are the best
performers in this setup.

3 SYSTEM MODEL

3.1 Network Model
We consider a distributed storage system (DSS) consisting of
mobile storage nodes that enter and exit a geographically-
limited areaA. When a node departs fromA, its data is lost.
The nodes that store file fragments within area A are said
to be live nodes. New nodes that are used to store repaired
fragments are said to be newcomer nodes or newcomers. We
assume that there are always sufficient newcomers to per-
form repairs. Moreover, as we are interested in the system
performance due to network dynamics, we do not consider
data loss due to hardware failures. Such failures occurs
orders of magnitude less frequently than node departures
(in the order of 4.3 months for wired DSS [19]). Following
the network dynamics model of prior works [14], [31], we
model the time Xi spent by each node within A as an
exponentially distributed random variable with parameter λ
(i.e.,Xi ∼ Exp(λ), ∀i). Random variables {Xi} are assumed
independent and identically distributed.

The repair time is modeled by an exponentially dis-
tributed random variable with parameter µ. For ease of
analysis, we initially assume that µ is independent of the
number of fragments that need to be repaired. We later
revise our analysis and consider a more realistic model in
which repairs proceed in parallel at different nodes with the
same rate µ. This corresponds to the distributed nature of
mobile DSS. Finally, we define ρ = λ

µ as the ratio of the
departure-to-repair rate.

3.2 Storage Model

A file F of size M bits is stored in n storage nodes
using a regenerating code with parameters (n, k, d, α, β)
(see Fig. 2(b)). We focus on the two most popular types of
regenerating codes, namely Minimum Storage Regenerating
(MSR) codes and Minimum Bandwidth Regenerating (MBR)
codes. These two classes of codes operate at the end points
of the tradeoff between per node storage and repair band-
width, as introduced in [15]. MSR codes achieve minimum
storage by setting α = M/k and minimize the repair
bandwidth under this constraint. Their operating point is:

(αMSR, γMSR) =

(M
k
,

Md

k (d− k + 1)

)
. (1)

Note that, for MSR codes, αMSR ≤ γMSR and hence, the per-
node storage is smaller than the repair bandwidth. MBR
codes, on the other hand, minimize the repair bandwidth
(achieved when γ = α), and operate at:

(αMBR, γMBR) =

(
2Md

2kd− k2 + k
,

2Md

2kd− k2 + k

)
. (2)

Instances of these codes can be found in [16]–[18]. We note
that although we treat a single file for ease of illustration,
the same methodology can be extended to multiple files
by scaling the corresponding operating points accordingly.
Furthermore, although we focus on only MSR and MBR
points of the tradeoff curve, our results can be replicated
for any other operating point on the curve.

3.3 File Repair Model

In our model, the system continuously monitors the re-
dundancy level and initiates a repair when τ live nodes
remain within A. The determination of τ , the type of repair
(regeneration, reconstruction, or both) and the communica-
tion model for fragment retrieval (centralized or distributed)
form a file maintenance strategy. We note that the practical im-
plementation details of the redundancy monitoring mech-
anism and of the communication protocols for retrieving
various fragments are beyond the scope of the present work.
For example, there may be an additional communication
overhead depending on the file repair model. We focus on
the theoretical aspects of the maintenance process. Since
repairs are initiated only when the number of remaining
nodes reaches threshold τ , a repair strategy can be viewed as
an i.i.d. system recovery process occurring every ∆ seconds,
where ∆ is a random variable denoting the time elapsed
between two instances of a fully repaired system. For this
recovery process, we define the following costs.

Definition 1 (Repair cost c(τ)). The number of bits c(τ) that
must be downloaded from the τ remaining nodes to restore n
fragments in A, when n− τ nodes have departed A.

Definition 2 (Average repair cost per unit of time r(τ)).
The average cost per unit of time for maintaining n fragments in
A, defined as c(τ) over the average time between two instances
of a fully repaired system, i.e., E[∆], with n fragments (r(τ) is
measured in bits per unit of time).

The distributed storage systems are susceptible to fail-
ures and in order to maintain such systems, it’s important
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Fig. 3: (a) Distributed repair: nodes independently regenerate a lost fragment by obtaining symbols from other nodes, (b)
centralized repair: a leader node reconstructs F and distributes lost fragments to new nodes.

to regenerate the lost information due to the departed nodes
by transferring data to a newcomer node. As a result, we
want to minimize the required data transfer per time which
is defined above. We determine the optimal file maintenance
strategy for different node departure rates, code parameters,
and communication models for fragment retrieval.

Our analysis focuses on the repair bandwidth due to
the mobility dynamics and does not consider the storage-
repair bandwidth tradeoff, as addressed in prior works [15].
The storage overhead is fixed by the code selection. We
aim at optimizing the repair overhead, once the code is
determined, and also study the impact of node mobility on
the repair process.

4 FILE MAINTENANCE STRATEGIES

Let τ denote the number of live nodes remaining within A
after the departure of n − τ nodes. We focus on determin-
ing the optimal repair threshold τ∗, which minimizes the
average repair cost per unit of time. We first compare the
distributed repair strategy with centralized repair strategy.

4.1 Distributed Repair

In distributed repair, newcomers recover lost fragments
by independently downloading relevant symbols from live
nodes. The repair process is initiated when τ live nodes
remain within A, where k ≤ τ < n − 1 (when τ < k,
the data is irrecoverably lost). If τ ≥ d, fragment recovery
can be performed through regeneration. Each of the n − τ
newcomers downloads β symbols from d live nodes and
independently regenerates a lost fragment. Fig. 3(a) demon-
strates the distributed repair process for a file F stored with
a (n = 4, k = 2, d = 3, α = 2, β = 1) regenerating code.
One fragment of F is lost because node s9 departed from
A. The lost fragment is regenerated at s1 by independently
downloading β = 1 symbol from three nodes. The total
repair bandwidth is equal to 3 symbols.

If τ < d, regeneration cannot be directly applied. To
reduce the repair cost, we consider a hybrid scheme con-
sisting of regeneration and reconstruction. First, d− τ nodes
are repaired by downloading α symbols from k live nodes
and reconstructing F . When d fragments become available,
regeneration is applied to repair the remaining n − d new-
comers. Accordingly, the repair cost is expressed by:

cD(τ) =

{
kα(d− τ) + γ(n− d), if τ < d

γ(n− τ), if τ ≥ d. (3)

The subscript D in cD(τ) is used to denote the cost of
distributed repair and γ denotes the regeneration cost of
a single fragment which depends on the underlying regen-
eration code (see eqs. (1) and (2) for MSR and MBR codes,
respectively). From (3), it is evident that cD(τ) monoton-
ically decreases with τ. Moreover, the rate of cost change
(with respect to τ ) is higher when τ < d. To determine the
optimal threshold τ∗, we minimize rD(τ), which captures
the repair cost for maintaining n fragments per unit of time.

To calculate rD(τ), we use the continuous-time Markov
chain (CTMC) model shown in Fig. 4. This model captures
the periodic repair process when node departures occur
independently, the time spent by each node inA is exponen-
tially distributed with parameter λ, and the system recovery
process is exponentially distributed with parameter µ.

n -1n d. . .

nλ (n - 1)λ (d+1)λ

τ

(τ+1)λ

. . .
µ

Fig. 4: Markov chain for a threshold-based file maintenance.

The CTMC consists of n − τ + 1 states representing the
number of fragments that remain within A after each node
departure, until a repair at state τ is initiated. Note that we
have omitted states after τ in the CTMC model, because we
are interested in optimizing the periodic cost of repairing
the DSS at threshold τ . Moreover, the transition probability
to state τ − 1 is negligible for most realistic scenarios in
which µ � τλ. For cases when µ 6� τλ, we compute the
mean time it takes to depart from the optimal repair strategy
of repairing at state τ and interpret this event as a form of
system error which leads to data loss (see Section 5.3).

For the CTMC in Fig 4, the departure rate from a state i
equals the node departure rate λ, times the number of nodes
which store fragments at state i. When the repair process
is initiated, the system transitions from state τ to state n
because all fragment repairs nodes proceed in parallel. For
the CTMC, we define the expected average cost rD(τ) per
unit of time as

rD(τ) =
cD(τ)

E[∆]
, (4)

where E[∆] is the average time between two transitions
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through the nth state in the periodic repair process1. For
∆,

∆ = Tn + Tn−1 + · · ·+ Tτ+1 + Tτ , (5)

where Ti denotes the time that the system stays at state i
(inter-departure time) and Tτ is the expected time for com-
pleting repairs so that n− τ fragments are recovered (return
to state n). The random variables Ti are independent and
exponentially distributed with parameter iλ, whereas Tτ is
exponentially distributed with parameter µ. In particular,
E[Ti] = 1

iλ and E[Tτ ] = 1
µ . Therefore, E[∆] is the sum

expectation of independent exponential random variables.

