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Abstract—This paper considers a state dependent channel with
one transmitter, Alice, and two receivers, Bob and Eve. The prob-
lem at hand is to effectively “amplify” the channel state sequence
at Bob while “masking” it from Eve. The extent to which the state
sequence cannot be masked from Eve is referred to as leakage,
and the paper is aimed at characterizing the tradeoff-region
between amplification and leakage rates for such a system. An
achievable coding scheme is presented, wherein the transmitter
enumerates the state sequence using two indices, and transmits
one of the indices over the channel to facilitate the amplification
process. For the case when Bob observes a “stronger” channel
than Eve, the achievable coding scheme is enhanced with secure
refinement. The optimal amplification-leakage rate difference,
called as differential amplification capacity, is characterized for
the degraded binary and the degraded Gaussian channels. For the
degraded Gaussian model, extremal corner points of the trade-
off region are characterized. In addition, the gap between the
outer bound and achievable rate-regions is determined, where it
is shown that the gap is less than half a bit for a wide set of
channel parameters.

I. INTRODUCTION

In this paper, we consider a state dependent broadcast

channel model with two users, and consider the question of

to what extent the state of the channel can be amplified at

the receiver (Bob) and masked from the other receiver (called

as Eve). In the best case, the state(s) seen by Bob and Eve

will be completely different (or, independent). However, we

consider what might be a pessimistic model where there is

a single channel state defining the channel for both Bob

and Eve. Moreover, the entire channel state is presumed

to be known non-causally to the transmitter (a Gel’fand-

Pinsker-style assumption [1]). The only manner in which an

asymmetry can be affected between Bob and Eve is by the

encoding used at the transmitter. For such a system, we aim

to characterize the tradeoff between the “amplification”-rate at

which the legitimate pair can operate and the “leakage”-rate to

the eavesdropper. In essence, as long as there is a non-trivial

difference between the two, this can be used to develop shared

keys and enable cryptographic algorithms. In general, we are

interested in understanding the entire rate tradeoff region. Two

applications are of definite interest with such a formulation.

Firstly, the problem is intimately related to the analysis of key

agreement using channel states. Once obtained, this key can

be used, for example, in symmetric key cryptography [2], [3].

The second application is in cognitive radios [4]–[6], where

the cognitive encoder facilitates the secure communication of

the primary signal (the channel state sequence) while masking
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Fig. 1. The system model for amplification subject to masking problem.

it from the eavesdropper.

A. Problem Statement

Consider a discrete memoryless channel given by

p(y, z|x, s), where x ∈ X is the channel input, s ∈ S is

the channel state, and (y, z) ∈ (Y ×Z) is the channel output,

with y corresponding to the legitimate receiver (Bob) and z the

eavesdropper (Eve). The channel is memoryless in the sense

that

p(Y n = yn, Zn = zn|Xn = xn, Sn = sn)

=
n
∏

i=1

p(y(i), z(i)|x(i), s(i)), (1)

and the state sequence is independent and identically dis-

tributed (i.i.d.) according to a probability distribution indicated

by p(s). It is assumed that the channel state sequence is

non-causally known at the transmitter. (The system model is

depicted in Fig 1.)

The encoder is denoted by the mapping Xn(Sn), which

is allowed to “amplify” the state sequence at Bob (channel

output Y n) and to “mask” the state sequence from Eve (Zn).

Formally, we measure the former by the state amplification

rate Ra and the latter with the state leakage rate Rl. We say

(Ra, Rl) is achievable, if for any given ǫ > 0,

1

n
I(Sn; Y n) ≥ Ra − ǫ (2)

1

n
I(Sn; Zn) ≤ Rl + ǫ (3)

for sufficiently large n. The problem is to characterize all

achievable (Ra,Rl) pairs, which we denote by the trade-off

region C. We also define differential amplification capacity,

denoted by Cd, as

Cd , sup
(Ra,Rl)∈C

Ra − Rl. (4)



This difference measures the knowledge difference between

the two receivers regarding the state of the channel.

A cost constraint may also be imposed on the channel input

with
1

n

n
∑

i=1

E{c(X(i))} ≤ C, (5)

where c : X → R
+

defines the cost per input letter and the

expectation is over the distribution of the channel input. In

this scenario, we say (Ra, Rl) is achievable under the cost

function c(.) and cost C, if (2), (3), and (5) are satisfied in

the limit of large n. (We use this constraint for the Gaussian

channel, where the cost is the average transmitted power.)

Remark: One can define equivocation rate as

1

n
H(Sn|Zn), (6)

which satisfies 1
n

(I(Sn; Zn) + H(Sn|Zn)) = 1
n
H(Sn).

