
Polar Alignment for Interference Networks

Kumar Appaiah, O. Ozan Koyluoglu, and Sriram Vishwanath

Wireless Communications and Networking Group

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712

Email: kumar.a@utexas.edu, ozan@austin.utexas.edu, sriram@austin.utexas.edu

Abstract—Polar coding has originally been introduced as a ca-
pacity achieving low complexity code for binary input symmetric
channels. Polar codes can be understood as transformations that
replace a probabilistic channel with parallel deterministic coun-
terparts. This paper builds on this interpretation of polar codes,
using it to perform alignment over the resulting deterministic
channels to obtain gains for interference networks. It is important
to note here that polar codes are not chosen with encoding
and decoding complexity in mind, which is just a fortuitous
side-benefit, but with the aim of transforming the original
channels into a class of deterministic parallel channels over which
interference-alignment is well-understood. A degraded one-sided
interference network is chosen as the illustrative example. Polar
alignment is shown to increase the achievable sum rate over
known random coding schemes. The paper concludes with a brief
discussion of possible extensions.

I. INTRODUCTION

Polar codes, introduced by Arıkan [1], is a class of struc-

tured codes that are shown to be capacity achieving for discrete

memoryless channels (DMCs). In its original form [1], “polar-

ization” is tantamount to converting n uses of a given binary-

input discrete memoryless channel (DMC) into n polarized

channels. These polarized channels are deterministic channels

which are either “good” or “bad”, (i.e., either possessing a rate

close to 1 or 0, respectively). Arıkan showed that the fraction

of “good” channels converges to the symmetric capacity of

the channel (which is the mutual information between the

channel input and output given the input is chosen as a binary

uniform random variable). Subsequently, a coding strategy

which simply transmits information over the “good” channels

achieve the symmetric capacity of the channel. (The input bits

corresponding to bad channels are fixed, called “frozen”, and

shared with the receiver before the communication takes place

in order to allow successive decoding at the receiver.) Remark-

ably, this technique achieves the capacity of any binary input

symmetric DMC with low encoding and decoding complexity

of O(n log n) and an exponential error probability decay of

roughly O(2−
√

n) for block length n. (The error decay rate is

demonstrated in [2].)

Since its introduction, polar codes have been studied in

multiple different contexts, which include a) systematic cod-

ing, non-binary inputs, and combinations with other coding

strategies [3]–[13], b) applications to source coding [14]–

[17], c) applications to the additive white Gaussian noise

(AWGN) channel [8], [18], d) generating security [19]–[22],

e) and finally, in the context of multiple-access channels

(MACs) [23], [24]. This last class of polar coding for MACs

is particularly important for the application of polar codes in

interference networks, as studied here.

This paper considers polar codes in the context of inter-

ference networks, with an aim of combining the concepts of

interference-alignment [25], [26] with polar coding, a combi-

nation we call polar alignment. The 2-user interference channel

was studied in [27]; and the best known achievable rate region

for the two user scenario is given by Han and Kobayashi [28],

is recently simplified in [29]. However, except for some special

cases (e.g., [30]–[34]), characterizing the capacity region of

the two-user Gaussian interference channel remains as an open

problem. Recent works on interference channels having more

than two users emphasize the importance of interference align-

ment in increasing the achievable rate regions for interference

networks. Once aligned, the interference can be considered

as noise [25] or can be decoded at the receivers [35]–[37].

Alignment, as studied in the vast and growing literature on

the topic is based on structured coding schemes, and thus

polar codes are a natural choice for an implementation of

interference alignment.

The main contribution of this paper is the insight that

polarization is a transformation that replaces the original

(noisy) channel coding problem with multiple parallel deter-

ministic channel coding problems. Interference-alignment is

best understood in the context of such deterministic channels;

and enabling alignment over general DMCs has proven to be

a challenging task. Thus, polarization and alignment naturally

work together to enable the characterization of good achiev-

able regions for DMCs. Note that, such an approach not only

enjoys the low complexity of encoding and decoding of polar

codes and its deterministic coding and decoding structures,

but also, perhaps more importantly, take advantage of the

polarization in alignment of the interference.