E[∆] =

n∑
i=τ+1

1

iλ
+

1

µ
=
Hn,τ

λ
+

1

µ
, (6)

where Hn,τ =
∑n
i=τ+1

1
i . Combining (4) and (6), we obtain

the average repair cost per unit of time as follows.

rD(τ) =
cD(τ)

E[∆]
=

{
λµ(kα(d−τ)+γ(n−d))

µHn,τ+λ
, if τ < d

λµ(γ(n−τ))
µHn,τ+λ

, if τ ≥ d. (7)

We use (7) to determine the optimal threshold τ∗ which
minimizes rD(τ). This is given by Propositions 1 and 2.

Proposition 1. For regeneration (d ≤ τ ≤ n − 1), the optimal
repair threshold τ∗ is given by

τ∗ =

{
d, ρ ≤ Hn−1,d

n−d−1 − 1
n

n− 1, otherwise.
(8)

Proof. Proof is provided in Appendix A.

Proposition 1 determines the ρ regime for which repairs
at τ = d, an instance of lazy repair, is more efficient than
initiating repairs at τ = n − 1, referred to as eager repair. If
the departure-to-repair ratio is low, that means we are not
likely to see departures from the network often, therefore
there is no urgency to repair a failed node. As a result, we
can tolerate to wait for multiple nodes to depart before we
initiate the repair process. On the other hand, if ρ is high,
that means that we cannot tolerate multiple nodes to be
failed at a given time because high ρ suggests it’s likely
to have more node departures before a repair process is
finished. Therefore, an eager repair scheme is more suitable
in such cases. In the following Lemma, we show that there
is always a positive ρ for which lazy repair is more efficient
that eager repair.

Lemma 1. There is always some ρ > 0 for which lazy repair
(τ∗ = d) is more efficient than eager repair (τ = n − 1),
independent of the code parameters used for regeneration.

Proof. Proof is provided in Appendix B.

We now examine if there is a ρ regime for which the
hybrid scheme, i.e., reconstruction plus regeneration results
in a lower expected cost per unit of time compared to
regeneration only. This rate regime is given by the following
proposition.

1. The alternative definition of rD(τ) = E
[
cD(τ)

∆

]
is not useful

because the expectation is infinite. This is due to the infinitesimally
small values that can be obtained by ∆, whereas cD(τ) remains lower
bounded.

Proposition 2. For regeneration plus reconstruction (k ≤ τ ≤
d), the optimal repair threshold τ∗ is given by

τ∗ =

{
k, ρ ≤ γ(n−d)Hd,k

kα(d−k) −Hn,d

d, otherwise.
(9)

Proof. Proof is provided in Appendix C.

Similar to Lemma 1, we investigate if the highest
departure-to-repair rate for which reconstruction at k is
more efficient than regeneration is always positive indepen-
dent of the code parameters. Unlike the case of Lemma 1,
we show that for a certain relationship between n, k, γ, and
α, regeneration is strictly more efficient than regeneration
plus reconstruction, independent of ρ. For any other code
parameters, the most efficient strategy depends on ρ.

Lemma 2. For any departure-to-repair ratio ρ, regeneration is
strictly more efficient than regeneration plus reconstruction for
codes satisfying nγ < k2α.

Proof. Proof is provided in Appendix D.

We further explore the condition in Lemma 2 for MSR
and MBR codes. For MSR codes, we obtain that dn <
k2(d − k + 1) by substituting the operation points of MSR
from (1). Similarly, for MBR codes, we obtain that n < k2 by
substituting the operation points of MBR from (2). Note that
Lemma 2 does not enumerate all possible codes for which
regeneration is strictly more efficient than regeneration plus
reconstruction for any λ. This is because we have used
bounds on the harmonic function to derive the analytic
formulas. Numerical bounds could provide a more accurate
range of code parameters for which Lemma 2 is true.

Metadata overhead: In our analysis thus far, we have ig-
nored the practical implementation details related to syn-
chronizing repairs. These relate to maintaining the list of live
nodes and newcomers and can be achieved by a periodic
beaconing operation announcing the state of each node,
which is already implicit in mobile networks. When the
number of live nodes falls below the optimal threshold,
n − τ∗ newcomer nodes can request dβ symbols from any
live nodes and restore F and update the list of live nodes.
We note that no metadata is needed for which symbols are
stored at each node. This is because any d fragments can be
used for reconstruction. Moreover, the code structure can be
regenerated by known the code generator matrix. A similar
metadata overhead is necessary for centralized repair.

4.2 Centralized Repair
In the centralized strategy, repairs are performed by a leader
node in two stages. In the first stage, the leader downloads
α symbols from k live nodes and reconstructs F . In the
second stage, the leader node transmits α bits to each of the
remaining (n − τ − 1) newcomers to restore the remaining
(n − τ − 1) fragments. Similarly to distributed repair, the
only metadata that is needed in centralized repair is main-
taining a list of live nodes and newcomers at the leader
node. Fig. 3(b) shows an example of centralized repair for
a (n = 4, k = 2, d = 3, α = 2, β = 1) regenerating code.
Nodes s2 and s9 have departed from area A, leading to the
loss of their respective fragments. Node s5, who acts as a
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TABLE 1: Cost comparison of repair strategies at different thresholds.

Distributed Repair Centralized Repair

Regeneration
Regeneration

+
Reconstruction

Reconstruction

Code rD(n− 1) rD(d) rD(k) rC(n− 1) rC(k)

MSR nMdλµ
k(d−k+1)(µ+nλ)

M(n−d)dλµ
k(d−k+1)(λ+µHn,d)

M[k(d−k+1)(d−k)+d(n−d)]λµ
k(d−k+1)(λ+µHn,k)

nMλµ
µ+nλ

(n−1)Mλµ
k(λ+µHn,k)

MBR 2nMdλµ
k(2d−k+1)(µ+nλ)

2M(n−d)dλµ
k(2d−k+1)(λ+Hn,d)

2Md(n+kd−k2−d)λµ
k(2d−k+1)(λ+Hn,k)

2nMdλµ
(2d−k+1)(µ+nλ)

2(n−1)Mdλµ
k(2d−k+1)(λ+µHn,k)

leader, downloads α = 2 symbols from k = 2 other nodes
to reconstruct F . It then distributes α = 2 symbols to s1
and s7 to restore the system reliability. The repair cost of
centralized repair is given by:

cC(τ) = α (k + n− τ − 1) . (10)

In (10), the subscript C in cC(τ) is used to denote the cost of
centralized repair. The node departure process does not vary
with the repair strategy. Therefore, the same CTMC model
shown in Fig. 4 applies for the centralized repair. According
to (4), the average repair cost rC(τ) is given by:

rC(τ) =
cC(τ)

E[∆]
=
λµα(k + n− τ − 1)

µHn,τ + λ
. (11)

The optimal threshold τ∗ which minimizes r(τ) is obtained
in Proposition 3.

Proposition 3. The optimal repair threshold τ∗ which minimizes
r(τ) for centralized repair is given by

τ∗ =

{
k, ρ ≤ kHn−1,k

n−k−1 − 1
n

n− 1, otherwise
(12)

Proof. Proof is provided in Appendix E.

Using Proposition 3, we can determine the optimal re-
pair strategy for any ρ, when centralized repair is employed.
We note that according to Lemma 1, the value kHn−1,k

(n−k−1) − 1
n

is strictly positive for any code parameters. Therefore, there
is always a departure-to-repair ratio for which lazy repair
is more efficient than eager repair, independent of the code
used for regeneration and reconstruction.

Maintaining multiple files: Let us consider the scenario
where a total of Γ files are stored in the DSS. In a homo-
geneous storage system, each file could be stored using the
same regenerating code C (to accommodate different file
sizes, files larger than the code length can be partitioned
to several subfiles). When the number of live nodes falls
below τ∗, the repair process is initiated synchronously for
all files, as the repair threshold is reached simultaneously
for all files (live nodes store an equal number of fragments).
In this case, the repair bandwidth is simply scaled by the
number of files.

Now consider a heterogeneous scenario where a differ-
ent code is applied to different file types (hot vs. cold files).
This results in different repair thresholds τ∗i for each file. In
this case, each file can be repaired independently when the
number of live nodes storing it falls below τ∗i . To facilitate
independent repairs, additional metadata information needs
to be stored to reflect the number of live nodes per file. The
latter can be by updated for all files every time a node leaves
the area A, or a file is repaired. For centralized repair, this
information is available at the leader node.

5 ANALYSIS OF MAINTENANCE STRATEGIES

In this section, we characterize the ρ regime for which lazy
repair is more cost-efficient than eager repair. Moreover,
we determine the optimal repair strategy (decentralized vs.
centralized) as a function of the code parameters, when the
departure and repair rates are fixed. To ease the reader to
our analysis, we summarize the cost of repair in Table 1.