Hence, the problem can be re-stated in terms of equivocation

rate, where we seek to characterize all achievable (Ra, ∆l)
pairs in the limit of large n, where ∆l is achievable if
1
n
H(Sn|Zn) ≥ ∆l − ǫ. Since both the equivocation and

leakage rate notions characterize the same tradeoff, both

notions can be used interchangeably.

B. Related work, summary of results, and organization

The problem of communication over state dependent chan-

nels is studied by Gel’fand and Pinsker [1], where a message

has to be reliably transmitted over the channel with non-causal

state knowledge at the transmitter. The Gaussian version of the

problem is solved in [7] through the famous dirty paper coding

scheme. While the wiretap channel is introduced and solved

in [8], these results are extended to a broadcast setting in [9].

The problem of sending secure messages over state dependent

wiretap channels is studied in [10], [11].

On the other hand, the problems of state amplification

and state masking are individually solved in [12]–[14] for

point-to-point channels. Both [12], [13] and [14] consider

the problem of reliable transmission of messages in addition

to state amplification and state masking respectively. In this

paper, we consider the problem of amplifying the state to a

desired receiver while trying to minimize the leakage (or mask

the state) to the eavesdropper.

We note that, if we set Ra = 0 in our problem definition,

it reduces to the state masking problem as studied in [14]. In

other words,

Ra = 0 (7)

Rl = min
p(x|s)

I(S; Z) (8)

can be shown to be achievable [14]. Also, when Rl ≥ H(S),
the problem reduces to a state amplification problem [13],

and one can achieve the following rate pair.

Ra = min{H(S), max
p(x|s)

I(X, S; Y )} (9)

Rl ≥ H(S) (10)

These represent two extremes of the tradeoff-region between

the amplification and masking rates. In this paper, we aim at

developing an understanding of this tradeoff-region through

achievable regions and outer bounds, and characterizing spe-

cial cases when they match. Our achievability arguments

are based on enumerating typical state sequences using two

indices, and sending one of the indices over the channel.

Towards this end, we construct a codebook corresponding to

the codeword carrying this index (denoted by Un) in such

a way that reliable communication can be achieved over the

state-dependent channel. Subsequently, we derive expressions

for achievable amplification and leakage rates by determining

single-letter bounds on 1
n
I(Sn; Y n) and 1

n
I(Sn; Zn) respec-

tively. We also show that it is possible to extend the proposed

region with secure refinement when Bob observes a “stronger”

channel than Eve. In precise terms, this corresponds to in-

stances of p(u, x|s) satisfying I(U ; Y ) ≥ I(U ; Z). We find

that the utilization of the notion of secure refinement approach

is critical to these less-noisy channels [15], [16]. In particular,

we show that the proposed scheme achieves the differential

amplification capacity over the set of achievable (Ra, Rl) pairs

for the degraded binary channels and the degraded Gaussian

channels. We also characterize the corner points of the region

for the degraded Gaussian channel. In this scenario, we further

bound the gap between achievable and converse regions, and

show the following: Let us denote the message capacity of

Bob’s channel as C = 1
2 log(1+SNR). Then, the gap between

the upper and lower bounds on both the amplification rate

(Ra) and the amplification-leakage rate difference (Ra − Rl)

is bounded by C for all achievable (Ra, Rl) pairs. In particular,

both gaps are within half a bit when the SNR ≤ 1.

The rest of the paper is organized as follows. Section II

presents our main results, where we provide our proposed

coding schemes and outer bounding arguments. Section III

provides optimality discussions and numerical results for

special classes of DMCs including modulo additive binary

channel model and the memory with defective cells model.

The Gaussian channel model is considered in Section IV along

with corresponding optimality results. Finally, we conclude the

paper in Section V. The proofs are collected in Appendices

to improve the flow of the paper. (Some of the proofs are

provided in the extended version of the paper [17].)

II. MAIN RESULTS

A. Achievable Regions

We have the following propositions for any given p(s) and

the channel p(y, z|x, s).

1) State sequence covering: The scheme presented below

is based on communication a covering of the state sequence

while ensuring that the covering is decodable at Bob. We have

the following result.

Proposition 1: Let R1 be the closure of the union of all



(Ra, Rl) pairs satisfying

Ra ≤ I(S; Y, U)

Rl ≥ min {I(S; Z, U), I(U, S; Z)}

0 ≤ I(U ; Y ) − I(U ; S),

over all distributions p(u, x|s). Then, R1 ⊆ C.

Proof: See Appendix A.

We note that, provided I(U ; Y )−I(U ; S) ≥ 0, the covering

codeword can be decoded at Bob. Then, the state uncertainty

can be reduced from H(S) to H(S|Y, U) by listing Sn

sequences that are jointly typical with (Un, Y n). This will give

rise to the expression I(S; Y, U), as presented in the propo-

sition. (Leakage expressions follow by a similar argument,

where Un sequence is added to the expression 1
n
I(Sn; Zn)

to derive achievable leakage expressions.)