The authors believe that a substantial body of work needs to

be conducted to fully understand polar alignment for arbitrary

interference networks. To provide a meaningful starting point,

we initiate this study with the classical one-sided discrete

memoryless 3-user interference channel with a degraded re-

ceiver structure. Achievable rates for 3-users interference

channels has already been studied in existing literature using

structured codes [35]–[37]. The added benefits of studying it

from a polar coding context is to show that a simultaneous



polarization and alignment (of interference) can be achieved.

A detailed description of the one-sided interference channel

studied in this paper is provided by the system model presented

in the next section. In this paper, we combine the results

on polar coding a q-ary input point-to-point and multiple-

access channels [8], [23], [24] to show that it is possible to

extend some known random coding inner bounds (such as the

extension of the Han-Kobayashi coding [28] and the scheme

of Bandemer and El Gamal [38]). The underlying idea is to

decode (part of the) sum of the interfering codewords at the

receiver that receives interference. We also discuss how the

polar coding might be useful for alignment and decoding of

the interference for general networks.

The rest of the paper is organized as follows. We introduce

the system model in Section II, and describe two random

coding inner bounds to the capacity region in Section III.

In Section IV, we introduce the coding scheme and compare

it with the rate regions obtained using random coding. In

Section V, we comment on our findings and discuss how polar

coding might find use in general interference networks, and,

in Section VI, we conclude the paper.

II. SYSTEM MODEL

The discrete memoryless interference channel with 3-users

is governed by p(y1, y2, y3|x1, x2, x3), where (x1, x2, x3) ∈
X1×X2×X3 are channel inputs, and (y1, y2, y3) ∈ Y1×Y2×
Y3 are the channel outputs. The channel is memoryless in the

sense that the n usages of the channel can be written as

p(Y n
1 = yn

1 , Y n
2 = yn

2 , Y n
3 = yn

3 |

Xn
1 = xn

1 , Xn
2 = xn

2 , Xn
3 = xn

3 )

=

n∏

i=1

p(y1(i), y2(i), y3(i)|x1(i), x2(i), x3(i)). (1)

In this paper, we consider the special case of one sided

interference channels over finite fields, where

Xk = Yk = {0, · · · , q − 1}, for k = 1, 2, 3,

and the channels are given by

Y1 = X1 + aX2 + aX3 + N1 (2)

Y2 = X2 + N2 (3)

Y3 = X3 + N3, (4)

where Nk is an additive noise variable defined over GF(q)

for k = 1, 2, 3, a ∈ GF(q) is a fixed amplification factor,

and the summations are over the field GF(q). The channel can

be represented as shown in Figure 1. (Results provided in this

paper can be easily extended to a model with distinct non-zero

coefficients multiplying each factor in (2), (3), and (4).)

For our polar coding scheme, we focus on the “degraded”

interference channels, formalized by the following Markov

chain structure: Let

Ỹ1 , X̃ + N1 (5)

Ỹ2 , X̃ + N2 (6)

Ỹ3 , X̃ + N3, (7)

a

a

X1

X2

X3

Y1 = X1 + a(X2 + X3) + N1

Y2 = X2 + N2

Y3 = X3 + N3

Fig. 1. The q-ary one-sided interference channel

then the channel is said to be degraded if X̃ → Ỹ1 → Ỹ2 → Ỹ3

forms a Markov chain. We observe that this condition also

implies a strong interference situation, since we assume that

the the interference a(X2 + X3) is decodable at the first

receiver whenever the second and third receiver are able to

decode X2 and X3, respectively.

We denote the rate of user k with Rk, and a

(R1, R2, R3, n, P
(n)
e ) code has the following components:

1) The message set of user k, Wk = {1, · · · , 2nRk},

2) The encoding function at transmitter k, f : Wk → Xn
k ,

mapping the messages to channel inputs,

3) The decoding function at receiver k, g : Yn
k → Wk,

mapping the channel outputs to the estimates of the transmitted

message, and

4) The average error probability P
(n)
e , which is given by

P (n)
e =

1

2n(R1+R2+R3)

∑

wk∈Wk,k=1,2,3

Pr{g(Y n
1 ) 6= w1 or

g(Y n
2 ) 6= w2 or g(Y n

3 ) 6= w3|(w1, w2, w3) is sent.} (8)

The tuple (R1, R2, R3) is said to be achievable, if there

exist a sequence of (R1, R2, R3, n, P
(n)
e ) codes satisfying

arbitrarily small error probability in the limit of large n (i.e.,

codes with P
(n)
e → 0 as n → ∞). The capacity region is the

set of all achievable (R1, R2, R3) pairs and is denoted by C.