5.1 Eager vs. Lazy Repair

According to the results of Propositions 1, 2, and 3, we
classify the departure-to-repair ratios into a low departure-
to-repair rate regime (ρlow) and a high departure-to-repair rate
regime (ρhigh). The two regimes are defined by finding the
lowest and highest rates, based on the bounds stated in the
three propositions.

ρlow = min
{
Hn−1,d

n−d−1 − 1
n ,

γ(n−d)Hd,k
kα(d−k) −

Hn,d,
kHn−1,k

(n−k−1) − 1
n

}
. (13)

ρhigh = max
{
Hn−1,d

n−d−1 − 1
n ,

γ(n−d)Hd,k
kα(d−k) −

Hn,d,
kHn−1,k

(n−k−1) − 1
n

}
. (14)

Noting that Hn−1,d

n−d−1 − 1
n <

kHn−1,k

(n−k−1) − 1
n for k < d, the

two regime expressions can be simplified to

ρlow = min
{
Hn−1,d

n−d−1 − 1
n ,

γ(n−d)Hd,k
kα(d−k) −Hn,d

}
. (15)

ρhigh = max
{
γ(n−d)Hd,k
kα(d−k) −Hn,d,

kHn−1,k

(n−k−1) − 1
n

}
. (16)

For any ρ ≤ ρlow, the repair cost per unit of time is
minimized when lazy repair is applied since that choice of
ρ would be lower than the bounds found in (8), (9) and
(12) and the corresponding repair thresholds are the lowest
possible. On the other hand, for any ρ ≥ ρhigh, eager repair
(i.e., repair at τ∗ = n − 1) yields the lowest r(τ). These
findings hold for both distributed and centralized repair.
If the departure-to-repair rates do not lie in either of the
ρ regimes, then the optimal repair policy (eager vs. lazy)
depends on the relationship of the code parameters and the
repair strategy (centralized or distributed).

5.2 Centralized vs. Distributed Repair

We now fix the departure rate λ and repair rate µ to compare
the repair cost of centralized vs. distributed repair per unit
of time, as a function of the code parameters. Specifically,
we determine relationships between n, k, d and the code
type (MSR vs. MBR) for which an optimal strategy can
be derived. Our results are stated in the following two
propositions.
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Proposition 4. For d ≤ τ∗ ≤ n − 1, using MBR codes and
distributed repair minimizes the average repair cost per unit of
time, if d > n+k−1

3 .

Proof. Proof is provided in Appendix F.

We now prove that if τ∗ lies between k and d, using MSR
codes with centralized repair is optimal.

Proposition 5. For k ≤ τ∗ < d, the optimal repair strategy is
given by centralized repair with MSR codes.

Proof. Proof is provided in Appendix G.

Although the above propositions show in which cases
centralized repair is favorable over distributed repair, one
also needs to be aware of the application involved. For ex-
ample, when the devices belong to a single system/operator
a centralized repair may be more likely to be used whereas
when the system is heterogeneous with different type of
devices a distributed repair may be more likely.

5.3 Mean Time to Data Loss for Periodic Repairs

We now examine the Mean Time to Data Loss (MTTDL) for
the periodic threshold repair process. For our purposes, we
consider that data is lost if the DSS transitions from state
τ to state τ − 1 instead of state n. That is, if a node leaves
the system before repairs are completed when initiated at
state τ , the repair process is abandoned and the system
eventually reaches state k − 1, at which data is lost. In
this case, the file F is reinstated at the mobile nodes by
a central entity. Note that when τ > k repairs could be
re-initiated at state τ − 1, because at least k fragments
remain available. We opted not to consider this option for
the MTTDL calculation to capture the periodic nature of the
threshold repair strategy. The MTTDL reflects the period of
time at which the DSS oscillates between states n and τ . The
time to reach state k − 1 assuming no repairs are attempted
after state τ is given by:

Proposition 6. For a threshold-based repair strategy attempting
regeneration at state τ , the MTTDL is given by

MTTDL =

∞∑
i=1

( iHn,τ

λ
+
i− 1

µ
+
Hτ,k−1

λ

)
(1−p)(i−1)p, (17)

where p = τλ
τλ+µ .

Proof. Proof is provided in Appendix H.

The MTTDL is a decreasing function of τ . This is in-
tuitive considering that the number of nodes that need to
depart for reaching state k − 1 increases with τ . Moreover,
the average time it takes to reach state τ from state n
increases with τ . This indicates that the periodic repair of
the DSS will on average last longer if a lazy repair strategy
is adopted.

5.4 Numerical Examples

In this section, we validate our theoretical results be pro-
viding numerical examples. Fig. 5(a) shows r(τ) when
d > n+k−1

3 and ρ = 10−4 . According to Proposition 4, for
this combination of code parameters, a distributed repair
strategy with MBR codes (D-MBR) achieves the minimum
r(τ) for all d ≤ τ∗ ≤ n − 1. The minimum occurs at
τ∗ = d. Moreover, according to Proposition 5, centralized
MSR codes (C-MSR) minimize r(τ) for k ≤ τ < d. This is
verified in all plots of Fig. 5, for which the cost is minimized
by the C-MSR strategy when τ∗ = k, if τ < d. In Fig. 5(b),
we show r(τ) when d < n+k−1

3 and ρ = 10−4. For this case,
there is no one scheme with optimal cost for any value of
d ≤ τ ≤ n − 1. For τ > 16, D-MBR is optimal, whereas for
10 ≤ τ ≤ 15, C-MSR becomes optimal. C-MSR achieves the
lowest overall cost at τ = k.

We also studied the impact of ρ, when the code param-
eters are fixed to (n = 30, k = 20, d = 25). Fig. 5(c) shows
the average cost per unit of time (r(τ)) when ρ = 10−4. For
this ρ regime, a lazy repair strategy with τ∗ = d minimizes
r(τ), with D-MBR codes achieving the lowest cost. On the
other hand, eager repair becomes optimal for any ρ > ρhigh.
This is observed in Fig. 5(d), in which the value of ρ has
been increased to one. D-MBR codes still remain the optimal
option, however, the optimal repair threshold is now shifted
to τ∗ = n − 1. Note that at the high ρ regime, all codes
exhibit the same behavior. The average cost per unit of time
becomes a decreasing function of τ .

Finally, on the right y-axis of the plots in Fig. 5, we
show the MTTDL values for the given set of parameters.
As expected, the MTTDL is an decreasing function of τ due
to the corresponding increase in departure rate from state τ
with the value of τ . The MTTDL becomes impractical in the
high ρ regime, because nodes frequently leave areaA before
repairs can be completed.

6 CODES WITH COOPERATIVE REPAIR

In the case of multiple node failures, regenerating the failed
nodes individually is not optimal in terms of repair band-
width. To regenerate multiple failed nodes more efficiently,
the newcomers can also communicate with each other to
lower the repair bandwidth, which is called cooperative
repair. Specifically, the newcomer nodes communicate to
not only the existing live nodes but also each of the other
newcomers for regeneration. In this section, we analyze ex-
amples of such codes and their performance for the Markov-
model that is described earlier.

6.1 Cooperative Regenerating Codes

When multiple nodes are to be repaired simultaneously, in
addition to contacting live nodes and downloading symbols
from those, newcomers can also communicate between each
other to complete the recovery process. Formally, assume
that t nodes are to be repaired. Each of the t newcomer
nodes can contact d live nodes and download β symbols as
well as download β′ from each other. In this scenario, the
repair bandwidth can be calculated as γ = dβ + (t − 1)β′.
Such codes are studied in [25] (referred to also as coor-
dinated regenerating codes) and the tradeoff between per
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Fig. 5: Cost r(τ) vs. repair threshold (τ ) for: (a) d > n+k−1
3 , (b) d < n+k−1

3 >, (c) ρ = 10−4, (d) ρ = 1.

node storage α and repair bandwidth γ is analyzed. Two
ends of tradeoff curve is named Minimum Storage Co-
operative Regenerating (MSCR) and Minimum Bandwidth
Cooperative Regenerating (MBCR). Accordingly, operating
points are given as follows:

(αMSCR, βMSCR, β
′
MSCR) =

(M
k
,

M
k (d− k + t)

,
M

k (d− k + t)

)
.

(18)
For MSCR codes, γMSCR = dβMSCR + (t − 1)β′MSCR =
M(d+t−1)
k(d−k+t) ≥ M

k , where the per-node storage is smaller
than the repair bandwidth. On the other hand, MBCR codes
provide the minimum repair bandwidth which operates at:

(αMBCR, βMBCR, β
′
MBCR) =

( (2d+ t− 1)M
k (2d− k + t)

,
2M

k (2d− k + t)
,

M
k (2d− k + t)

)
.

(19)

Note that for MBCR codes, we have αMBCR = γMBCR =
dβMBCR + (t− 1)β′MBCR.