2) State enhanced messaging: In order to achieve a better

rate region, the encoder can send a message over the state de-

pendent channel, where the message carries partial information

about the state sequence. The corresponding achievable region

is given by the following result.

Proposition 2: Let R2 be the closure of the union of all

(Ra, Rl) pairs satisfying

Ra ≤ min {H(S), I(U, S; Y )}

Rl ≥ I(U, S; Z)

0 ≤ I(U ; Y ) − I(U ; S),

over all distributions p(u, x|s). Then, R2 ⊆ C.

Proof: See Appendix B.

The achievable rate region can be interpreted as follows:

The rate I(U ; Y ) − I(U ; S) corresponds to the Gel’fand-

Pinsker message rate that can be reliably communicated over

the channel. As long as this rate is positive for a given

input probability distribution, the codeword Un can be reliably

communicated over the channel. Bob can decode Un from Y n

by employing a jointly-typical decoder. Subsequently, the state

uncertainty can be reduced from H(S) to H(S|Y, U) by listing

Sn sequences that are jointly typical with (Un, Y n). Further,

the rate I(U ; Y ) − I(U ; S) provides an additional refinement

to the uncertainty, which together with I(S; Y, U) sums to

I(U, S; Y ). (See also [13], where the authors show that it is

possible to interpret this scheme as a source coding method

with Wyner-Ziv coding [18].) The analysis of Rl follows

by analyzing an upper-bound on the leakage rate by adding

the codeword sequence to the expression, 1
n
I(Sn; Zn) ≤

1
n
I(Un, Sn; Zn), which can be single-letterized as given in

Appendix B.

We observe that the leakage expression can be enhanced

when I(U ; Z) ≥ I(U ; Y ), and this is detailed in the following

proposition.

Proposition 3: For all input distributions p(u, x|s) that sat-

isfy I(U ; Z) ≥ I(U ; Y ). Rl is bounded as

Rl ≥ I(S; Z, U) + Ru.

for some

Ru ≤ min{I(U ; Y ) − I(U ; S), H(S|U, Y )}.

In particular,

Rl ≥ min

{

I(S; Z, U) + I(U ; Y ) − I(U ; S)

= I(U, S; Z)− [I(U ; Z) − I(U ; Y )],

H(S) − [H(S|Z, U) − H(S|Y, U)]

}

.

Thus Proposition 2 can be enhanced for those input distribu-

tions satisfying I(U ; Z) ≥ I(U ; Y ).

Proof: (Sketch) The requirement of I(U ; Z) ≥ I(U ; Y )
enables the decodability of Un at Eve. Then, using arguments

similar to those for the amplification bound in the proof of

Proposition 2 (and upper bounding the corresponding terms),

we obtain the Rl bound as

Rl ≥ I(S; Z, U) + Ru. (11)

Further, by choosing

Ru ≤ min{I(U ; Y ) − I(U ; S), H(S|U, Y )}, (12)

we have the desired result.

We note that, in this case, increasing Ru will not only

increase the amplification rate but will also increase the

leakage rate.

3) Secure refinement: We now discuss how securing the

refinement can help in the amplification and masking prob-

lem. (Please refer to [17] for details.) Consider all input

distributions p(u, x|s) satisfying I(U ; Y ) ≥ I(U ; Z). For

such inputs, it is possible to send the refinement informa-

tion securely over the channel. It is known that the se-

cure message rate of [I(U ; Y ) − max{I(U ; S), I(U ; Z)}]+

is achievable over the state dependent channels [10]. Thus,

it is possible to set a refinement rate satisfying Ru ≤
min

{

[I(U ; Y )−max{I(U ; S), I(U ; Z)}]+, H(S|Y, U)
}

, for

the case of I(U ; Y ) ≥ I(U ; Z), and secure the message

at this rate. The resulting amplification rate is bounded as

Ra ≤ I(S; Y, U) + Ru, and the leakage rate is given by

Rl ≥ min{I(U, S; Z), I(S; Z, U)}. (Follows from an analysis

similar to the previous section.) Note that, the additive rate

Ru in the leakage expression Rl ≥ I(S; Z, U) + Ru of the

regions given in the previous section disappears here due

to the security of the message. Hence, the leakage increase

due to refinement index is decreased as the security of the

index lowers the corresponding leakage rate achieved at Eve

compared to the non-secured case.

B. Outer Bounds

We now derive upper bounds on Ra and lower (upper)

bounds on Rl (respectively, on ∆l).

Proposition 4: If (Ra, Rl) is achievable, then (Ra, Rl) ∈
R1

o, where

R1
o =

⋃

p(u,x|s)
(Ra, Rl)



satisfying

Ra ≤ min {H(S), I(X, S; Y )}

Rl ≥ I(S; Z, U)

0 ≤ I(U ; Z) − I(U ; S),

for any given p(u, x|s).
Proof: Please refer to [17].