All logarithms are taken with respect to base q in this paper,

where q is a prime number.

III. RANDOM CODING SCHEMES

A. An extension of the Han-Kobayashi scheme

The Han-Kobayashi scheme [28] for the interference chan-

nels can be extended to the 3-user scenario; where, for the

one-sided model, the users will have the following splitting

over the messages: W1 = W1p, W2 = {W2c, W2p}, W3 =
{W3c, W3p}, where Wkp is the private message decoded at

receiver k for k = 1, 2, 3, and Wkc is the common mes-

sage decoded at both receivers k and 1 for k = 1, 2. We

denote the corresponding rates of the messages with Rkp and

Rkc, and denote the codewords carrying common and private

messages with Un
k and V n

k , respectively, for k = 1, 2, where

(Uk, Vk) ∈ Uk × Vk for some finite sets Uk and Vk. (We

directly use Xn
1 for W1.) We also define the time-sharing

random variable Q over the finite set Q. Let P1 be the set



of input distributions that factors as

p(q, x1, u2, v2, x2, u3, v3, x3) =

p(q)p(u2|q)p(v2|q)p(u3|q)p(v3|q)

p(x1|q)p(x2|u2, v2, q)p(x3|u3, v3, q). (9)

Then, the following region is achievable.

Corollary 1 (HK Scheme [28]): For a given input distri-

bution p ∈ P1, let R1(p) is the set of all non-negative

(R1, R2c, R2p, R3c, R3p) tuples satisfying the following in-

equalities.

R1 ≤ I(X1; Y1|U2, U3, Q)

R2c ≤ I(U2; Y1|X1, U3, Q)

R3c ≤ I(U3; Y1|X1, U2, Q)

R1 + R2c ≤ I(X1, U2; Y1|U3, Q)

R1 + R3c ≤ I(X1, U3; Y1|U2, Q)

R2c + R3c ≤ I(U2, U3; Y1|X1, Q)

R1 + R2c + R3c ≤ I(X1, U2, U3; Y1|Q)

R2c ≤ I(U2; Y2|V2, Q)

R2p ≤ I(V2; Y2|U2, Q)

R2c + R2p ≤ I(U2, V2; Y2|Q)

R3c ≤ I(U3; Y3|V3, Q)

R3p ≤ I(V3; Y3|U3, Q)

R3c + R3p ≤ I(U3, V3; Y3|Q)

Let π(S) be the set of (R1, R2, R3) such that R2 =
R2c + R2p and R3 = R3c + R3p for some set S consisting of

(R1, R2c, R2p, R3c, R3p) tuples. Then,

RHK , π (∪p∈P1
R1(p)) ⊆ C. (10)

B. Decoding of the combined interference

Interference decoding with random codes is proposed

in [38] for 3-user interference channel. When specialized to

the one-sided model given in the previous section, this scheme

achieves the following region.

Corollary 2 (Interference decoding scheme [38]): Let P2

be the set of input distributions that factors as

p(q, x1, x2, x3) = p(q)p(x1|q)p(x2|q)p(x3|q). (11)

For a given input distribution p ∈ P2, let R2(p) is the set of

all non-negative (R1, R2, R3) tuples satisfying the following

inequalities.

R1 < I(X1; Y1|a(X2 + X3), Q)

R1 + min{R2, H(X2|Q)} < I(X1, X2; Y1|X3, Q)

R1 + min{R3, H(X3|Q)} < I(X1, X3; Y1|X2, Q)

R2 < I(X2; Y2|Q)

R3 < I(X3; Y3|Q),

and

R1 + min{R2 + R3, R2 + H(X3|Q), R3 + H(X2|Q),

H(a(X2 + X3))} < I(X1, a(X2 + X3); Y1|Q). (12)

Then,

RID , ∪p∈P2
R2(p) ⊆ C. (13)

IV. POLAR CODING FOR ONE-SIDED INTERFERENCE

CHANNELS

In this section, we shall describe a polar coding based

achievability strategy for the one-sided interference channel

with degraded receivers. We show that appropriate use of

polar codes on a one-sided degraded interference channel can

enhance the achievable rate region, and in particular increase

the achievable sum-rate.