We define rt(τ) as the average repair cost for a system
with repair threshold τ under cooperative repair using
groups of nodes of size t (similarly ct(τ) for the cost). Since
n − τ nodes need to be repaired, any cooperative regener-
ating codes with t such that t|n− τ can be used in practice.
In the following proposition, we compare the performance
of cooperative regenerating codes at all possible t values to
find the value of t that minimizes the average repair cost.

Proposition 7. The average repair cost of cooperative repair is a
monotonically decreasing function of the cooperation group size t.
That is, for two cooperation groups t1 and t2, with t1|n − τ and
t2|n− τ and t1 < t2, it follows that rt1(τ) > rt2(τ).

Proof. Proof is provided in Appendix I.

Remark 1. As a result of the above proposition, one can minimize
the average repair cost by performing cooperative repairs with
t = n − τ . In other words, for the n − τ nodes that are to be
repaired, the optimal cooperative regenerating code is with n− τ ,
all nodes should cooperate at the same time.

Remark 2. The above proposition does not take into account
the inherent cost of coordinating the symbol exchange during
the cooperative repair process. This cost depends on the specific
implementation details of the protocol that facilitates the coop-
eration, the network topology (one hop, vs. multihop) and the
communication mode (broadcast vs. multicast, vs. unicast).

In Fig. 6, we show the average repair cost for cooperative
regenerating codes at all possible t values for a given n− τ .
We observe that for the same n− τ , if t1 < t2, then rt1(τ) >
rt2(τ) and the minimum is achieved when t = n− τ .

In the remaining of this section, we suppress the
subindex t from rt(τ) since we established that t = n − τ
minimizes the cost, i.e., r(τ) = rn−τ (τ) and c(τ) = cn−τ (τ).
However, we may still need to distinguish γ and α values
under different cooperative regenerating codes. We denote
the per-node storage for cooperative repairs with n − τ ,
which results in the minimum average repair cost for the
system with threshold τ , by ατ . Similarly we use γτ to
denote the repair bandwidth at τ .

Note that, cooperative regenerating codes, it is required
that d + n − τ ≤ n. In other words, there should be at
least d live nodes when repairs are initiated. Otherwise, it
is not possible to regenerate n− τ nodes from d live nodes.
Henceforth, the repair cost c(τ) and the repair cost per time
for cooperative codes are as follows:
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Fig. 6: Cost r(τ) vs. number of nodes to be repaired (n− τ ) for: (a) MSCR, (b) MBCR.

c(τ) = γτ (n−τ), r(τ) =
c(τ)

E[∆]
=
λµ(γτ (n− τ))

µHn,τ + λ
, if τ ≥ d.

(20)
The minimum r(τ) with respect to τ does not have a

closed-form analytical expression. In Section 6.3, we present
numerical results to study the change of r(τ) with τ and
determine the optimal repair threshold τ that minimizes
r(τ) for distributed cooperative repair.

6.2 Centralized Repair of Multiple Node Failures
Centralized repair of multiple node repairs is introduced
in [28]. Using this model, a dedicated node among the t
newcomers downloads β from any d live nodes such that it
can repair multiple node failures of size t. Such codes can
be used in the centralized repair process that is proposed in
Section 4 when we set t = n − τ . Rawat et al. in [28] char-
acterize the tradeoff between per-node storage and repair
bandwidth for this centralized repair model. Accordingly,
the following operation points are derived for minimum
storage multi-node regeneration (MSMR) and minimum
bandwidth multi-node regeneration (MBMR):

(αMSMR, γMSMR) =

(M
k
,
Md(n− τ)

k (d− k + n− τ)

)
. (21)

Let k mod(n − τ) = b. If Hb ≥(
β

n−τ
) [
b( 2d+n−τ−1

2 )−
(
b
2

)]
(where Hb denotes entropy

of information stored on b nodes), then

(αMBMR, γMBMR) =
( M2d

k (2d− k + n− τ)
,
M2d(n− τ)

k (2d− k + n− τ)

)
.

(22)
Under centralized repair model discussed here, a dedi-

cated node first downloads γ = dβ and then distributes α
to remaining n− τ − 1. The difference between these codes
and the earlier centralized repair in Section 4.2 is that the
dedicated node may not need to download the whole file.
Therefore, we have the following repair cost

cC(τ) = γ + α(n− τ − 1), (23)

from which one can obtain

rC(τ) =
cC(τ)

E[∆]
=
λµ(γ + α(n− τ − 1))

µHn,τ + λ
. (24)

In order to find the optimal threshold that minimizes the
average repair cost, we need to find the minimum value of

rC(τ). We can replace Hn,τ with its approximation, ln(nτ ),
and take the derivative with respect to τ . Note that both
γ and α depend on τ and there is no tractable analytical
solution for τ that minimizes rC(τ). However, we can still
analyze (24) numerically with respect to τ and observe the
optimal threshold from numerical results.

Remark 3. In this section, we analyzed different cooperative
codes that are suitable for mobile clouds. For both scenarios, the
problem of finding τ for which r(τ) is minimized does not have a
closed-form solution due to the dependence of α and γ on τ . We,
therefore, resort to the numerical analysis of the optimal threshold.
The numerical results are used to illustrate the inherent tradeoffs
between coding parameters and the repair bandwidth. Note that,
for the regenerating codes that were analyzed in Section 5, α and
γ do not depend on the threshold τ .

6.3 Numerical Results
We study the performance of cooperative codes with n =
30, d = 25 and k = 19 under different ρ regimes. In
Fig. 7, we compare the codes studied in Sections 4 and
6 for different ρ regimes. We first compare regenerating
codes vs. cooperative regenerating codes for the distributed
repair scenario. Note that we focus only on d ≤ τ ≤ n − 1
because at least d live nodes must exist for cooperation (see
Section 6.1). We observe that cooperative regenerating codes
always have lower cost than regenerating codes for all val-
ues of ρ. Additionally, the gap between the cost of D-MBR
and D-MBCR is much smaller than the gap between the cost
of D-MSR and D-MSCR. Furthermore, we can observe two
opposing regimes: In Fig. 7(a), the optimal cost is at τ = d,
whereas in Fig. 7(b), the cost is minimized at τ = n − 1.
We also compare the centralized regenerating codes to the
centralized repair of multiple node departures. As expected,
since in the latter scheme one does not need the whole file
for file reconstruction at the dedicated node, centralized
repair of multiple node departures results in lower repair
cost. At τ = n − 1, in Fig. 7(d) average repair cost is
minimized for all schemes, on the other hand we observe
different optimum τ values for different coding schemes in
Fig. 7(c). Finally, we compare all schemes in Fig. 7(e)-(f) for
different values of ρ for completeness. It is observed that
the centralized repair of multiple node departures model
discussed in this section approaches to the distributed repair
model in Section 4 as τ approaches n and diverges from
the centralized repair model in Section 4. The reason for
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this behavior is that the dedicated node does not need to
download the whole file now (as opposed to the centralized
repair model in Section 4, which incurs high average repair
cost for large τ ).

7 A REPAIR PROCESS ANALOGOUS TO THE NUM-
BER OF REPAIRED NODES

In the analysis presented in Sections 5-6, we have assumed
that the repair time is exponentially distributed with param-
eter µ, irrespective of the number of nodes to be repaired.
This model is mathematically tractable and we are able to
find analytical results on the optimal repair threshold. In this
section, we consider a revised model in which the repair
time is analogous to the number of nodes that need to be
repaired. Specifically, we model the repair process as the
maximum of n− τ exponential random variables, each with
rate µ. In other words, when the repair process is initiated,
one can consider starting n − τ exponential clocks, each
with rate µ. The repair process ends when all the clocks
end. We note that the maximum value of such clocks is not
exponentially distributed (as opposed to the minimum of
such clocks), however, its expected value is known, which
is enough for the purpose of finding average repair cost. Let
T ri denote the repair time of ith newcomer node, then we
have the following [34]

E[max (T r1 , . . . , T
r
n−τ )] =

n−τ∑
i=1

1

iµ
=
Hn−τ,0

µ
. (25)

The expected time between two instances of fully opera-
tional system with n live nodes is given by

E[∆] =
Hn,τ

λ
+
Hn−τ,0

µ
, (26)

where the first term is the expected time from state n to
state τ , and the second term is the expected time from state
τ back to state n. Accordingly, the resulting average repair
cost for the distributed repair case is

rD(τ) =
cD(τ)

E[∆]
=

{
λµ(kα(d−τ)+γ(n−d))
µHn,τ+λHn−τ,0

, if τ < d
λµ(γ(n−τ))

µHn,τ+λHn−τ,0
, if τ ≥ d. (27)

Note that for centralized repair, a dedicated newcomer node
first downloads the file, and then distributes symbols to
the remaining n − τ − 1 newcomer nodes. Therefore, the
expected repair time is given by 1

µ + Hn−τ−1

µ , where we
have first one clock with exponential rate of µ, followed by
a maximum of n− τ − 1 clocks with rate µ. Accordingly,

rC(τ) =
cC(τ)

E[∆]
=

λµα(k + n− τ − 1)

µHn,τ + λ(1 +Hn−τ−1,0)
. (28)

The optimal τ which minimizes the above equation is diffi-
cult to track due to the complexity of the formula (due to λH
in the denominator). Instead, we perform numerical analy-
sis of the average repair cost with respect to the threshold
later in this section.