We now provide an outer bound for the degraded channel

p(y, z|x, s) = p(y|x, s)p(z|y) using the result above.

Proposition 5: If the channel satisfies p(y, z|x, s) =
p(y|x, s)p(z|y) and if (Ra, Rl) is achievable, then (Ra, Rl) ∈
R2

o, where

R2
o =

⋃

p(u,x|s)
(Ra, Rl)

satisfying

Ra ≤ min {H(S), I(X, S; Y )}

Rl ≥ I(S; Z, U)

Ra − Rl ≤ I(X, S; Y |Z)

0 ≤ I(U ; Y ) − I(U ; S),

for any given p(u, x|s).
Proof: Please refer to [17].

III. SPECIAL DISCRETE MEMORYLESS CHANNEL MODELS

A. Modulo additive binary model

Consider the channels given by

Y (i) = X(i)⊕ S(i) ⊕ N(i)

Z(i) = X(i)⊕ S(i) ⊕ Nz(i), (13)

where the state and noise distributions are generated i.i.d. as

S(i) ∼ Bern(ps), N(i) ∼ Bern(pn), Nz(i) ∼ Bern(pnz
). (All

pks satisfy pk ∈ [0, 0.5] for k = {s, n, nz}.) In this section, we

use the following notation for the binary convolution p⊗ q ,

p(1 − q) + q(1 − p).
1) State cancelation scheme: To cancel the state from the

channel, we send

X(i) = U(i) ⊕ S(i),

where U(i) ∼ Bern(pu) and the codewords Un carry a

description of the state sequence Sn. This way, we achieve

the following inner-bound.

Corollary 6: The state cancelation scheme, which sends

Bern(pu) distributed signal XORed with state sequence at each

time instant, achieves the set of (Ra, Rl) pairs denoted by the

region RSC ⊆ C, where

RSC = C.H.







⋃

pu∈[0,0.5],pu⊗ps≤0.5

(Ra(pu), Rl(pu))







,

with1

Ra(pu) ≤ min {H(ps), H(pu ⊗ pn) − H(pn)}

Rl(pu) ≥ H(pu ⊗ pnz
) − H(pnz

).

1C.H. denotes the closure of the convex hull operation.

Proof: Achievability follows from Proposition 2.

2) Optimal rate difference (Ra − Rl):

Corollary 7: If pn ≤ pnz
and H(ps) ≥ 1 − H(pn) for

a binary model the optimal amplification and leakage rate

difference is given by

Cd = H(pnz
) − H(pn).

Proof: From Proposition 5, we obtain the following. If

pn ≤ pnz
, any given (Ra, Rl) ∈ C satisfies

Ra − Rl ≤ H(pnz
) − H(pn) + max

p(x|s)

{

H(X ⊕ S ⊕ N)

−H(X ⊕ S ⊕ Nz)
}

Note that, this upper-bound can be evaluated by observing

max
p(x|s)

{H(X ⊕ S ⊕ N) − H(X ⊕ S ⊕ Nz)}

= max
p(x|s)

{H(X ⊕ S ⊕ N) − H(X ⊕ S ⊕ N ⊕ N∗
z )}

≤ max
p(x|s)

{H(X ⊕ S ⊕ N) − H(X ⊕ S ⊕ N ⊕ N∗
z |N

∗
z )}

= 0, (14)

where the equality is due to the channel degradedness condi-

tion with appropriate noise term N∗
z independent of N such

that N ⊕ N∗
z = Nz , and the inequality is due to the fact

that conditioning does not increase the entropy. Using this we

observe that the outer-bound is maximized with a choice of

p(x) = 0.5, which evaluates to

Ra − Rl ≤ H(pnz
) − H(pn). (15)

This expression is achieved by Theorem 6, when we choose

p(u) = 0.5, if H(ps) ≥ 1 − H(pn).

B. Memory with defective cells model

We consider the model of information transmission over

write-once memory device with stuck-at defective cells [19],

[20]. In this channel model, each memory cell corresponds to

a channel state instant with cardinality |S| = 3, where the

binary channel output is determined from the binary channel

input and the channel state as the following.

p(y = 0|x, s = 0) = 1

p(y = 1|x, s = 1) = 1

p(y = x|x, s = 2) = 1,

where Pr{S = 0} = p is the probability that the channel is

stuck at 0, Pr{S = 1} = q is the probability that the channel

is stuck at 1, and Pr{S = 2} = r is the probability of having

a good channel where y = x. (Here, we have p + q + r = 1.)