A. Polar Codes for the q-ary MAC Channel

In this section, we provide some definitions which faciliate

the use of Polar codes for the q-input q-ary output MAC.

(Please refer to [23], [24] for details.) We assume that the

input and output alphabets are X = Y = {0, 1, . . . q − 1}
and that all logarithms are to the base q. The 2-user MAC is

specified by the conditional probabilities as:

P (y|x̄), for each y ∈ Y and

x̄ = (x1, x2) ∈ GF (q) × GF (q)

Let E2 , {1, 2} and X1(i), X2(i) represent the mutually

independent and identically distributed q-ary random variables

transmitted by each user at the i-th time instant. Let X̄(i) ,

(X1(i), X2(i)). Let the output of the MAC P for input X̄(i)
be Y (i). For a set J ⊆ E2, we define

XJ , {Xk : k ∈ J}

IJ(P ) , I(XJ ; Y XJC )

where JC = E2 − J .

We are interested in polarization of this MAC when the

same construction of Arıkan is used. It is shown in [23]

and [24] that the two-user MAC has five extremal channels

(compared to the two extremals of the point-to-point channel).

We here briefly describe this phenomenon. (Please refer to [23]

and [24] for details.)

Upon two successive independent uses of the channel,

with respective input X̄(1) = (X1(1), X2(1)) and X̄(2) =
(X1(2), X2(2)), we obtain the respective outputs Y (1) and

Y (2):

X̄(1) → Y (1), X̄(2) → Y (2)

To completely characterize the achievable rate, we define

two auxiliary q-ary random vectors

Ū(1) , (U1(1), U2(1))

Ū(2) , (U1(2), U2(2))

which are mutually independent and consist of uniformly

distributed components. We then connect these with X̄(1) and

X̄(2) as

X̄(1) = Ū(1) + Ū(2)

X̄(2) = Ū(2),



where addition is defined component-wise modulo q.

Definition 3: Let P : GF(q) × GF(q) → Y be an 2-user q-

ary MAC. Let P− : GF(q)×GF(q) → Y2 and P+ : GF(q)×
GF(q) → Y2 be two new MACs given by

P (y(1), y(2)|ū(1)) ,
∑

ū(2)

1

q2
P (y(1)|ū(1) + ū(2))P (y(2)|ū(2)),

P (y(1), y(2), ū(1)|ū(2)) ,

1

q2
P (y(1)|ū(1) + ū(2))P (y(2)|ū(2))

for all ū(i) ∈ GF(q) × GF(q), y(i) ∈ Y, i = 1, 2.

In other words, this step can be viewed as defining two new

2-user q-ary MACs with extended output alphabets as follows:

Ū(1)
P−

−−→ (Y (1), Y (2)), Ū(2)
P+

−−→ (Y (1), Y (2), Ū(1))

With this construction, we observe that, analogous to the

single-user channel polarization, the MAC channel also polar-

izes, and we have

IJ (P−) ≤ IJ (P ) ≤ IJ (P+), ∀J ⊆ E2

We define a random process Pn, where P0 = P and Pn =
PBn

n−1 for n ≥ 1 with Bn distributed as i.i.d. uniform over

{−, +}. We now state the results on polarization to extremal

channels for this MAC.

Lemma 4: ( [23] and [24])

1) The processes {IJ (Pn), J ⊆ E2} converges a.s., i.e., for

each J ⊆ E2, IJ (∞) , limn→∞ IJ (Pn) exists a.s.

2) With probability 1, IJ(∞)− IJ−{j}(∞) ∈ {0, 1} , ∀J ⊆
E2, j ∈ J , where I∅(∞) = 0.

From the above result, one can observe that the resulting

achievable communication regions can be expressed as ma-

troids, which describe the polarized states of the MAC channel.

In particular, for a particular polarized state of the channel,

the extremal channel state for the users in the MAC specifies

which users’ transmission should consist of information bits,

and which users’ bits are to be frozen. The coding scheme

proposed in this study takes advantage of these extremal

channels in aligning and decoding of the interference.

B. The One-Sided Interference Channel Case

We now restrict ourselves to the three user one-sided

degraded interference channels, study the use of polar codes

in this context, and show that this method can achieve the

symmetric sum rate for such channels.