In the context of this model, we next focus on MTTDL.
Note that, if we start (n − τ) clocks, the probability that no
data loss occurs within a cycle, denoted by 1 − p, can be
calculated as 1 − p = Pr(Tτ−1 > T ri ,∀i ∈ 1, . . . , n − τ). In
other words, the exponential random variable with rate τλ

should be greater than all n − τ exponential random vari-
ables with rate µ. Since we have i.i.d. exponential random
variables, 1 − p = (Pr(Tτ−1 > T r1 ))(n−τ) = ( µ

τλ+µ )(n−τ).
Accordingly, we have

MTTDL =

∞∑
i=1

(
iHn,τ +Hτ,k−1

λ
+

(i− 1)Hn−τ,0

µ
)p(1−p)(i−1)

(29)
where p = 1 − ( µ

τλ+µ )(n−τ). Note that the above equation
is for the calculation of MTTDL for distributed repair. For
centralized repair, the random variable with rate τλ should
be larger than sum of two exponential random variables
with rate µ, which is a gamma distribution since first a
dedicated node downloads the whole file and then it repairs
the other nodes. Henceforth, we did not perform MTTDL
analysis for centralized repair. 2

In Fig. 8, we compare how the revised model affects the
average repair cost relative to the simplified repair model
used in Section 4, in which all nodes are repaired under
the same clock. We denote the values calculated within this
section by appending τ at the end, i.e., D-MBR-τ , to specify
that the repair process that takes into account the number
of nodes to be repaired (i.e., n − τ ). It can be observed that
changing the model does not affect the behavior of the r(τ)
curves substantially. We observe in the modified model that
average cost is decreased slightly. Even though we have the
same costs in both cases, the expected times to complete
the repair process are different. Specifically, in Sections 4
and 5, it takes 1

µ time to finish the repair process. On the
other hand, in the modified model, we change this value to
maximum of n− τ exponential random variables, each with
mean 1

µ and this maximum value is larger than 1
µ (unless

τ = n − 1). Therefore, it takes longer to complete repairs
in the modified model, which results in smaller values of
average repair cost. On the other hand, in Fig. 9, a different
behavior is observed for the MTTDL. In the low ρ regime,
the MTTDL decreases with τ for both single clock and the
maximum of multiple clock models. However, in the high
ρ regime, the increase in τ decreases MTTDL for the single
clock model, whereas the MTTDL for the multiple clocks
model increases with τ . This is because in (29), p converges
to 1 as we decrease τ in the high ρ regime, which reduces
(29). On the other hand, in the low ρ regime, p converges
to zero as we increase τ , which reduces (29). Finally, the
model discussed in this section results in lower MTTDL
values compared to the previous one.

8 NODE DEPARTURES DURING REPAIR

Up to this point, we have assumed that once the repair
process is started, no live nodes depart from A until the
repair is completed. In this section, we analyze the case
in which additional node departures are allowed within
repair process. Fig. 10 shows the revised CTMC model that
accounts for departures during the repair process. The chain
consists of two sets of states. In the first row, states represent
the phase where nodes depart but no repairs are initiated.
Once state τ is reached, repairs are initiated and the chain
transitions into the second row of states where departures

2. The resulting equation is not in compact form, thus we omit this
analysis in this text.
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Fig. 7: Cost r(τ) vs. repair threshold (τ ) for: (a) distributed regenerating codes vs. cooperative regenerating codes when
ρ = 0.0001, (b) distributed regenerating codes vs. cooperative regenerating codes when ρ = 1 (c) centralized regenerating
codes vs. centralized repair of multiple node failures when ρ = 0.0001, (d) centralized regenerating codes vs. centralized
repair of multiple node failures when ρ = 1, (e) all schemes when ρ = 0.01, (f) all schemes when ρ = 0.1.
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Fig. 8: Cost r(τ) vs repair threshold (τ) for: (a) ρ = 0.01, (b) ρ = 1.

may occur while repairs are performed. We focus on the case
where no data loss occurs as we are interested in the system
dynamics, while the system remains operational.

Once the repair process is initiated, n− τ nodes are to be
repaired. Since we assume an exponential distribution for
repair times (with rate µ), a newcomer is repaired after the
minimum of the n− τ exponential random variables, which
is also an exponential random variable with rate (n − τ)µ.
Due to the memoryless property of the exponential distri-
bution, we can perform the same procedure for the second
repair and so on. The corresponding rates are depicted on
the second row of states of Fig. 10. Note that if no departures
occur during repair, the expected repair time would be the

same as in the model of Section 7, that is, the maximum of
n− τ exponential random variables with rate µ.

n n− 1 τ

τ + 1n− 1

nλ (n− 1)λ (τ + 1)λ

(τ + 1)λ

(n− τ )µ

(n− τ − 1)µ2µ

µ

(n− 1)λ

τλ

Fig. 10: Markov chain for a threshold-based file mainte-
nance.
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Fig. 9: Mean time to data loss vs repair threshold (τ) for: (a) ρ = 0.004, (b) ρ = 0.1, (c) ρ = 1.

In such a model, the expected number of node repairs is
larger than n − τ due to the possible additional departures
during the repair process. In the section, we analyze the
system under the condition that the CTMC always chooses
the transition τ → τ + 1 when in the lower set of states
so that all nodes are repaired eventually. Otherwise, the
system would suffer from data loss. To find the average
repair cost, we are interested in two statistics of the CTMC
once it reaches state τ for the first time: i) the total num-
ber of lower arc transitions before reaching state n, i.e.,
τ → τ + 1, n− 2→ n− 1, which will determine the number
of node repairs, ii) the expected total time for reaching state
n from state τ . For simplicity, the states n− 1, . . . , τ + 1 can
be ignored for now since they do not affect any of these two
statistics. We are also interested in the number of times the
chain revisits state τ before reaching state n since that will
determine the probability of no data loss.

8.1 Total number of revisits to state τ

Since we are interested in the case where no data loss occurs,
we need to find the number of times the chain revisits
state τ . This is equivalent to transitioning from state τ to
τ + 1 at each revisit to state τ , we need the transition
τ → τ + 1 at each revisit to state τ , which occurs with
probability (n−τ)µ

τλ+(n−τ)µ . For the transitions in the lower row
of the CTMC, denote by Xr

j , the total number of revisits to
state τ before reaching state n at state j. Then, we can state
the following balance equations.

Xr
n−1 =

Xrn−2(n−1)λ
(n−1)λ+µ , (30)

Xr
n−2 =

Xrn−12µ+X
r
n−3(n−2)λ

(n−2)λ+2µ , (31)

...
Xr
τ+2 =

Xrτ+3(n−τ−2)µ+X
r
τ+1(τ+2)λ

(τ+2)λ+(n−τ−2)µ , (32)

Xr
τ+1 =

Xrτ+2(n−τ−1)µ+(1+Xrτ )(τ+1)λ

(τ+1)λ+(n−τ−1)µ , (33)

Xr
τ = Xr

τ+1. (34)

The set of equations (30)-(34) can be recursively solved
for Xr

τ . Then, the probability that no data loss occurs is
( (n−τ)µ
τλ+(n−τ)µ )1+X

r
τ for one cycle of node repairs.

8.2 Total number of lower arc transitions

For the transitions of the lower row of the CTMC, denote by
X l
j , the total number of lower arc transitions at state j, then

we have the following equations.

X l
n−1 =

µ+Xln−2(n−1)λ
(n−1)λ+µ , (35)

X l
n−2 =

(1+Xln−1)2µ+X
l
n−3(n−2)λ

(n−2)λ+2µ , (36)

...

X l
τ+1 =

(1+Xlτ+2)(n−τ−1)µ+X
l
τ (τ+1)λ

(τ+1)λ+(n−τ−1)µ , (37)

X l
τ = 1 +X l

τ+1. (38)

Finding the total number of lower arc transitions is
not enough to calculate the average repair cost per time
since not all repairs have the same cost in some repair
strategies. That is, if τ < d, then some nodes are repaired
by downloading kα symbols, whereas the remaining nodes
are repaired by downloading dβ. To find the number of
lower arc transitions which occur between states τ and d
(which are repaired by downloading kα), we denote by Y lj
the number of lower arc transitions between states τ and d
at state j. Then,

Y ln−1 =
Y ln−2(n−1)λ
(n−1)λ+µ (39)

Y ln−2 =
Y ln−12µ+Y

l
n−3(n−2)λ

(n−2)λ+2µ , (40)

...