We consider a binary symmetric channel (BSC) from Y to Z ,

where

Z = Y ⊕ N,

with N ∼ Bern(n) for some n ∈ [0, 0.5]. This corresponds

to a degraded DMC model. (See Fig. 2.)
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Fig. 2. Channel model of memory with defective cells. p = Pr{S = 0}
(probability of being stuck at 0), q = Pr{S = 1} = q (probability of being
stuck at 1), r = Pr{S = 2} (probability of being in a noiseless state), and
N ∼ Bern(n), where n ∈ [0, 0.5] is the cross over probability of the BSC
from Y to Z .
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Fig. 3. Simulation results for memory with defective cells model.

We present numerical results for this channel model with

three regions: Un-coded region, coded region, and an outer-

bound region. The un-coded region is obtained by setting U =
∅ in Proposition 1, where we have the set of (Ra, Rl) pairs

satisfying

Ra ≤ I(S; Y )

Rl ≥ I(S; Z)

over all possible p(x|s). For the coded region, we simulate a

sub-region of the one given in Proposition 2, where we set

U = Y and achieve the set of (Ra, Rl) pairs satisfying

Ra ≤ min{H(S), H(Y )}

Rl ≥ I(Y, S; Z) = H(Z) − H(N)

over all possible p(x|s). For converse arguments, we consider

the outer-bound region given by the set of (Ra, Rl) pairs

satisfying

Ra ≤ min{H(S), I(X, S; Y ) = H(Y )}

Rl ≥ I(S; Z)

over all possible p(x|s). (This outer-bound region follows from

Proposition 4.) The numerical results are given in Fig. 3. (The

X(i)

S(i)

Y (i)

Z(i)Nz(i)

N(i)

Fig. 4. The channel model for the Gaussian seeting. S(i) ∼ N (0, σ2
s
),

N(i) ∼ N (0, σ2
n
), and Nz(i) ∼ N (0, σ2

nz
).

regions are truncated with Rl ≤ H(S) as any Rl > H(S) is

trivially achievable.) We note that, the coded region can out-

perform the un-coded region (even when we plot a sub-region

of the coded achievable region). This shows the enhancement

provided by sending a refinement of the state sequence over

the channel.

IV. GAUSSIAN SCENARIO

Consider the channels given by

Y (i) = X(i) + S(i) + N(i)

Z(i) = X(i) + S(i) + Nz(i), (16)

where the state and noise distributions are generated i.i.d. as

S(i) ∼ N (0, σ2
s), N(i) ∼ N (0, σ2

n), Nz(i) ∼ N (0, σ2
nz

), and

the cost constraint on the channel input is given by c(x) = x2

and C = P , i.e.,

1

n

n
∑

i=1

E{|X(i)|2} ≤ P.

(See Fig. 4.)

A. Inner-bounding C with an un-coded scheme

The inner bound is based on sending an amplified version

of S together with some additional Gaussian noise. This un-

coded signal is constructed as follows.

X(i) = ρ
σx

σs

S(i) +
√

(1 − ρ2)σxV (i), (17)

where V (i) ∼ N (0, 1) independent of S(i), ρ ∈ [−1, 1], and

σ2
x ≤ P . Here, ρ2 is the fraction of the power allocated to

S(i). This scheme achieves the following region.

Theorem 8: The un-coded scheme, which forwards S(i) at

each time step together with some i.i.d. Gaussian noise as

given in (17), achieves the set of (Ra, Rl) pairs denoted by

the region Run-coded ⊂ C, where

Run-coded = C.H.







⋃

ρ∈[−1,1],σ2
x
∈[0,P ]

(Ra(ρ, σx), Rl(ρ, σx))







,

with

Ra(ρ, σx) =
1

2
log

(

1 +
σ2

s + 2ρσsσx + ρ2σ2
x

σ2
n + (1 − ρ2)σ2

x

)

(18)

Rl(ρ, σx) =
1

2
log

(

1 +
σ2

s + 2ρσsσx + ρ2σ2
x

σ2
nz

+ (1 − ρ2)σ2
x

)

.(19)



The above expressions are obtained by evaluating Ra =
I(S; Y ) and Rl = I(S; Z) on account of uncoded transmis-

sion in (17).

Examples:

• If P ≥ σ2
s , one can set X = −S and achieve the pair

(Ra = 0, Rl = 0).

• Another trivial point is obtained by setting X = 0, which

achieves

(

Ra =
1

2
log

(

1 +
σ2

s

σ2
n

)

, Rl =
1

2
log

(

1 +
σ2

s

σ2
nz

))

.

B. Outer-bounds on C

Corollary 9: Let ρ denote the correlation coefficient be-

tween X and S. If σ2
n ≤ σ2

nz
, then the set of all achievable

rate pairs (Ra, Rl) satisfy

Ra − Rl ≤
1

2
log

(

1 +
σ2

s + 2ρσsσx + σ2
x

σ2
n

)

−
1

2
log

(

1 +
σ2

s + 2ρσsσx + σ2
x

σ2
nz

)

(20)

Ra ≤
1

2
log

(

1 +
σ2

s + 2ρσsσx + σ2
x

σ2
n

)

, (21)

for −1 ≤ ρ ≤ 1 and σ2
x ≤ P .

