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Abstract

Despite recent advances in high-throughput combinatorial mutagenesis assays, the number of

labeled sequences available to predict molecular functions has remained small for the vastness of

the sequence space combined with the ruggedness of many fitness functions. Expressive models in

machine learning (ML), such as deep neural networks (DNNs), can model the nonlinearities in rugged

fitness functions, which manifest as high-order epistatic interactions among the mutational sites.

However, in the absence of an inductive bias, DNNs overfit to the small number of labeled sequences

available for training. Herein, we exploit the recent biological evidence that epistatic interactions

in many fitness functions are sparse; this knowledge can be used as an effective inductive bias to

regularize DNNs. We have developed a method for sparse epistatic regularization of DNNs, called the

epistatic net (EN), which constrains the number of non-zero coefficients in the spectral representation

of DNNs. For larger sequences, where finding the spectral transform becomes computationally

intractable, we have developed a scalable extension of EN, which subsamples the combinatorial

sequence space uniformly inducing a sparse-graph-code structure, and regularizes DNNs using

the resulting novel greedy optimization method. Results on several biological landscapes, from

bacterial to protein fitness functions, showed that EN consistently improves the prediction accuracy

of DNNs and enables them to outperform baseline supervised models in ML which assume other

forms of inductive biases. EN estimates all the higher-order epistatic interactions of DNNs trained

on massive combinatorial sequence spaces—a computational problem that takes years to solve

without leveraging the epistatic sparsity structure in the fitness functions.
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1 Introduction

Recent advances in next-generation sequencing have enabled the design of high-throughput combinatorial
mutagenesis assays that measure molecular functionality for tens of thousands to millions of sequences
simultaneously. These assays have been applied to many different sequences in biology, including
protein-coding sequences [1–3], RNAs [4–6], bacterial genes [7–10], and the SpCas9 target sites [11–13].
The labeled sequences collected from these assays have been used to train supervised machine learning
(ML) models to predict functions (e.g., fluorescence, binding, repair outcome, etc.) from the sequence—a
key step in the rational design of molecules using ML-assisted directed evolution [14]. However, due to
the limitations in techniques for library preparation, these assays can only uncover a small subset of all
the possible combinatorial sequences. This raises an important question in learning fitness functions:
how can we enable supervised ML models to infer fitness functions using only a small number of labeled
sequences?

Inferring fitness functions is a challenging task since mutational sites interact nonlinearly to form
the function, a phenomenon known as epistasis in genetics [15,16]. As a result, linear regression models
which assume site-independent interactions achieve poor accuracy in predicting nonlinear functions.
Augmenting linear models with pairwise, second-order epistatic interactions improves their prediction
accuracy [3]; however, there is now increasing evidence that a large fraction of the variance in the
fitness functions can be explained only by higher-order epistatic interactions, which contribute to the
‘ruggedness’ of fitness landscapes [17,18]. Modeling rugged fitness landscapes is a hard task since the
total number of possible higher-order interactions grows exponentially with the number of mutational
sites. As a result, the number of parameters to be estimated (i.e., the problem dimension) also grows
with the same exponential rate, which creates statistical challenges in inferring the fitness function since
the number of labeled sequences does not scale with the problem dimension. In response, nonlinear ML
models constrain the problem dimension by introducing various forms of inductive biases to capture
hidden structures in the fitness functions. Random forests, for example, impose a tree structure over
sites which favor ‘tree-like’ hierarchical epistatic interactions. While these inductive biases are effective
in some fitness functions [19], they are too restrictive to capture the underlying higher-order epistatic
interactions in other fitness functions [3]. Overparameterized models in deep learning (DL), such as
deep neural networks (DNNs), are expressive enough to model high-order espistatic interactions given
a large number of labeled training sequences; however, when the number of labeled sequences is small,
they often overfit to the training data and compromise prediction accuracy. It has been observed that
regularizing DNNs to induce domain-specific biases improves their prediction accuracy for various
tasks in computer vision and natural language processing [20]. This opens up the question of whether
there exists an inductive bias for DNNs trained on biological fitness landscapes with a computationally
tractable regularization scheme.

Recent studies in biological landscapes [3,13,21] have reported that a large fraction of the variance in
many fitness functions can be explained by only a few number of (high-order) interactions between the
mutational sites. The epistatic interactions in these functions are a mixture of a small number of (high-
order) interactions with large coefficients, and a larger number of interactions with small coefficients, in
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other words, their epistatic interactions are sparse. Promoting sparsity among epistatic interactions is
a powerful inductive bias for predictive modeling because it reduces the problem dimension without
biasing the model towards a subset of (low-order) interactions. Despite its benefits, promoting sparsity
among epistatic interactions has not been studied in DNNs as an inductive bias. The roadblock is in
finding a method to promote epistatic sparsity in DNNs. Unfortunately, directly penalizing all or some
of the parameters (weights) of DNNs with sparsity-promoting priors is not likely to result in sparse
epistatic regularization, since the epistatic coefficients are a complex nonlinear function of the weights
in DNNs.