Y ld =
Y ld+1(n−d)µ+Y

l
d−1dλ

dλ+(n−d)µ , (41)

Y ld−1 =
(1+Y ld)(n−d+1)µ+Y ld−2(d−1)λ

(d−1)λ+(n−d+1)µ , (42)

...

Y lτ+1 =
(1+Y lτ+2)(n−τ−1)µ+Y

l
τ (τ+1)λ

(τ+1)λ+(n−τ−1)µ , (43)

Y lτ = 1 + Y lτ+1. (44)

If τ ≥ d, there is no need to find Y lτ since all nodes
download dβ and there areX l

τ node repairs in total whereas
if τ < d, then Y lτ repairs are performed by downloading
kα symbols and X l

τ − Y lτ node repairs are performed by
downloading dβ symbols.
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8.3 Expected total time before reaching state n
For the transitions of the lower row of the CTMC, denote by
Xt
j , the time it takes to reach state n from state j. Then, the

balance equations for the CTMC for Xt
j can be written as

Xt
n−1 =

1+Xtn−2(n−1)λ
(n−1)λ+µ , (45)

Xt
n−2 =

1+Xtn−12µ+X
t
n−3(n−2)λ

(n−2)λ+2µ , (46)

...

Xt
τ+1 =

1+Xtτ+2(n−τ−1)µ+X
t
τ (τ+1)λ

(τ+1)λ+(n−τ−1)µ , (47)

Xt
τ = 1

(n−τ)µ +Xt
τ+1. (48)

Using (45)-(48), we can solve for Xt
τ which is the time

it takes to repair to a fully operational system with n live
nodes from state τ , when departures occur during the repair
process. The initial state for the system is n and therefore the
time to revisit state n is Xt

τ +
∑n
i=τ+1

1
iλ .

This yields an average cost per time equal to

rD(τ |no data loss occurs) =
cD(τ |no data loss occurs)
E[∆|no data loss occurs]

=


Y lτkα+(Xlτ−Y

l
τ )dβ

Xtτ+
∑n

i=τ+1

1
iλ

, if τ < d

Xlτdβ

Xtτ+
∑n

i=τ+1

1
iλ

, if τ ≥ d.
(49)

and a probability of no data loss equal to ( (n−τ)µ
τλ+(n−τ)µ )1+X

r
τ .

8.4 Numerical Results
We have performed simulations to verify our findings. The
simulation of Markov chain for the threshold-based file
maintenance is performed with MATLAB. We initialize the
Markov Chain at state n and we arrive at state τ since there
are only jumps to right as the repair process is not initiated
yet. After we reach state τ , the repair process is initiated
and we only simulate the case where no data loss occurs. In
order to do that, we enforce a jump from state τ to τ + 1
(in the lower arc). During repair process, Markov chain
may transition to state τ (since some nodes may depart
the system while the repairs are not finished) but every
time it reaches that state, we enforce the jump we discussed
before to ensure that there is no data loss. A simulation is
finished when the state of the chain transitions to the state n.
However, we repeat the same simulation one million times
and take the averages of the statistics and report them. In
the following example, we examine the case where n = 30,
d = 27, k = 20, µ = 10. Different λ values are used,
λ = [0.1, 0.2, 0.4], as well as different τ values, τ = [25, 27].

The simulation results are the average of one million
simulations and they are presented in Tables 2-5. Each
table entry notes the value obtained from the simulation
or the value obtained by analytically evaluation the average
repair cost via (49): the first shows the simulation results (S)
and the other represents the analytical result (A) as shown
before. As expected, increasing λ results in more revisits
to state τ due to an increase in the node departure rate.
Furthermore, we see that expected time before reaching
state n decreases as we increase λ for both cases of τ = 25

and τ = 27. For both cases, we observe that the number of
nodes repaired by downloading dβ remains the same for a
given value of λ. This is because the critical number of live
nodes for a node to be repaired by downloading dβ symbols
is at d = 27, since if there are less than d live nodes, then
a node must be repaired by downloading kα symbols. In
other words, once we reach state d (in the lower row) of
the CTMC, we count the number of lower arc transitions
between the states d and n to calculate the number of node
repairs by downloading dβ symbols, which remains the
same for τ = 25 and τ = 27, since τ is not between d and n.
Finally, the number of nodes repaired by downloading kα
increases with λ as expected. We can observe that simulation
results verify our analytical findings.

In Fig. 11, we compare our previous schemes, namely
the distributed repair model in Section 4 and the model in
Section 7, with the repair model discussed in this section,
which is depicted in the figure with D-MBR-F and D-MSR-
F to specify that these codes allow failures within repair
process. In the low ρ regime, we observe that there is
almost no difference between the performance of models
in both MSR and MBR cases. This is because for low ρ,
the expected number of additional departures during repair
is low and the expected time is dominated by terms with
λ (the upper transition in the CTMC model of Fig. 10,
which is the same as the CTMC model of Fig. 4). In the
high ρ regime, differences are observed in the expected
average cost per time. Interestingly, when ρ = 0.1, it can
be observed that for τ ≥ d − 1, D-MSR-F and D-MBR-F
have the highest cost respectively for MSR and MBR cases,
whereas for τ < d − 1, they are in between the D-MSR
and D-MBR. As we keep increasing ρ, we observe that D-
MSR-F and D-MBR-F becomes even more costly compared
to other schemes. In all cases, our model in Section 7 has
the lowest r(τ) respectively for MSR and MBR cases. These
observations validate that our model in Section 4 (that does
not have dependency of repair process on the number of
nodes to be repaired and neglect failures during repair) can
be utilized as an approximate model for the models we
consider later in the text in the low ρ regime. Therefore,
in the low ρ regime, all the optimal threshold statements
for the former model (i.e., Proposition 1, Proposition 2)
also hold for the model considered in Sections 7 and 8.
Note that, the low ρ regime is the only interesting case for
mobile cloud storage. At high λ, the average repair cost and
MTTDL performance become prohibitively high and low,
respectively, for the system to be viable.

9 CONCLUSION AND FUTURE WORK

We analyzed threshold-based repair strategies for maintain-
ing files in dynamic DSS with emphasis on mobile cloud
storage systems. We derived the optimal repair thresh-
olds for both distributed and centralized repair schemes
under fragment regeneration and/or reconstruction. Our
results showed that optimal thresholds are dependent on
system configurations, the underlying code parameters and
departure-to-repair rate ratio. For high departure-to-repair
scenarios, eager repair minimizes the average repair cost
per unit of time. Under low departure-to-repair ratio, lazy
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TABLE 2: Total number of revisits to state τ

λ
0.1 0.2 0.4

S A S A S A

τ
25 1.0718 1.0719 1.1633 1.1638 1.4660 1.4668
27 1.1806 1.1806 1.4439 1.4424 2.2118 2.2096

TABLE 3: Expected total time before reaching state n

λ
0.1 0.2 0.4

S A S A S A

τ
25 2.0438 2.0432 1.1770 1.1770 0.8040 0.8034
27 1.2404 1.2392 0.7458 0.7447 0.5402 0.5405

TABLE 4: Number of node repairs by downloading dβ

λ
0.1 0.2 0.4

S A S A S A

τ
25 3.4703 3.4706 4.0263 4.0224 5.3702 5.3696
27 3.4715 3.4706 4.0237 4.0224 5.3727 5.3696

TABLE 5: Number of node repairs by downloading kα

λ
0.1 0.2 0.4

S A S A S A

τ
25 2.1784 2.1782 2.4228 2.4234 3.2620 3.2623
27 0 0 0 0 0 0
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Fig. 11: Cost r(τ) vs repair threshold (τ) for: (a) ρ = 0.004, (b) ρ = 0.1, (c) ρ = 1.

repair is optimal in terms of average repair cost. We inves-
tigated codes that perform repair through cooperation. We
showed that similar to regenerating codes, one can derive
optimal thresholds for cooperative regenerating codes. We
also investigated the case when the repair process depends
on the number of nodes under repair. Finally, we analyzed
the case where we lift the restriction that once the repair
process is initiated, no more departures occur. We showed
that the initial fixed-rate repair model, which was simple
enough to track analytically, is a good approximation of the
complex model in the low ρ regime, which is of interest.
This allows us to use the optimal threshold results as well
as other results we had from the simpler model.