In order to use polar codes to communicate through these

channels, we use point-to-point polar codes for each channel.

For the channel from Xj to Yj for j = 1, 2, described

respectively as Pj , polarization of the channel for stages

i = 1, 2, . . . is described with the following shorthand

Ij(i) , I[{j}](i), j = 1, 2. (14)

Performing the polarization operation as described above

yields polarized channels, which are either noiseless or com-

pletely noisy. Owing to the degraded channel assumption

q(0,0) q(1,0) q(1,1)

I2(i) 0 1 1
I3(i) 0 0 1

TABLE I
FRACTIONS OF POLARIZED EXTREMAL STATES FOR CHANNELS 2 AND 3

X1

Xint

Y1 = X1 + Xint + N1

Fig. 2. The effective MAC channel at the first receiver

on P2 and P3, we observe that the these channels polarize

simultaneously to yield possible (I2(i), I3(i)) tuples as (0, 0),
(1, 0), and (1, 1). We now define the fraction of channels

polarized in each of these states as q(0,0), q(1,0) and q(1,1),

respectively.

We can visualize the polarization of these channels from

Table I. In particular, the 0 state corresponds to a situation

where the symbol is frozen, while 1 signifies a noiseless

channel where the information is sent. Since the fraction of

polarized channels in Pj is I(Xj ; Yj), j = 1, 2, we have that

q(0,0) + q(1,0) + q(1,1) = 1

q(1,0) + q(1,1) = I(X2; Y2)

q(1,1) = I(X3; Y3)

From the above equations, we can solve for q(0,0), q(1,0) and

q(1,1) to obtain

q(1,1) = I(X3; Y3)

q(1,0) = I(X2; Y2) − I(X3; Y3)

q(0,0) = 1 − I(X2; Y2)

In order to decode the combined interference at receiver 1,

we represent the interference aX2 + aX3 as a single entity

Xint ∈ GF(q). In other words, we use the MAC formulation

discussed above along with the following:

Xint , aX2 + aX3 = a(GU2 + GU3)

= G(Uint),

where Uint = a(U2 + U3).
Thus, the interference can be considered to come from

a q-ary symbol transmitted in the effective MAC which is

encoded with the same polar coding scheme as the one-sided

interference channel.

We can now consider the effective channel to receiver 1 as

an effective MAC channel as shown in Figure 2.

Now, using the results given in the previous subsection, we

can conclude that the channel polarizes to extremal channels



which form a matroid. Our coding scheme at the polarized

time instant i can be succinctly described as follows:

• If the channel U3(i) → Y3(i), defined as P3(i) is

polarized to a 1 state, one can send information on the

channel P3. Due to the degraded assumption, the channel

P2(i) : U2(i) → Y2(i) can also transmit an information

bit.

• If the channel P3(i) polarizes to a 0 state, we freeze

U3(i) for this transmission. If P2 polarized to a 1 state,

an information bit is can be sent by U2(i). Otherwise, we

set U2(i) as frozen as well.

• The transmission of information on P1 : X1(i) → Y1(i)
is governed by the effective MAC with X1(i), Xint(i) →
Y1(i) described above. In this case, the transmission for

U1(i) is identical to that of a user in a polar coded 2-user

MAC.

The above coding strategy can be summarized by observing

that channels P2 and P3 essentially utilize the point-to-point

Polar coding strategy, while P1 utilizes the 2-user MAC

strategy with X1 and Xint being the transmitting users. Based

on this method, the achievable rate region can be given by the

following.

Theorem 5: The achievable rates with polar coding on the

degraded one-sided interference channel is given by the union

of the non-negative rate tuples satisfying

R1 ≤ I(X1; Y1, Xint)

R2 ≤ I(X2; Y2)

R3 ≤ I(X3; Y3)

R1 + max {R2, R3} ≤ I(X1, Xint; Y1)

over uniformly distributed inputs.

Note that the additional constraint of Rint ,

max {R2, R3} ≤ I(Xint; Y1|X1) for the MAC region is

already satisfied due to the degradedness of the channel as

I(Xint; Y1|X1) ≥ (X2; Y2) ≥ I(X3; Y3).
We now provide an outer bound to the achievable rates in

this setting.