Herein, we develop a method for sparse epistatic regularization of DNNs. We call our method
epistatic net (EN) because it resembles a fishing net which catches the epistatic interactions among all
the combinatorially possible interactions in DNNs, without any restriction to a subset of (low-order)
interactions. In order to find the epistatic interaction as a function of the weights in DNN, we find its
spectral representation (also called the Walsh-Hadamard (WH) transform for binary sequences) by
evaluating the DNN on the entire combinatorial space of mutations, and then finding the WH spectral
transform of the resulting landscape using the Fast WH Transform (FWHT). The resulting function of
the weights in DNN is penalized to promote epistatic sparsity. For larger sequences this approach for
epistatic regularization becomes computationally intractable due to the need to enumerate all possible
mutations in DNN. Therefore, we leverage the fast sparsity-enabled algorithms in signal processing
and coding theory in order to develop a greedy optimization method to regularize DNNs at scale. Our
scalable regularization method, called EN-S, regularizes DNNs by sampling only a small subset of
the combinatorial sequence space by choosing sequences based on sparse-graph codes. The uniform
sampling scheme allows us to find the WH transform of the combinatorial DNN landscape efficiently
using a fast peeling algorithm [22]. Results on several biological landscapes, from bacterial to protein
fitness functions, shows that EN(-S) enables DNNs to achieve consistently higher prediction accuracy
compared to competing models and estimate all the higher-order predictive interactions on massive
combinatorial sequence space—a computational problem that takes years to solve without leveraging
the epistatic sparsity structure in the fitness landscapes.

2 Results

Regularization using the epistatic net (EN). EN is a novel regularization scheme (Figure 1b)
which evaluates the DNN on all the possible combinatorial mutations of the input sequence; we call
the resulting high-dimensional vector the DNN landscape. It then takes the WH transform of the
DNN landscape and adds the sparsity-promoting `1-norm (i.e., the sum of the absolute values) of the
WH coefficients to the log-likelihood loss. The resulting WH loss is a differentiable function of the
weights in DNN and is weighted by a scalar which strikes a balance between the fidelity of DNN to the
labeled sequences and sparsity among epistatic interactions (see Methods for more detail). We used the
stochastic gradient descent (SGD) algorithm to minimize the aggregate loss and update the weights of
DNN in every iteration.
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Figure 1: Schematic illustration of our sparse epistatic regularization method, called
epistatic net (EN). a, Conventional deep neural network (DNN) training is depicted, where the
log-likelihood loss, computed over n labeled training sequences encoded into binary sequences of length
d, is minimized using the stochastic gradient descent (SGD) algorithm. b, In every iteration, EN queries
DNN for all the 2d possible binary input sequences, finds the Walsh Hadamard (WH) spectral transform
of the resulting landscape using the Fast WH Transform (FWHT), and then adds the `1-norm of the
WH transform to the log-likelihood loss from panel a. c, In the scalable version of EN, EN-S regularizes
DNN using only a few number of uniformly subsampled sequences from the combinatorial input space
following the patterns in sparse graph codes. EN-S iterates between these two subproblems until
convergence: 1) finding the sparse WH transform of DNN (using sublinear samples and in sublinear
time) with sparse graph codes, and 2) minimizing the sum of the log-likelihood loss and the WH loss
using SGD.

For larger sequences (of size d > 25), EN regularization becomes intractable in time and space
complexity. This is because EN needs to query the DNN p = 2d times to form the DNN landscape
(exponential time complexity in d) and then find the WH transform of the queried DNN landscape
(exponential time and space complexity in d). To overcome this, EN-S leverages the sparsity in the WH
spectral domain to regularize DNN using only a small number of uniformly subsampled sequences from
the combinatorial input space (Figure 1c). EN-S decouples the DNN training, following the alternating
direction method of multipliers (ADMM) framework [23], into two subproblems: 1) finding the k-sparse
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WH spectral transform of DNN in a sample and time efficient manner, and 2) minimizing the sum of the
log-likelihood loss and the WH loss. The WH loss penalizes the distance between DNN and a function
constructed using the top-k WH coefficients recovered in the first subproblem. In order to solve the
first subproblem, we designed a careful subsampling of the input sequence space [22] that induces a
linear mixing of the WH coefficients such that a greedy belief propagation algorithm (peeling-decoding)
over a sparse graph code recovers the noisy DNN landscape in sublinear sample (i.e., O(k log2 p)) and
time (i.e., O(k log3 p)) complexity in p (with high probability) [13, 22, 24, 25]. We solved the second
subproblem using the SGD algorithm. EN-S alternates between these two steps until convergence (see
Methods for more detail).

Inferring four canonical functions in bacterial fitness. We collected four canonical bacterial
fitness functions, whose combinatorial landscapes have been measured experimentally in previously
published works (see Table S2 in Supplementary Materials). Figure 2a shows the sparsity level in
epistatic interactions of these bacterial fitness functions. The coefficients for epistatic interactions were
found by taking the WH transform of the measured combinatorial landscape (see Methods section for
various ways to preprocess the landscapes). The fraction of variance explained is plotted as a function
of the top WH coefficients. Sparsity levels can be assessed by the proximity of the resulting curve
towards the top-left corner of the plot. For comparison, we plot synthetic fitness functions that have
all possible epistatic interactions up to a certain order of interaction in Figure 2a. While the sparsity
levels varied across fitness functions, the top-5 WH coefficients consistently explained more than 80%
of the variance across all the landscapes.

Figure 2b shows the prediction performance of DNN with EN regularization on the bacterial
landscapes compared to various competing models. All the models were trained on the same randomly
sampled subset of the sequences from the measured combinatorial landscapes and tested on a subset of
unseen sequences (see Supplementary Materials for more details). The prediction accuracy is reported
in terms of the coefficient of determination, R2 (i.e., the fraction of the variance in the test set explained
from the sequence). DNN with EN regularization consistently outperformed the baseline models in
all the landscapes. In particular, DNN with EN regularization performs significantly better than the
EN-regularized variant, even though DNN was optimized (in terms of architecture) for best validation
performance in isolation (i.e., without espistatic regularization) and had been subjected to other forms
of common sparsity-promoting regularization techniques applied directly to the weights of the DNN
(see Methods for more details).