Proof: By Proposition 5, we have

Ra − Rl ≤ I(X, S; Y |Z).

Without loss of generality, we consider Nz = N + N ′
z with

σ2
nz

= σ2
n + σ2

n′ where N ′
z is independent of N . Noting that,

I(X, S; Y |Z) = h(Y |Z)−h(Y |X, S, Z) = h(Y |Z)−h(N |Nz),

we upper bound h(Y |Z) using the following. Consider two

zero-mean correlated random variables A and B.

h(A|B)
(a)
= h(A − Â(B)|B)

≤ h(A − Â(B))
(b)

≤
1

2
log(2πeσ2

e),

where in (a) we used Â(B) as the estimate of A given B,

and (b) follows by defining the estimation error variance

σ2
e , E

[

(A − Â(B))2
]

and the fact that Gaussian distribution

maximizes entropy given the variance. We then upper bound

the optimal estimator error variance by the linear MMSE

variance. Therefore,

h(A|B) ≤
1

2
log

(

2πe

(

var(A) −
E
[

(AB)2
]

var(B)

))

.

Using the above, we obtain

Ra − Rl ≤
1

2
log

(

2πe
(

σ2
s + 2ρσsσx + σ2

x + σ2
n

−
(σ2

s + 2ρσsσx + σ2
x + σ2

n)2

σ2
s + 2ρσsσx + σ2

x + σ2
n + σ2

n′

)

)

−
1

2
log

(

2πe

(

σ2
n −

(σ2
n)2

σ2
n + σ2

n′

))

(22)

=
1

2
log

(

1 +
σ2

s + 2ρσsσx + σ2
x

σ2
n

)

−
1

2
log

(

1 +
σ2

s + 2ρσsσx + σ2
x

σ2
n + σ2

n′

)

. (23)

Using Proposition 5, we also have

Ra ≤ I(X, S; Y ) = h(Y ) − h(Y |X, S) = h(Y ) − h(N)

≤
1

2
log

(

1 +
σ2

s + 2ρσsσx + σ2
x

σ2
n

)

.

C. Comparison of inner and outer bounds for the degraded

Gaussian channel

We now compare the uncoded scheme and the outer bound

presented above. In particular, we show that the uncoded

transmission scheme achieves certain corner points of the

amplification-masking region and that the gap between the

inner and outer bounds on the region is within 1/2 bit for

certain channel parameters. We also show that the uncoded

scheme achieves the optimal difference Ra − Rl.

1) Characterization of the gap between achievable and

converse regions: We now bound the gap between uncoded

transmission and the optimal region. Using (19), we see that

uncoded transmission achieves a leakage of I(S; Z) and an

amplification of I(S; Y ). Given any point (Ra, Rl) in the outer

bound region corresponding to a particular (ρ, σx), we fix X
as in (17) to achieve the pair (I(S; Y ), I(S; Z)). Therefore,

the gap between the achievable Ra and the upper bound on

Ra for every point corresponding to (ρ, σx) in the outer bound

region is given by

I(X, S; Y ) − I(S; Y ) =
1

2
log

(

1 +
σ2

x(1 − ρ2)

σ2
n

)

. (24)

Similarly, the gap between the achievable Ra − Rl and the

upper bound on Ra − Rl is given by

I(X, S; Y |Z) − [I(S; Y ) − I(S; Z)] = I(X ; Y |Z, S)

=
1

2
log

(

1 +
σ2

x(1 − ρ2)

σ2
n

)

−
1

2
log

(

1 +
σ2

x(1 − ρ2)

σ2
nz

)

.

(25)

Therefore, both the gap between the achievable Ra and

optimum and the achievable Ra − Rl and the optimum

are upper bounded by the capacity of the channel between

Alice and Bob, which is equal to 1
2 log (1 + SNR), where



SNR = P
σ2

n

. Note that the gap is less than 1/2 a bit when

SNR < 1. This means that if the gap in Ra is exactly equal

to 1/2 a bit, then we achieve the optimal Rl. Similarly, if we

achieve the optimal Ra, then the gap in Rl is within 1/2 a

bit.

2) Differential amplification capacity (Cd): Note that the

un-coded transmission achieves the maximum Ra − Rl. The

upper bound on Ra − Rl in (20) is maximized for σ2
x = P

and ρ = 1. Thus, this maximum difference between Ra and Rl

is achieved by un-coded transmission corresponding to X =√
P

σs

S in Theorem 8.