Lemma 6: Any achievable rate tuple for the one-sided de-

graded interference channel belong to the region given by the

union of non-negative rate tuples satisfying

R1 ≤ I(X1; Y1|Xint) = I(X1; Y1, Xint)

R2 ≤ I(X2; Y2)

R3 ≤ I(X3; Y3)

R1 + max {R2, R3} ≤ I(X1, Xint; Y1),

where each term on the right hand side is evaluated with

uniform input probability distributions.

This can be observed by noting the following:

• Channels P2 and P3 are point-to-point links, on which

the achievable rate is bounded by the mutual information.

Thus, Rj ≤ I(Xj ; Yj), j = 1, 2.

• The rate for channel P1 is upper bounded by the rate

obtainable if Xint is supplied to the receiver. In addi-

tion, since Xint and X1 are independent, we get R1 ≤
I(X1; Y1, Xint).

• Due to the degraded assumption, the decodability of

X2 and X3 from Y2 and Y3 respectively ensures the

decodability of Xint at the first receiver. Thus, combin-

ing the interferer and the first transmitter, we obtain

the bound R1 + max {R2, R3} ≤ I(X1, Xint; Y1). (We

briefly note a more formal approach to this bound. Due

to Fano’s inequality one can bound n(R1 + R2) ≤
I(Xn

1 ; Y n
1 ) + I(Xn

2 ; Y n
2 ) + nǫ with some ǫ → 0 as

n → ∞. Then, using degradedness and the fact that

conditioning does not increase entropy we can obtain

I(Xn
2 ; Y n

2 ) ≤ I(Xn
int; Y

n
1 |Xn

1 ), and use it to show

R1+R2 ≤ I(X1, Xint; Y1|Q) with a time sharing random

variable Q.)

• Then, the outer bound region with the above inequalities

can be stated with time sharing random variable Q, and

a union over distributions p(q)p(x1|q)p(x2|q)p(x3|q).
However, without loss of generality we can consider

uniform inputs (independent of Q) as right hand side

expressions at each of the inequalities is maximized by

such a choice.

Corollary 7: From Lemma 5 and Lemma 6, we can con-

clude that the sum capacity of the channel is

Csum = I(X1, Xint; Y1) + min {I(X2, Y2), I(X3, Y3)} ,

with uniform input distributions p(x1)p(x2)p(x3).

V. DISCUSSION

Note the following facts:

• The scheme described above is optimal in terms of the

sum capacity for the given channel. This way, it extends

the Han-Kobayashi region, and there exist cases for which

it extends the interference-decoding (with random codes)

region described in [38]. Our region clearly includes the

interference decoding region given in Corollary 2 when

the inputs are uniform, as the region given for the latter

has an additional sum rate constraint. In particular, the

last inequality in the region described in Corollary 2 sim-

plifies to Rsum = R1 +R2 +R3 ≤ I(X1, aX2 +aX3; Y1)
when R2 + R3 ≤ H(aX2 + aX3)), R2 ≤ H(aX2),
and R3 ≤ H(aX3). Thus, for a given channel, one can

have Rsum < Csum. Note that, from the converse analysis,

we see that the the maximum values for each expression

is achieved by the uniform distribution of inputs p(x1),
p(x2), p(x3). Any deviation of p(xk) from the uniform

distribution may degrade the achieved sum rate as it will

decrease the corresponding Rk. This shows that the points

achieved by our scheme strictly extends the two random

coding regions given above.

• Note that the use of structured codes along with joint

decoding of interference is by no means a new obser-

vation. For example, [35]–[37] show that lattices can

provide a rate improvement over existing random coding

strategies. The polar coding construction in this paper

goes well beyond the conventional lattice/linear-coding



alignment strategies in [35]–[37]. Polar coding induces

and extricates deterministic structure in noisy channels

where structure may be not otherwise be easy to isolate.

In addition, it does so using low complexity encoding

and decoding. In particular, the encoding and decoding

complexity of point-to-point and multiple access polar

codes scale as O(n log n) [1], [8].

• The random coding rate regions in [] take into account

all possible input distributions, including non-uniform.