Figure 2c shows the WH transform of the DNN landscape, with and without EN regularization, as
well as the landscape of the rest of the competing models, all trained on a training set sampled from E.

coli fitness landscape of Khan et al. [9] (see Figure S3 and S4 for a detailed analysis of the landscapes
in spectral domain). In order to find these landscapes, we queried each model for all the combinatorial
mutations and took the WH transform using FWHT. In this plot, the epistatic coefficient indexed by
10100, as an example, shows an order 2 interaction between the mutational sites 1 and 3. The rest
of the indices can be interpreted similarly. The epistatic interactions in the measured E. coli fitness
function showed three interactions with higher coefficients and several epistatic interactions with lower
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Figure 2: Predicting bacterial fitness and inferring epistatic interactions in four canonical
landscapes. a, Fraction of variance explained by the top WH coefficients showing the sparsity level in
the bacterial fitness functions. b, Prediction accuracy of deep neural network (DNN) with epistatic
net (EN) regularization against competing models in ML. The error bars show the standard error
of the mean (SEM) across 5 independent repeats of the experiments with random split of the data
into training, validation, and test sets. c, Visualization of the epistatic interactions of DNN with and
without EN regularization and the baseline models after training on E. coli fitness landscape of Khan
et al. [9]. R2 values show the correlation of the recovered epistatic interaction with the interactions in
the measured combinatorial E. coli fitness landscape.

coefficients along the WH spectrum. The interactions recovered by DNN with EN regularization closely
matches the measured epistatic interactions of the measured E. coli fitness function (R2 = 0.67), a
considerable improvement over DNN without EN regularization (R2 = 0.41). The WH coefficients of
gradient boosted trees (R2 = 0.51) and random forests (R2 = 0.36) were spread out in the WH spectrum.
Lasso regression found two of the three interactions with higher coefficients, however, recovered a
spurious third-order interaction which resulted in a low epistatic correlation coefficient (R2 = 0.18).
When restricted to up to order 2 interactions, performance of Lasso improved; it recovered the two
interactions with higher coefficients, however, missed the third coefficient and the rest of the small
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epistatic interactions (R2 = 0.53).

20 40 60 80 100
Number of training proteins

Poelwijk et al.

Pr
ed

ic
tio

n
ac

cu
ra

cy
R2

DNN + EN
DNN
Lasso up to order 1
Lasso up to order 2
Lasso up to order 3
Lasso up to order 4
Lasso regression
Gradient boosted trees
Random forests

0.8

0.6

0.4

0.2

0

-0.2

a

20 40 60 80 100

DNN + EN 

DNN

DNN + EN-S 100% reg. subsmpl.
DNN + EN-S  33%  reg. subsmpl.
DNN + EN-S  25%  reg. subsmpl.

b

Number of training proteins
Poelwijk et al.

Pr
ed

ic
tio

n
ac

cu
ra

cy
R2

0.8

0.6

0.4

0.2

0

-0.2

Figure 3: Inferring the sparse epistatic protein landscape of Poelwijk et al. [3]. a, Deep
neural network (DNN) with epistatic net (EN) regularization outperforms the baselines in terms of
prediction accuracy. The performance gap is more pronounced in low-sample regimes. In particular, to
achieve the same prediction accuracy, DNN with EN regularization needs up to 3 times less number of
samples compared to DNN without EN regularization. b, The prediction performance of DNN with
EN-S regularization is plotted when EN-S subsamples DNN at progressively smaller fractions of the
combinatorial sequence space of proteins, that is, 100% (no subsampling), 33%, and 25%. DNN with
EN-S regularization outperforms DNN without the regularization despite restricting EN-S to only
sample 25% of the protein sequence space (following sparse graph codes). Error bars in both plots
show the standard error of the mean (SEM) in 20 independent repeats of the experiments with random
splits of the data into training, validation, and test sets.

Entacmaea quadricolor fluorescent protein. A comprehensive experimental study has reported all
the combinatorial mutants that link two phenotypically distinct variants of the Entacmaea quadricolor

fluorescent protein [3]. The variants were different in d = 13 mutational sites. The study showed the
existence of several high-order epistatic interactions between the sites, but also revealed extraordinary
sparsity in the interactions. We used this protein landscape to assess EN in regularizing DNN for
predicting protein function. We split the 213 = 8192 labeled proteins randomly into three sets: training,
validation, and test. The size of the validation and test sets were fixed to 1000. We varied the
training set size from a minimum of n = 20 proteins to a maximum of n = 100 proteins and measured
the accuracy of the models in predicting fitness on the unseen test set in terms of R2. DNN with
EN regularization consistently outperformed the baseline models and the performance gap was more
pronounced with smaller training set sizes (Figure 3a). This gap between the DNN with and without
EN regularization shows the power of the epistatic sparsity prior in inferring this sparse landscape; in
order to achieve the same level of prediction accuracy, DNN with EN regularization required up to 3
times fewer number of training samples, compared to DNN without EN regularization. We note that
applying various forms of `1 and `2-norm regularization on the weights of different layers of the DNN
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Figure 4: Robustness of recovered epistatic interactions in the scalable epistatic net (EN-S)
and inferring fitness function in two large canonical protein landscapes. a, The scatter plot
of the first-order Walsh-Hadamard (WH) coefficients of DNN trained on Sarkisyan et al. landscape [2]
recovered by EN-S using two independent sets of 5, 074, 944 subsampled proteins (out of 2236) following
patterns in sparse graph codes. The recovered coefficients are highly consistent (R2 = 0.99). The higher
variance of the scatter plot around the center shows the small number (20 out of 236) of coefficients
that are deferentially recovered. b, DNN with EN-S regularization outperforms the baselines in terms
of prediction accuracy in Sarkisyan et al. landscape [2]. c, DNN with EN-S regularization outperforms
the baselines in terms of prediction accuracy in Wu et al. landscape [1]. Error bars show the standard
error of the mean (SEM) in 3 independent repeats of the experiments with random splits of the data
into training, validation, and test sets.