As part of future work, we plan to consider a more
advanced repair model in which fragment repairs occur
under a fixed bandwidth constraint. This assumption makes
the repair rate µ dependent on the repair threshold τ .
Furthermore, in this study, we did not take energy con-
sumption into an account, i.e., due to encoding/decoding
operations. A more advanced threshold optimization prob-
lem may include this additional cost, which can differ based
on the coding schemes. Finally, generalizing the model to
the case where repairs are initiated at every state with some
probability and studying the cost vs. MTTDL tradeoff under
this model is an interesting avenue for further research.
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APPENDIX A
PROOF OF PROPOSITION 1
Proof. To determine τ∗, we compare rD(d) with the average
repair cost at all other possible regeneration states d+ δ, for
1 ≤ δ ≤ n− d− 1, and check if

rD(d) ≤ rD(d+ δ), ∀δ ∈ [1, n− d− 1]. (50)

This method is preferred because a straightforward mini-
mization of rD(τ) through differentiation is involved due to
the harmonic sums. Substituting r(τ) from (7) to (50) yields,

γ(n− d)λµ

µHn,d + λ
≤ γ(n− d− δ)λµ

µHn,d+δ + λ
, (51)

ρ ≤ (n− d)Hd+δ,d

δ
−Hn,d. (52)

The inequality in (52) yields the maximum ρ for which
rD(τ) is minimized at state τ = d. We now examine the
behavior of the right hand side (RHS) in (52) as a function
of δ for fixed n and d. The RHS in (52) has the same
monotonicity as the function f(d, δ) =

Hd+δ,d
δ . In Lemma 3,

we show that f is monotonically decreasing with δ. As a
result, the departure-to-repair rates ρ for which (50) holds
are also monotonically decreasing with δ. Substituting the
maximum δ (i.e., δ = n − d − 1) to the RHS in (52) yields a
departure rate bound

ρ ≤ Hn−1,d

n− d− 1
− 1

n
, (53)

for which rD(d) ≤ rD(d+δ),∀δ ∈ [1, n−d−1]. In this case,
minimization of rD(τ) is achieved at τ∗ = d.

We now prove that for rates ρ > Hn−1,d

n−d−1 − 1
n , the average

cost rD(τ) is minimized when τ = n−1. Following a similar
reasoning, we compare rD(τ) at τ = n−1 with rD(τ) at any
other possible regeneration threshold. We consider rD(n −
1) ≤ r(n− δ− 1), where 1 ≤ δ ≤ n− d− 1. By substituting
rD(τ) from (7) and simplifying, it follows that

ρ ≥ Hn−1,n−δ−1

δ
− 1

n
. (54)

The RHS of (54) has the same monotonicity as the function
g(n − 1, δ) =

Hn−1,n−1−δ
δ . In Lemma 4, we show that g is

monotonically increasing with δ. Therefore, the minimum ρ
for which rD(n − 1) ≤ rD(n − 1 − δ), ∀δ ∈ [1, n − d − 1]
is obtained when δ = n − d − 1. Substituting this δ to (54)
completes the proof.

Lemma 3. The function

f(x, δ) =
Hx+δ,x

δ
(55)

is a monotonically decreasing function over integers δ > 0 for
any given integer x > 0.

Proof. We will show that f(x, δ+1) < f(x, δ) for any integer
δ > 0, which implies the monotonically decreasing assertion
in the lemma. We have

f(x, δ)− f(x, δ + 1) =
1

δ

(
x+δ∑
i=x+1

1

i

)
− 1

δ + 1

(
x+δ+1∑
i=x+1

1

i

)
(a)
=

S

δ
−
S + 1

x+δ+1

δ + 1
=

1

δ + 1

(
S

(
δ + 1

δ
− 1

)
− 1

x+ δ + 1

)
=

1

δ(δ + 1)

(
S − δ

x+ δ + 1

)
(b)
> 0,

where in (a) we define the sum S =
x+δ∑
i=x+1

1
i , and (b) follows

as there are δ terms in S and each term is strictly greater
than 1

x+δ+1 .

Lemma 4. The function

g(x, δ) =
Hx,x−δ

δ
(56)

is a monotonically increasing function over integers δ ∈ [0, x−1]
for any given integer x > 0.

Proof. We will show that g(x, δ+1) > g(x, δ) for any integer
δ > 0, which implies the monotonically increasing assertion
in the lemma. We have

g(x, δ + 1)− g(x, δ) =
1

δ + 1

(
x∑

i=x−δ

1

i

)
− 1

δ

(
x∑

i=x−δ+1

1

i

)
(a)
=

S + 1
x−δ

δ + 1
− S

δ
=

1

δ + 1

(
S

(
1− δ + 1

δ

)
+

1

x− δ

)
=

1

δ(δ + 1)

(
δ

x− δ − S
)

(b)
> 0,

where in (a) we define the sum S =
x∑

i=x−δ+1

1
i , and (b)

follows as there are δ terms in S and each term is strictly
smaller than 1

x−δ .

APPENDIX B
PROOF OF LEMMA 1

In Proposition 1, we determined the ρ regime for which lazy
repair is more efficient than eager repair, given fixed code
parameters. To prove Lemma 1, it suffices to show that the
highest rate ρ =

Hn−1,d

n−d−1 − 1
n for which τ∗ = d is strictly

positive for any n and d (recall that by definition, n > d).
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We prove this fact by employing a lower bound on Hn−1,d

n−d−1 ,
which is proved in Lemma 5.

Hn−1,d

n− d− 1
≥ 1

n− 1

(a)⇒ (57)

Hn−1,d

n− d− 1
>

1

n
(58)

Hn−1,d

n− d− 1
− 1

n
> 0. (59)

where in (a), we substituted 1
n−1 with the strictly smaller

term 1
n .

Lemma 5. The function

f(x, δ) =
Hx+δ,x

δ
(60)

is bounded by
1

x+ δ
≤ Hx+δ,x

δ
<

1

δ
, (61)

for all positive integers x and δ.

Proof. First, we show that Hx+δ,x
δ ≥ 1

x+δ , for all x > 0 and
δ > 0.

Hx+δ,x

δ
=

∑x+δ
i=1

1
i −

∑x
i=1

1
i

δ
=

1
x+1 + 1

x+2 + . . .+ 1
x+δ

δ
(a)
>

1
x+δ + 1

x+δ + . . .+ 1
x+δ

δ
=
δ 1
x+δ

δ
=

1

x+ δ
,

where (a) follows by substituting the first δ − 1 terms in the
nominator with strictly smaller terms. The equality in this
lower bound holds when δ = 1. We now show the upper
bound.

Hx+δ,x

δ
=

∑x+δ
i=1

1
i −

∑x
i=1

1
i

δ
=

1
x+1 + 1

x+2 + . . .+ 1
x+δ

δ
(b)
<

1
x + 1

x + . . .+ 1
x

δ
=
δ 1
x

δ
=

1

x
,

where (b) follows by substituting the δ terms in the nomi-
nator with strictly larger terms.

APPENDIX C
PROOF OF PROPOSITION 2
Proof. The proof follows along the same lines as Proposi-
tion 1. We compare the repair cost at r(d) with the repair
cost at any other possible state d − δ for 1 ≤ δ ≤ d − k to
check when the inequality

r(d) ≤ r(d− δ), δ ∈ [1, d− k] (62)

is satisfied. Substituting for r(τ) using (7), we obtain

λµ(n− d)γ

µHn,d + λ
≤ λµ(kαδ + (n− d)γ)

µHn,d−δ + λ
, (63)

from which we get:

ρ ≥ (n− d)γHd,d−δ

kαδ
− 1

n
−Hn−1,d (64)

Expression (64) yields a bound on the minimum ρ for which
the optimal repair threshold is τ∗ = d. We notice that
RHS of the inequality above has the same monotonicity
as the function g(d, δ) =

Hd,d−δ
δ defined in Lemma 4 in

Appendix A, from which we observe that this function is
a monotonically increasing function of δ. Substituting the
maximum δ∗ = d − k yields the departure-to-repair rate
bound,

ρ ≥ γ(n− d)Hd,k

kα(d− k)
−Hn,d, (65)

for which r(d) ≤ r(d − δ),∀δ ∈ [1, d − k]. For this rate
regime, the optimal repair threshold is at τ∗ = d.

We now prove that for rates ρ ≤ γ(n−d)Hd,k
kα(d−k) −Hn−1,d− 1

n ,
the average cost r(τ) per unit of time is minimized when
τ = k. We compare r(k) with r(k + δ) to analyze when the
following inequality holds.

r(k) ≤ r(k + δ), δ ∈ [1, d− k]. (66)

On substituting for r(τ) from (7), we get:

λµ(kα(d− k) + γ(n− d))

µHn,k + λ
≤ λµ(kα(d− k − δ) + γ(n− d))

µHn,k+δ + λ
,

from which we obtain

ρ ≤ (kα(d− k) + γ(n− d))Hk+δ,k

kαδ
− 1

n
−Hn−1,k. (67)

The expression above yields a bound on the maximum
departure-to-repair rate ρ for which the optimal repair
threshold is τ∗ = k. We now study the behavior of (67) as a
function of δ for fixed n, k and d. We notice that RHS of the
inequality above has the same monotonicity as the function
f(k, δ) =

Hk+δ,k
δ defined in Lemma 3 in Appendix A, from

which we observe that this function is a monotonically
decreasing function of δ. Therefore, δ∗ = d − k yields the
minimum value for the RHS of (67), which implies that
when

ρ ≤ (kα(d− k) + γ(n− d))Hd,k

kα(d− k)
−Hn−1,k −

1

n

=
γ(n− d)Hd,k

kα(d− k)
−Hn,d, (68)

r(τ) is optimized at τ∗ = k.