Therefore, it is of interest to extend the coding scheme

to non-uniform input distributions for channel models

different than the one considered in this paper. The polar

coding method uses uniformly distributed information

variables, Uk(i) for user k at time index i. This results in

uniformly distributed channel inputs Xk for user k. Be-

cause of this construction, the polar coding achieves the

”symmetric capacity” of point-to-point channels [1], [8],

and the ”uniform rate region” of multiple access chan-

nels [23], [24]. However, using Gallager’s method [39]

one can easily construct arbitrary input distributions. For

example, say q = 2 and hence X1 = GF (2), and an input

distribution with Pr{X1 = 0} = 1
3 and Pr{X1 = 1} = 2

3
is needed. Then, we can extend the channel input cardi-

nality to q′ = 3, and construct polar codes for the ternary

input channel. Denoting the resulting codewords as X ′
1,

we can map these uniformly distributed input distribu-

tions to X1 with a mapping f(·) : GF (q′) → GF (q) with

f(0) = 0 and f(1) = f(2) = 1. This way, the channel

inputs x1(1) = f(x′
1(1)), · · · , x1(n) = f(x′

1(n)) will

have the desired distribution p(x1). Similarly, by increas-

ing q′ and using an appropriate function f(), one can

obtain any desired p(x1) using Gallager’s method. And,

this way, it can be shown that polar coding can achieve

the capacity of arbitrary input arbitrary output point-to-

point DMCs [8]. However, it is not this straightforward to

obtain non-uniform inputs in our coding scheme. In par-

ticular, considering the extended input alphabets, where

Xk, Uk ∈ GF (q′), and the mappings fk to construct

desired input distributions with the Gallager’s method,

the interference signal is given by

Xint = af2(GU2) + af3(GU3), (15)

where the operations of GUk are in GF (q′), and the

summation and multiplications (with a) are in GF (q).
Due to this, it may not be possible to write Xint = GUint

for the given functions fk. This is a challenge, as the

combined interference may not be treated as one polar

code, and is an important direction of further research on

this coding scheme. The main question here is: Can we

find mappings fk(·) for some q′, that not only result in

the desired input probability distributions pk(), but also

allow the interfering signals to be treated as belonging to

one polar code?

• The polar coding approach discussed in this paper is not

a specific scheme that pertains only to the considered

channel model. In fact, we believe that polar coding is a

key to implement interference alignment and interference

decoding in networks. To further elaborate on this, lets

consider a MAC seen by receiver 1 (P1), which has

an output Y1. When we analyze the extremals of this

channel (i.e., I[J ](P1) for each subset of users J), we

observe that opportunities for interference alignment and

decoding arises naturally. Remarkably, using the results

of [24], we can view each extremal as a deterministic

channel, where the channel output is given by Y1(i) =
A1(i)[X1(i)X2(i)X3(i)]

T with A1(i) describing the de-

terministic channel at time index i. For example, one can

have the following cases at two instants of the polarized

channels:

A1(j) = [100; 011], A1(k) = [111; 011], (16)

with the corresponding outputs are given by

Y1(j) = [X1(j); X2(j) + X3(j)],

Y1(k) = [X1(k) + X2(k) + X3(k); X2(k) + X3(k)].

Clearly, the time index j corresponds to an interference

alignment time index, and, one can implement both

interference alignment and decoding at time index k.

This suggests that the coding over interference networks

can utilize polar coding over MACs, which can be used

for alignment and decoding of the interference. And, to

determine the achievable region over such a construction,

one needs to find the frequencies of the extremals for a

given channel. This is an ongoing research that we are

pursuing at the moment.

• Another point that we want to include that whether one

might be interested in designing different polar coding

matrices (i.e., Gks) in the interference channel context

compared to point-to-point and multiple-access scenar-

ios. Can one design Gks specific to channels given by

p(yk|x1, x2, x3) that aligns the interfering signals and

allow interference decoding?

VI. CONCLUSION

We introduce a polar coding based alignment scheme for

interference networks, with a focused application to one-

side degraded interference channels. This enables determin-

istic (and in our examples, linear) structure on the resulting

channels, over which we perform alignment by decoding

the sum-interference. Such a coding scheme is found to

outperform existing random coding based approaches for this

channel. Additional side-benefits of the polar coding based

scheme include low-complexity encoding and decoding, and

deterministic (constructive) encoding and decoding arguments.

We believe that considerable work needs to be done to fully

uncover the potential gains of bringing polar coding and

alignment together in one framework.
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