did not change the performance gap between DNN with and without EN regularization (see Figure S5
in Supplementary Materials). Lasso regression showed a peculiar behavior as we increased the order
of allowed interactions. Prediction performance of Lasso improved as the maximum allowed order of
interaction increased from 1 to 2, but then degraded with higher-order interactions. We speculate
that this is due to the substantial increase in the number of parameters, resulting in Lasso picking up
spurious correlation.

The moderate dimension of the fluorescent landscape of Entacmaea quadricolor protein enabled
us to use the data set to compare the performance of DNN under EN regularization with its scalable
version, EN-S. The prediction performance of DNN with EN-S regularization showed a slight drop in
accuracy due to the approximations made by the ADMM decoupling (Figure 3b, see Methods). EN-S
stayed fairly consistent when we decreased the number of proteins sampled from DNN following the
patterns in sparse graph codes. Using as low as 2048 samples (out of the total of 8192 combinatorial
proteins, i.e., 25% subsampling) enabled successful regularization of DNN, resulting in a significant
performance gap compared to DNN without EN regularization.

Green fluorescent protein from Aequorea victoria (avGFP). The local fitness landscape of the
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green fluorescent protein from Aequorea victoria (avGFP) has been investigated in a comprehensive
study [2]. The authors estimated the fluorescence levels of genotypes obtained by random mutagenesis
of the avGFP protein sequence at 236 amino acid mutational sites. The final data set included 56, 086
unique nucleotide sequences coding for 51, 715 different protein sequences. Considering the absence or
presence of a mutation at a site, created a data set with input sequence size of d = 236. Regularization
in the resulting p = 2236-dimensional space was impossible using EN, illustrating the need for EN-S. We
analyzed the EN-S regularization by inspecting the WH spectral representation of DNN once trained
on the landscape. Figure S6a shows the first-order WH coefficients of DNN, recovered using EN-S
after sampling DNN at 5, 074, 944 (out of 2236 ⇡ 1071) proteins following patterns suggested by sparse
graph codes. We repeated the same procedure with an independent set of subsampled sequences (new
sequences from sparse graph codes with random offset) and visualized the recovered first-order WH
coefficients in a scatter plot as a function of the recovered coefficients using the first set of proteins in
Figure 4a. When sampled at two different relatively tiny subsets of this massive p = 2236-dimensional
space, EN-S recovered similar first-order coefficients (with R2 = 0.99), without assuming any prior
knowledge on the WH coefficients of avGFP being low-order (also see Figure S6). The higher variance
of the scatter plot around the center shows the small number of coefficients (30 out of 236) that are
deferentially recovered under the two subsamplings. EN-S associated 3.2% and 2.9% of the variation of
DNN to higher-order interactions, respectively for the first and second subsampling. We compared the
second-order interactions recovered under these subsamplings (Figure S7). Despite the small variation
associated with higher-order epistasis, 10% of the recovered second-order interactions were exactly equal,
and the rest of the interactions were locally correlated (R2 = 0.60 block-correlation). Figure 4b shows
that the prediction accuracy of DNN with EN-S regularization is higher than the baseline algorithms.
The gap between DNN with and without EN-S regularization is smaller compared to the previously
described protein landscapes. We speculate that this is due to the nature of the avGFP landscape,
where most of the variance in the landscape can be explained by first-order interactions and the rest
can be explained by higher-order interactions that are spread throughout the WH spectrum.

Immunoglobulin-binding domain of protein G (GB1). A recent study investigated the fitness
landscape of all the 204 = 160, 000 variants at four amino acid sites (V39, D40, G41 and V54) in an
epistatic region of protein G domain B1, an immunoglobulin-binding protein expressed in Streptococcal
bacteria [1]. One-hot encoding of the amino acids resulted in binary sequences of length d = 80. As
EN does not scale to regularize DNNs trained on this landscape, we relied on EN-S. Figure 4c shows
the prediction performance of DNN with EN-S regularization compared to the baseline models that
scaled to such dimension. All the models were trained on a random subset of n = 500 proteins. EN-S
subsampled DNN at 215, 040 proteins in order to perform the sparse epistatic regularization, which was
about 1018 times smaller than the entire sequence space. Despite such enormous level of undersampling,
the DNN regularized with EN-S consistently outperformed the baselines. The performance gap between
the DNN with and without EN-S regularization is smaller compared to the same gap in Entacmaea

quadricolor fluorescent protein landscape. We speculate that this is due to the different nature of the
effect of epistatic sparsity in these two landscape: in the Entacmaea quadricolor fluorescent protein
landscape EN-S promotes sparsity among the d = 13 mutational sites, however, in the GB1 landscape
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the regularization power of EN-S is mostly spent on promoting sparsity among the 20 amino acids in
each of the d = 4 mutational sites.