APPENDIX D
PROOF OF LEMMA 2
Proof. We prove Lemma 2 by finding the relationship be-
tween n, k, γ, and α for which the upper bound on the rate
ρ when τ∗ = k becomes negative.

γ(n− d)Hd,k

kα(d− k)
−Hn,d = (n− d)

(
γHd,k

kα(d− k)
− Hn,d

n− d

)
(a)
< (n− d)

(
γ

k2α
− Hn,d

n− d

)
(b)

≤ (n− d)

(
γ

k2α
− 1

n

)
=
n− d
k2α

(
nγ − k2α

)
.

where in (a) we have used Lemma 5 of Appendix B to
substitute term Hd,k

d−k with its upper bound 1
k and in (b), we

have used the same lemma to substitute Hn,d
n−d with its lower

bound 1
n . Setting n−d

k2α

(
nγ − k2α

)
< 0 yields nγ < k2α

since the multiplicative term is strictly positive.
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APPENDIX E
PROOF OF PROPOSITION 3
Proof. To determine τ∗, we compare r(k) with other possible
repair states k + δ, i.e., we analyze when

r(k) ≤ r(k + δ), (69)

for 1 ≤ δ ≤ n − k − 1. On substituting for r(τ) from (11),
we obtain

λµα(k + n− k − 1)

µHn,k + λ
≤ λµα(k + n− k − δ − 1)

µHn,k+δ + λ
.

We have

ρ ≤ (kα+ α(n− k − 1))Hk+δ,k

αδ
− 1

n
−Hn−1,k. (70)

Inequality (70) yields the maximum departure-to-repair
rate ρ for which it is more cost-efficient to repair at state
τ = k than any other state τ = k + δ. We now examine the
behavior of the RHS of (70) as a function of δ for fixed k
and d. We notice that RHS of the inequality above has the
same monotonicity as the function f(k, δ) =

Hk+δ,k
δ defined

in Lemma 3 in Appendix A, from which we observe that
this function is a monotonically decreasing function of δ.
Substituting δ∗ = n− k − 1 to the RHS of (70) yields

ρ ≤ kHn−1,k

(n− k − 1)
− 1

n
, (71)

for which the optimal repair threshold is at τ∗ = k.
We now evaluate if there is a departure rate regime for

which the average cost per unit of time is minimized at
τ∗ = n− 1. That is, we analyze when

r(n− 1) ≤ r(n− δ − 1). (72)

where 1 ≤ δ ≤ n−k− 1. On substituting for r(τ) from (11),
we get

λµαk

µHn,n−1 + λ
≤ λµα(k + δ)

µHn,n−δ−1 + λ
⇒ (73)

ρ ≥ kHn−1,n−δ−1

δ
− 1

n
. (74)

We notice that RHS of the inequality above has the same
monotonicity as the function g(n − 1, δ) =

Hn−1,n−1−δ
δ

defined in Lemma 4 in Appendix A, from which we observe
that this function is a monotonically increasing function of
δ. Substituting δ∗ = n− k − 1 yields

ρ ≥ kHn−1,k

(n− k − 1)
− 1

n
, (75)

for which the optimal repair threshold is at τ∗ = n− 1.

APPENDIX F
PROOF OF PROPOSITION 4
Proof. Let us consider the following inequality:

rD(τ) < rC(τ). (76)

According to (11), the average repair cost rC(τ) of cen-
tralized repair depends only on α, when n, k, and d are
fixed. As αMSR ≤ αMBR, MSR codes minimize rC(τ).
Thus, we select MSR codes for centralized repair in our

comparison. Similarly, for given n, k, and d, the average
repair cost rD(τ) of distributed repair depends only on the
repair bandwidth γ. As γMBR ≤ γMSR, MBR codes are
selected to minimize rD(τ). Substituting (1) and (2) in rC(τ)
and rD(τ), respectively, we obtain

M(2d)(n− τ)λµ

k(2d− k + 1)(µHn,τ + λ)
<
M(k + n− τ − 1)λµ

k(µHn,τ + λ)
, (77)

which implies
k + n− τ − 1 < 2d. (78)

Inequality (78) determines the minimum number of sur-
viving nodes for which MBR distributed repair emerges as
the most cost-efficient strategy. The left hand side (LHS)
of (78) is a decreasing function of τ . Maximizing the LHS
yields the relationship between n, k, and d for which dis-
tributed MBR always outperforms centralized MSR. This
occurs when τ = d. Substituting τ = d results in d > n+k−1

3 .
If we reverse the direction of the inequality in (76), we obtain

2d < n+ k − τ − 1. (79)

Minimizing the RHS of (79) yields the relationship between
n, k, and d for which centralized MSR always outperforms
distributed MBR. This occurs when τ = n− 1. Substituting
τ = n − 1 results in d < k

2 . However, by the definition
of regenerating codes, we have d ≥ k. Therefore, there
is no condition for which centralized MSR repair always
outperforms distributed MBR repair.

APPENDIX G
PROOF OF PROPOSITION 5

Proof. To determine the optimal repair strategy we compare
rC(τ) with rD(τ) for k ≤ τ∗ < d

rC(τ) < rD(τ).

Substituting r(τ) for distributed repair and centralized re-
pair from (7) and (11), respectively, we obtain:

(α(k+n−τ−1))
λµ

Hn,τ + λ
< (αk(d−τ)+γ(n−d))

λµ

Hn,τ + λ
.

(80)
For MSR codes, αMSR ≤ γMSR and for MBR codes,
αMBR = γMBR. Thus, for each case, we have α ≤ γ. By
choosing the lowest γ, we consider when the parameters
satisfy

α(k + n− τ − 1) < αk(d− τ) + α(n− d)

⇒ k − 1 < k(d− τ)− (d− τ)

⇒ k − 1 < (k − 1)(d− τ)

⇒ τ < d. (81)

As k ≤ τ∗ < d, inequality (81) is always true and hence, cen-
tralized repair outperforms distributed repair. As explained
in Proposition 4, for centralized repair, MSR codes minimize
the average repair cost rate per unit of time as compared to
MBR codes. Thus, centralized repair using MSR codes yields
the optimal repair strategy.
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APPENDIX H
PROOF OF PROPOSITION 6
Proof. Starting from state n, expected time to reach state τ
is
∑n
i=τ+1 = 1

iλ =
Hn,τ
λ . Once the system is at state τ , with

probability p = τλ
τλ+µ , the system will transition to state

τ − 1. If this occurs, the recovery will not be possible since
the number of fragments are below the repair threshold.
However, DSS can still serve the users if τ −1 ≥ k. Until we
reach state k − 1, the data is not lost. The expected time to
reach state k − 1 from state τ is

∑τ
i=k

1
iλ =

Hτ,k−1

λ . On the
other hand, with probability 1−p, recovery will be initiated
and the system will be back to state n, which takes 1

µ time.
At that point, we will go thorough the same process again.
Accordingly, we have

TDL =



Hn,τ
λ +

Hτ,k−1

λ , w.p p
2Hn,τ
λ + 1

µ +
Hτ,k−1

λ w.p. (1− p)p
3Hn,τ
λ + 2

µ +
Hτ,k−1

λ w.p. (1− p)2p
. . . . . .
iHn,τ
λ + i−1

µ +
Hτ,k−1

λ w.p. (1− p)i−1p

(82)

from which the expected time to data loss, E[TDL], can be
calculated.

APPENDIX I
PROOF OF PROPOSITION7
Proof. Since in both scenarios, repairs are performed after
n− τ node departures and node repairs are performed par-
allel, it’s enough to compare only the required bandwidths.
First, assume MSCR case, then we want to show that

M(d+ t1 − 1)(n− τ)

k(d− k + t1)
>
M(d+ t2 − 1)(n− τ)

k(d− k + t2)
, (83)

which is equivalent to

(t2 − t1)(k − 1) > 0. (84)

Since t2 > t1 and we can conclude that ct1(τ) > ct2(τ)
therefore rt1(τ) > rt2(τ). Similarly, for MBCR case, we need
to have
M(2d+ t1 − 1)(n− τ)

k(2d− k + t1)
>
M(2d+ t2 − 1)(n− τ)

k(2d− k + t2)
, (85)

from which we can obtain the same condition as (84).
Henceforth, ct1(τ) > ct2(τ) and rt1(τ) > rt2(τ). Combining
MSCR and MBCR cases, we can conclude that rt1(τ) >
rt2(τ).