3) Corner points of the trade-off region: Consider the

corner points of the amplification-masking region. Inspecting

(21), we observe that the point in the outer bound region

corresponding to maximum amplification is given by ρ = 1.

Clearly, from (24) and (25), we see that the gap is zero for

ρ = 1. Similarly, consider the point corresponding to minimum

leakage Rl in the weak and moderate interference regimes as

in [14]. These points again correspond to ρ = −1 and we have

I(X, S; Y ) = I(S; Y ) and I(X, S; Z) = I(S; Z), leading to

the gap being zero. This is also verified by setting ρ = −1 in

(24) and (25).

V. CONCLUSION

We studied the problem of state amplification under the

masking constraints, where the encoder (with the knowl-

edge of non-causal state Sn) facilitates the amplification rate

( 1
n
I(Sn; Y n)) at Bob (observing Y n) while minimizing the

leakage rate ( 1
n
I(Sn; Zn)) as much as possible at Eve (ob-

serving Zn). The study of this trade-off region was the focus

of the paper. Our coding schemes are based on indexing the

state sequence and sending one of the indices over the channel

to Bob. The achievable region corresponding to this strategy

is derived by calculating bounds on amplification and masking

rates. We also showed that for the input distributions enabling

Bob to be a “stronger” receiver than Eve, the index of the state

can be sent securely over the channel. (This secure refinement

approach is further discussed in the extended version of

the paper.) We also provided outer bounds, using which we

characterized the differential amplification capacity for the

degraded binary channels and degraded Gaussian channels.

For the degraded Gaussian model, we also characterized the

optimal corner points, and the gap between the outer bound

and achievable regions.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: Fix p(u, x|s), and consider sn is the state sequence

of the channel that is non-causally known at the encoder.

We generate 2nRu codewords denoted by un(wu) with wu ∈

{1, · · · , 2nRu}, each distributed according to
n
∏

i=1

p(ui).

The encoder chooses a un(k) such that (un(k), sn) ∈ T n
ǫ .

If no such codeword exists, an arbitrary sequence is picked.

The encoder sends xn generated by
n
∏

i=1

p(xi|ui(k), si).

We now derive an achievable amplification rate with this

scheme. We consider the following.
1
n
I(Sn; Y n)

(a)
=

1

n
I(Sn; Y n|E1)(1 − Pr{Ec

1}) +
1

n
I(Sn; Y n|Ec

1)Pr{Ec
1}

≥
1

n
I(Sn; Y n|E1)(1 − Pr{Ec

1})

(b)

≥
1

n
I(Sn; Y n|E1) − Pr{Ec

1}(H(S) + ǫ1)

(c)
=

1

n
I(Sn; Y n|E1, E2)(1 − Pr{Ec

2 |E1})

+
1

n
I(Sn; Y n|E1, E

c
2)Pr{Ec

2 |E1} − Pr{Ec
1}(H(S) + ǫ1)

(d)

≥
1

n
I(Sn; Y n|E1, E2)

− (Pr{Ec
1} + Pr{Ec

2 |E1})(H(S) + ǫ1)

=
1

n
I(Sn; Y n, Un|E1, E2)

− (Pr{Ec
1} + Pr{Ec

2 |E1})(H(S) + ǫ1)
(e)

≥ (H(S) − ǫ1) − (H(S|Y, U) + ǫ2)

− (Pr{Ec
1} + Pr{Ec

2 |E1})(H(S) + ǫ1)
(f)
= I(S; Y, U) − ǫ̂1

where in (a) E1 is the event that Sn is a typical sequence,

(b) follows as 1
n
I(Sn; Y n|E1) ≤ 1

n
H(Sn|E1) ≤ H(S) + ǫ1

as the number of typical Sn sequences are bounded above

by 2n(H(S)+ǫ1) with ǫ1 → 0 as n → ∞, in (c) E2 is the

event that Un is decoded given Y n, (d) is similar to (b), (e)

follows as H(Sn|E1) is lower bounded by n(H(S)− ǫ1) and

H(Sn|Y n, Un, E1, E2) is upper bounded by n(H(S|Y, U) +
ǫ2) as Un, Sn, Y n are jointly typical, with ǫ2 → 0 as n → ∞,

in (f) we define ǫ̂1 , (Pr{Ec
1}+Pr{Ec

2 |E1})(H(S)+ǫ1)+ǫ1+
ǫ2.

Here, as n → ∞, Pr{Ec
1} → 0, and Pr{Ec

2 |E1}) → 0 when

we select

Ru = I(U ; S) + ǫ3 (26)

Ru ≤ I(U ; Y ), (27)

where the first condition makes encoding error arbitrarily small

(also known as mutual covering lemma), and the second one

allows decoding Un using joint typicality with Y n given that

there is no encoding error, i.e., Un, Sn are jointly typical and

generates Y n. This shows that 1
n
I(Sn; Y n) ≥ I(S; Y, U) −

ǫ̂1 ≥ Ra − ǫ̂1, i.e., any Ra ≤ I(S; Y, U) is achievable.