3 Conclusion and Discussion

We showed that several of the functional landscapes in biology have common structures (i.e., inductive
bias) in their epistatic interactions that manifest as sparsity in the spectral Walsh-Hadamard (WH)
domain. Sparse epistatic regularization of deep neural networks (DNNs) is an effective method to
improve their prediction accuracy, especially when the number of available training samples is small
compared to the vastness of sequence space. To this end, our epistatic net (EN) regularization method
combined the advantages offered by the sparsity of biological landscapes with sublinear algorithms in
signal processing and coding theory for epistatic regularization of DNNs in the combinatorial space of
interactions.

The superior prediction performance of DNNs with EN regularization comes with the additional
computational cost of finding the WH transform of the DNN landscape, which increases the computa-
tional complexity of the training algorithm by only a linear factor in the product of the length of the
sequence and the epistatic sparsity level. While training can be done offline (e.g., on a server) there
are avenues for making the algorithm even more efficient such as using the prior knowledge on the
maximum order of interaction to constraint the regularization space. Moreover, while this work laid out
the algorithmic principles of sparse epistatic regularization in supervised models, unsupervised models,
such as Potts model [26], Ising model [27], and Variational Autoencoders (VAEs) [28] can potentially
benefit from such regularization scheme as well: it would be tempting to hypothesize that these energy
landscapes also have structures that appear as high-order sparse coefficients in WH basis.

Overall, our sparse epistatic regularization method expands the machine learning toolkit for inferring
and understanding fitness functions in biology. It helps us to visualize, analyze, and regularize the
powerful, however less interpretable black-box models in deep learning in terms of their higher-order
interactions in the sequence space. We believe that our work will initiate new research directions
towards developing hybrid methodologies that draws power from statistical learning, signal processing,
coding theory, and the new generation of physics-inspired models in machine learning.

4 Methods

Notation. Suppose we are given n (experimental) samples (xi, yi)ni=1, that is, (sequence, value) pairs
from a biological landscape, where xi 2 {�1,+1}d denotes the binary encoding of d mutational sites in a
variant and yi 2 R is its associated fitness value. We are interested in learning a function f(x) that maps
all subsets of mutations to fitness values. In other words, we seek to learn a set function f(x) : Fd

! R,
where Fd denotes the space of all the binary vectors of length d. A key theorem [29] in mathematics
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states that any set function (also known as pseudo-Boolean function) f(x) = f(x1, x2, . . . , xd) can be
represented uniquely by a multi-linear polynomial over the hyper cube (x1, x2, . . . , xd) 2 {�1,+1}d:

f(x1, x2, . . . , xd) =
X

S✓[d]

↵S
Y

i2S

xi, (1)

where S is a subset of {1, 2, 3, . . . , d} = [d] and ↵S 2 R is the WH transform coefficient (or
equivalently the epistatic coefficient) associated with the monomial (interaction)

Q
i2S xi. For example,

the pseudo-Boolean function

f(x1, x2, x3, x4, x5) = 12x1x4 � 3x3 + 6x1x2x5, (2)

defined over d = 5 mutational sites, has three monomials with orders 2, 1, and 3 and WH coefficients
12, �3, and 6, respectively. The WH transform of this function is sparse with k = 3 non-zero coefficients
out of a total of 25 = 32 coefficients. Each monomial can be easily explained, for example, the first
monomial in the WH transform, that is 12x1x4, indicates that mutation sites 1 and 4 are interacting
and the interaction enriches fitness because the sign of the coefficient is positive. On the hand, the
second monomial �3x3 shows that a mutation at site 3 depletes fitness. The last monomial 6x1x2x5

shows a third-order interaction between mutational sites 1, 2, and 5 which also enrich fitness.

If the fitness function is measured (known) for all the combinatorial p = 2d inputs xi, then we can
use the Fast WH Transform (FWHT) [30] to find the WH coefficients in O(p log p) time complexity.
The problem is so-called fully determined in such scenario. However, as discussed in the introduction, in
inferring fitness functions, we typically face problems where the number of observed samples (sequences)
n is much smaller than the total number of possible sequences, that is, n ⌧ p = 2d; in other words, we
are in an under-determined regime. In full generality, we assume that the data is generated according
to a noisy nonlinear model

yi = f✓✓✓(xi) + "e, (3)

where ✓✓✓ are the parameters of the model, "e is a random variable drawn from a Gaussian distribution
with zero mean and variance �2

e . Under this setting the maximum likelihood estimate is

✓✓✓MLE = argmax
✓✓✓

nX

i=1

(yi � f✓✓✓(xi))
2. (4)
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We denote a deep neural network (DNN) by g✓✓✓(x), where ✓✓✓ is a vector of all the weights in DNN.
The DNN, g✓✓✓(x), takes in a binary input vector xi and predicts the output ŷi. Let X 2 Rp⇥d denote a
matrix which comprises all the p = 2d enumeration of the binary sequence xi of length d in its rows. We
slightly abuse the notation and let g✓(X) 2 Rp denote the real-valued vector of DNN outputs over all
these binary sequences. We call this high-dimensional vector the DNN landscape. In order to find the
WH transform of the DNN we can multiply the DNN landscape, g✓(X), by the WH matrix, H 2 Rp⇥p.
The WH matrix H can be defined using the recursive equation

H
2d = H

2
⌦H

2d�1
, (5)

where H
2 is the 2 ⇥ 2 ‘mother’ matrix defined as H

2 =


1 1
1 �1

�
and ⌦ denotes the Kronecker

product. The WH matrix is a symmetric unitary matrix; in other words, (1/2d)HH = I. Each of the
2d columns of H corresponds to a monomial (

Q
i2S xi) in the pseudo-Boolean representation of set

functions and equivalently corresponds to one of the terms in WH transform. In biology literature, this
coefficients is known as an epistatic interaction when |S| � 2. The WH transform of the DNN can be
calculated as Hg✓✓✓(X) 2 Rp.

Epistatic net (EN). EN regularizes the epistatic interactions in g✓(X) by adding a new WH loss
term to the original log-likelihood loss,

min
✓✓✓

nX

i=1

(yi � g✓✓✓(xi))
2 + ↵kHg✓✓✓(X)k0, (6)

where H 2 Rp⇥p is the WH matrix, the `0-norm k.k0 counts the number of non-zero values in
the WH transform of the DNN (i.e., Hg✓✓✓(X)), and ↵ is a scalar which strikes balance between the
log-likelihood loss and the regularization term. The scalar ↵ is set using cross-validation. The `0-
norm is a non-convex and non-differentiable term and is not suitable for optimization using the SGD
algorithm since the gradient is not well-defined for this term; therefore, following the common practice
in convex optimization, we relaxed the `0-norm and approximated it by a convex and differentiable
sparsity promoting `1-norm in EN. We will discuss in the next section that in the scalable version of
EN, it is more efficient to approximately solve the `0-norm minimization problem using the greedy
peeling-decoding algorithm from coding theory, which does not rely on gradient descent optimization.

EN approximately solves the following relaxed optimization problem using the SGD algorithm,

EN

min
✓✓✓

nX

i=1

(yi � g✓✓✓(xi))
2 + ↵kHg✓✓✓(X)k1. (7)
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Note that despite our convex relaxation, this optimization problem is still non-convex since both
the log-likelihood loss and the DNN landscape are non-convex (still differentiable) functions. In general,
convergence to the global minimum can not be guaranteed due to non-convexity of DNN, however, in
practice we observe that SGD converges smoothly to a useful stationary locally optimal point. To avoid
convergence to locally optimal points with poor generalization performance, the DNN can be trained
multiple times with several random initialization, however, as we have elaborated in the experimental
section, for most of the experiments in this paper random Xavier initialization resulted in excellent
generalization using a single initialization (no need for multiple initializations).

Scalable epistatic net (EN-S). For larger sequences (i.e., d > 25), the optimization algorithm in EN
does not scale well with d. There are two factors that prevents EN from scaling to larger sequences: time
and space complexity. We elaborate on these two factors: 1) In order to find the DNN landscape, we
need to query the DNN p = 2d times. Regardless of how fast DNN inference is, the time complexity of
this task grows exponentially with d. For example, it would take years to query the DNN with simplest
structure on all the binary sequences of length d = 236 in the avGFP protein landscape. Furthermore,
finding the WH transform of the DNN landscape, even using FWHT with O(p log p) computational
cost, will not be possible since the computational cost grows exponentially with d. 2) The WH matrix
H is a p⇥ p matrix and the DNN landscape g✓✓✓(X) is a p-dimensional vector. Regardless of the time
required to find those matrices, they need exponential memory to store, which becomes infeasible for
even moderate values of d. We need a method that scales sublinear in p (i.e., O(polylog p)) both in
time and space complexity.

Herein, we develop EN-S to approximately solve our optimization problem efficiently. We first
perform a change of variables and define the WH transform of the DNN landscape as u = Hg✓(X)
and set it as an explicit constraint in the optimization problem. Following this change of variable, we
reformulate the optimization problem in equation (7) as,

min
✓✓✓,u

nX

i=1

(yi � g✓✓✓(xi))
2 + ↵kuk1 subject to u = Hg✓✓✓(X). (8)

This change of variable enables us to use an augmented Lagrangian method to decouple the
optimization problem in equation (7) into two subproblems: 1) updating the weights of DNN using
SGD, and, 2) finding the WH transform of DNN using a fast greedy algorithm based on sparse graph
codes. The alternating direction method of the multipliers (ADMM) is a variant of the augmented
Lagrangian methods that uses partial updates for the dual variables and provides a principled framework
to decouple the optimization problem above. Following the scaled-dual form of ADMM [23], we decoupled
the optimization problem above into two separate minimization problems and a dual update. At
iteration t, we first fix ut 2 Rp and solve a ✓✓✓-minimization problem, then fix ✓✓✓t 2 Rp and solve a
u-optimization problem, and finally update the dual variable ��� 2 Rp as follows,

• ✓✓✓-minimization ✓✓✓t+1 = argmin✓✓✓
Pn

i=1(yi � g✓✓✓(xi))2 +
⇢
2kHg✓✓✓(X)� u

t + ���t
k
2
2
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• u-minimization u
t+1 = argmin

u
↵kuk1 +

⇢
2kHg✓✓✓t+1(X)� u+ ���t

k
2
2

• dual update ���t+1 = ���t +Hg✓✓✓t+1(X)� u
t+1,

where ⇢ 2 R is a hyperparamter set using cross-validation. Note that the time and space scaling
issues remain here and will be addressed momentary. Assuming an infinite time and space budget, the
✓✓✓-minimization problem can be tackled using SGD and the u-minimization problem can be solved by
projecting w

t+1 := Hg✓✓✓t+1(X) + ���t onto the `1-norm ball of radius ⇢/↵. This projection can be solved
using the soft-thresholding operator in Lasso [31]:

u
t+1
i =

8
<

:

w
t+1
i � ⇢/2↵ if w

t+1
i > ⇢/2↵

0 if ⇢/2↵  w
t+1
i  ⇢/2↵

w
t+1
i + ⇢/2↵ if w

t+1
i < ⇢/2↵.