We now derive the achievable leakage rate expression for

this scheme.
1
n
I(Sn; Zn)

(a)

≤
1

n
I(Sn; Zn, Un|E1) + H(S)Pr{Ec

1}

(b)

≤ (H(S) + ǫ1) − (H(S|Z, U) − ǫ2) + H(S)Pr{Ec
1}

(c)
= I(S; Z, U) + ǫ̂2



where in (a) we included the Un chosen at the encoder, (b)

follows as H(Sn|E1) is upper bounded by n(H(S) + ǫ1) and

H(Sn|Zn, Un, E1) is lower bounded by n(H(S|Z, U) − ǫ2),
which can be shown by using the event that Un, Sn, Zn are

jointly typical w.h.p., and in (c) we define ǫ̂2 , ǫ1 + ǫ2 +
H(S)Pr{Ec

1}. Noting that ǫ̂2 → 0 as n → ∞ concludes the

proof as 1
n
I(Sn; Zn) ≤ I(S; Z, U) + ǫ̂2 ≤ Rl + ǫ̂2, i.e., any

Rl ≥ I(S; Z, U) is achievable. Along the same lines, one can

similarly obtain that any Rl ≥ I(U, S; Z) is achievable.

APPENDIX B

PROOF OF PROPOSITION 2

Proof: (The full analysis is provided in [17], the following

provides a sketch.) Fix p(u, x|s), and consider sn is the

state sequence of the channel that is non-causally known at

the encoder. We generate 2n(Ru+R′

u
) codewords denoted by

Un(wu, w′
u) each distributed according to

n
∏

i=1

p(ui), where

wu ∈ {1, · · · , 2nRu} and w′
u ∈ {1, · · · , 2nR′

u}. We also list

all the typical Sn sequences with two indices Sn(wu, wr).
For the given sn sequence, if it is a typical sequence the

encoder identify it as sn(k, l), otherwise arbitrary indices are

chosen. Encoder then finds the index m ∈ {1, · · · , 2nR′

u},

such that un(k, m) and sn(k, l) are jointly typical. If no such

codeword exists, an arbitrary sequence is picked. The encoder

sends xn generated by
n
∏

i=1

p(xi|ui(k, m), si(k, l)). Denote E1

is the event that Sn is a typical sequence, and E2 is the event

that Un is decoded given Y n using joint typicality decoder.

Here, we select [1]

R′
u = I(U ; S) + ǫ1

Ru = min{I(U ; Y ) − I(U ; S) − ǫ1, H(S|U, Y ) − ǫ1},

so that Pr{Ec
1} → 0 and Pr{Ec

2 |E1} → 0, as n → ∞.

with some ǫ1 → 0 as n → ∞. We derive the achievable

amplification rate as follows.
1
n
I(Sn; Y n)

(a)

≥
1

n
I(Sn; Y n|E1, E2) − ǫ

=
1

n
I(Sn(K, L); Y n, Un(K, M)|E1, E2) − ǫ

=
1

n
H(Sn(K, L)|E1, E2)

−
1

n
H(Sn(K, L)|Un(K, M), E1, E2)

+
1

n
H(Y n|Un(K, M), E1, E2)

−
1

n
H(Y n|Sn(K, L), Un(K, M), E1, E2) − ǫ

(b)

≥ Ru + Rr − Rr + I(U ; S) − ǫ1

+ (H(Y |U) − ǫ2) − (H(Y |U, S) + ǫ3) − ǫ

= min{H(S), I(U, S; Y )} − ǫ̂1

where in (a) we used the event E1, and E2, (b) follows as

H(Sn(K, L)|E1, E2) = n(Ru + Rr)

H(Sn(K, L)|Un(K, M), E1, E2) ≤ n(Rr − I(U ; S) + ǫ1)
H(Y n|Un(K, M), E1, E2) ≥ n(H(Y |U) − ǫ2)
H(Y n|Sn(K, L), Un(K, M), E1, E2) ≤ n(H(Y |S, U) +

ǫ3), where ǫ2, ǫ3 → 0 as n → ∞. (Please refer to [17].)

This shows that 1
n
I(Sn; Y n) ≥ min{H(S), I(U, S; Y )} −

ǫ̂1 ≥ Ra − ǫ̂1, i.e., any

Ra ≤ min{H(S), I(U, S; Y )} (28)

is achievable.

We bound 1
n
I(Sn; Zn) following the previous

proof, but here we consider and single letterize

I(Un(K, M), Sn(K, L); Zn|E1) instead of I(Sn; Zn, Un|E1).
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