(9)

Unfortunately, all the three steps above still have exponential time and space scaling with d. In
what follows we will show how to exploit the sparsity of the WH transform of the DNN landscape
u = Hg✓✓✓(X) to reformulate new minimization steps such that we need to subsample only a logarithmic
factor O(polylog p) of rows in H and approximately solve these steps in sublinear time and space
complexity in p (i.e., at most polynomial in d). We call this regularization scheme EN-S.

The first step to arrive at the EN-S regularization scheme is to reformulate the optimizations
above such that the WH matrix H appears as a multiplicative term behind the dual variable � and
u. This enables us to convert the u-minimization problem from a `1-norm ball projection to a sparse
WH recovery problem with H as the basis, for which we have fast solvers from signal processing and
coding theory. Note that kHg✓✓✓(X)�u

t +���t
k
2
2 = kg✓✓✓(X)�Hu

t +H���t
k
2
2 and kHg✓✓✓t+1(X)�u+���t

k
2
2 =

k[g✓✓✓t+1(X) +H���t]�Huk
2
2 because H is a unitary matrix. Therefore, we can write the optimization

steps above as,

• ✓✓✓-minimization ✓✓✓t+1 = argmin✓✓✓
Pn

i=1(yi � g✓✓✓(xi))2 +
⇢
2kg✓✓✓(X)�Hu

t +H���t
k
2
2

• u-minimization u
t+1 = argmin

u
↵kuk1 +

⇢
2k[g✓✓✓t+1(X) +H���t]�Huk

2
2

• dual update H���t+1 = H���t + g✓✓✓t+1(X)�Hu
t+1.

Now, the u-minimization problem is to find the WH transform of g✓✓✓t+1(X) +H���t with an `1-norm
sparsity prior. In order to solve this u-minimization problem, we resort to the fast sparsity-enabled
tools in signal processing and coding theory. This class of greedy algorithms solves the original `0-norm
minimization problem and finds the k-WH sparse landscape (for specific value of k) in a time and
space efficient manner (O(k polylog p), i.e., O(k poly d)) using sparse graph codes (see Supplementary
Materials for an overview of these methods). To this end, we leverage subsampling of input sequences
based on patterns in sparse graph codes [22]. We denote the rows corresponding to these subsampled
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sequences as XT , where |T | ⇠ O(k log2 p). The subsampling induces a linear mixing of WH coefficients
such that a belief propagation algorithm (peeling-decoding) over a sparse graph code recovers a p-
dimensional noisy landscape with k non-zero WH coefficients in sublinear sample (i.e., O(k log2 p)) and
time complexity (i.e., O(k log3 p)) with high probability [13,22,24,25] (see Supplementary Materials
for a full discussion). This fully addresses both the time and space scalability issues in solving the
u-minimization problem.

In order to resolve the time and space scalability issues in the ✓✓✓-minimization problem and the dual
update we introduce a novel approximation. We follow the subsampling patterns dictated by the sparse
graph codes in solving the u-minimization problem, and restrict both the ✓✓✓-minimization problem and
the dual update to those subsamples as well to arrive at,

• ✓✓✓-minimization ✓✓✓t+1 = argmin✓✓✓
Pn

i=1(yi � g✓✓✓(xi))2 +
⇢
2kg✓✓✓(XT )�HTu

t + ���t
k
2
2

• u-minimization u
t+1 = argmin

u
↵kuk0 +

⇢
2k[g✓✓✓t+1(XT ) + ���t]�HTuk

2
2

• dual update ���t+1 = ���t + g✓✓✓t+1(XT )�HTu
t+1,

where ���t := HT���t+1
2 R|T | and HT comprises the rows of H that are in T . Note that the change

of dual variable ���t = HT���t+1 is only possible because in all the three steps the dual variable ���t+1

appears in the WH basis. Note that while the columns of the subsampeld WH matrix HT still live in
a p-dimensional space, this matrix is never instantiated in memory because it only appears as HTu,
where u is a k-sparse vector. Therefore, HTu is computed on the fly by only finding the columns of
the (row-subsampeld) WH matrix HT that corresponds to the non-zero values in u.

The final EN-S method iterates over these three steps to train the DNN until convergence. We
indicate the algorithm to solve each step in brackets,

EN-S

• ✓✓✓-minimization ✓✓✓t+1 = argmin✓✓✓
Pn

i=1(yi � g✓✓✓(xi))2 +
⇢
2kg✓✓✓(XT )�HTu

t +���t
k
2
2 [SGD]

• u-minimization u
t+1 = argmin

u
↵kuk0 +

⇢
2k[g✓✓✓t+1(XT ) + ���t]�HTuk

2
2 [Peeling]

• dual update ���t+1 = ���t + g✓✓✓t+1(XT )�HTu
t+1. [Directly computed]

All the three steps above in the EN-S method scale sublinearly with p (i.e., at most polynomial
with d) both in terms of time and space complexity.

Experimental setup. The architecture of DNN was selected in isolation (i.e., without any WH
regularization). In our architecture search we considered a four-layer fully-connected DNN with batch
normalization and leaky ReLU as the activation function. The dimension of the layers were set to
d ⇥ fd, fd ⇥ fd, fd ⇥ d, and the dimension of the final layer was d ⇥ 1, where f is an expansion
factor. We searched for a value of f that resulted in best generalization accuracy on an independent
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data set—a prediction task on DNA repair landscapes [13] which we did not use for evaluation in this
paper. DNN prediction performance was stable around f = 10 with highest validation accuracy on the
independent data set. We selected f = 10 in all our experiments, except for the experiments done on
the avGFP landscape [2], where due to the sheer dimensionality of the problem (i.e., d = 236), we set
f = 1 (on limited independent tests with f = 10 on the same landscape, we observed no considerable
difference in prediction accuracy). The weights of the DNN were always initialized with the Xavier
uniform initialization [32]. We used the exact same initialization (random seed) for the baseline DNN
with and without EN(-S) regularization to ensure that we solely capture the effect of regularization
and not the variations due to initialization of DNN. We used the Adam optimizer in all the steps of
the methods requiring SGD and learning rate of 0.001, which resulted in best validation accuracy. We
always set ↵ = 0.1 in EN. For the DNN with EN(-S) regularization, a learning rate of 0.01 resulted in
the best validation accuracy. In EN-S, the hyperparameters ↵ and ⇢ have to be jointly set since they
are dependent. We set ↵ = 1 and ⇢ = 0.01 in EN-S although other value pairs could have resulted in
the same accuracy. The validation accuracy of DNN was monitored and used for early stopping to avoid
over-fitting based on the performance on a hold-out validation set (with a maximum of 1000 epochs).
We used the exact same validation set to perform hyperparamter tuning of the baseline algorithms,
including the Lasso family, random forest, and gradient boosted trees.

For the family of Lasso regression, we did an extra step to improve the prediction performance.
We selected the top most recovered coefficients and did ordinary least squares (OLS) on the reduced
problem. This step improves the robustness and the prediction accuracy of Lasso [33]. Therefore, in
addition to the standard � regularization parameter, which strikes a balance between sparsity and
the fidelity term (i.e., the mean squared error), we also did hyperparameter tuning for the number of
top coefficients in the OLS (note that the regular Lasso is included in our hyperparameter search and
appears when all the non-zero coefficients is selected to perform OLS). We did a grid search over the
hyperparameter � and the number of top coefficients in Lasso. For � we considered 50 values spanning
the range [10�7, 1]. Overall, this comprised of an exhaustive hyperparameter search to make sure the
best performance of Lasso is being captured.

For training gradient boosted trees and random forests baselines, we used packages from sklearn
in python. We did hyperparameter tuning for max depth and the number of estimators, using the
default values for all other parameters. For max depth, we considered parameters ranging from 1 to
the maximum number of mutations in the fitness function (i.e., d), for the number of estimators we
considered values in {10, 50, 100, 200, 300, 400, 500, 1000, 2000, 3000}, and chose the pair that resulted
in best validation accuracy. As a general trend, we observed that larger numbers of estimators result in
higher validation accuracies before they saturate.

Herein, we report the hyperparameters that resulted in highest validation accuracy, that is, the ones
we selected in our experiments. For the avGFP landscape, we set the number of estimators to 300 and
max depth to 11 for gradient boosted trees and set the number of estimators to 100 and max depth to
55 for random forests. We set � = 1 ⇥ 10�4 for Lasso regression when considering up to first-order
interactions and � = 1⇥ 8�4 when considering up to second-order interactions. For the GB1 landscape,
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we set the number of estimator to 100 and max depth to 2 for both gradient boosted trees and random
forests. We set � = 7⇥ 10�3 for Lasso regression when considering up to first-order interactions and
� = 2.5⇥ 10�2 when considering up to second-order interactions. For the protein landscape in Figure!3,
we set the number of estimators to 3000 and the max depth varied between the values in the sets
{1, 2, 3, 4} and {1, 2, . . . , 15} across the random repeats of the experiments with different train, test,
and validation set, respectively for gradient boosted trees and random forest; the value with the best
validation performance was selected for each repeat. For the bacterial landscapes in Figure 2, we set
the number of estimators to 300 and the max depth varied between the values in the set {1, 2, 3} across
the random repeats of the experiments with different train, test, and validation set; the value with the
best validation performance was selected for each repeat.

Prepossessing the fitness landscapes. For the landscapes tested in this paper, we followed the
Box-Cox power transform method as described in ref. [18] to remove possible global nonlinearities
from the landscape. Although the effect of removing such nonlinearities was small in our analysis,
global nonlinearities in general can produce high-order epistatic interactions that are not truly needed.
Removing these nonlinearlities can reduce noise and increase epsitatic sparsity. Nevertheless, one can
completely ignore this preprocessing step and rely on DNN with EN regularisation to capture the global
nonlinearites and infer the fitness landscape for prediction purposes.

5 Code Availability

A software for the EN and EN-S regularization algorithms has been developed in Python and is publicly
available in our github repository at https://github.com/amirmohan/epistatic-net. All the data sets
used in the paper are publicly available in the references cited in this manuscript.
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