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Abstract—Shift-map codes have been studied as joint source-
channel codes for continuous sources. These codes are useful
in delay-limited scenarios and also provide better tolerance
to deviations of the signal-to-noise ratio (SNR) from a target
SNR, compared to separate source and channel coding. This
paper defines a generalized family of shift-map codes that share
a strong connection with redundant residue number systems
(RRNS), and are henceforth called RRNS-map codes.

In the proposed coding scheme, side information about
the source allows the decoder to consider only a fraction of
the codebook for decoding, with no change in the encoding
process. With an appropriately designed RRNS-map code, in
this fraction of the codebook, the codewords are much better
separated than the original codebook. As a result, RRNS-map
codes achieve the same distortion in the mean square error sense
as conventional shift-map codes without side information, but
significantly outperform shift-map codes when side information
is provided to the decoder. This coding scheme is ideally suited
to applications where a simple and fixed encoding scheme is
desired at the encoder, while the decoder is given access to side
information about the source.

I. INTRODUCTION

Analog codes, where both the input and output fields for
the code correspond to points on the real line, have gained
particular attention in recent years. Such codes differ from
more conventional coding ensembles where typically one of
the input or output sets is discrete-valued. Such analog codes
have found applications in multiple domains (see, e.g., [1]
and [2] for details). The two domains of particular interest in
this paper are: 1) joint source channel coding of a continuous
source over an additive Gaussian noise (AGN) channel, and
2) coding for spatial location in the brain, as studied in
neuroscience [2]–[4].

The need for analog codes in joint source-channel coding
applications is fairly well understood. Indeed, in many cases,
it is known that uncoded transmission (uncoded corresponds
to a trivial analog code) of continuous source(s) over classes
of AGN channels outperforms separate source and channel
coding [5], [6], and is sometimes optimal [7], [8]. Joint
source-channel codes in general, and analog coding strategies
in particular, are of interest for multi-terminal problems
where separation of source and channel coding does not
hold. However, even for the point-to-point case where source-

channel separation holds, analog coding is of interest from
other perspectives, such as simplicity, ease-of-use as well as
coding under delay constraints and time-varying signal-to-
noise ratio (SNR). For these reasons, as well as being a good
starting point, we study analog codes for joint source-channel
coding over point-to-point AGN channels in this paper.

Analog codes for error control are also of considerable
interest from a neuroscience perspective. The brain often
stores and computes with analog variables, such as the hue
of an item, the speed of motion of a target, the orienta-
tion of an object, and so on. In addition, computation and
communication in the brain are noisy processes [9], [10].
Recently, it was discovered that neurons called grid cells in
the entorhinal cortex, part of the hippocampal circuit known
to be the seat of learning and memory [11] and navigational
computations [12], encode the location of animals in space
using a particular analog code. N groups of neurons represent
2-d location as a set of N distinct 2-d modulo residues, given
by the 2-d location phase relative to a periodic 2-d lattice [3].
This code was shown to have error-control properties [2], [4].
In particular, this code may be viewed as an example of a
shift-map code [13]–[15], where the difference between this
grid cell code and conventional shift-map codes is the specific
choice of moduli.

Among analog coding schemes, the shift-map code has
received particular attention in the field of communication
and information theory. This is in part due to its applicability
to joint source-channel coding for delay-limited applications
as well as for channels with time-varying signal-to-noise ratio
(SNR). The shift-map code’s tolerance to SNR mismatch is
an advantage over digital coding schemes where input is
first quantized to discrete codewords and then transmitted
by a channel code [13]–[15]. Separate source and channel
coding is known to be optimal for a given SNR, but the
performance of separation is not robust to SNR mismatch
[13]. Joint source-channel coding with shift-map codes can
render a degree of robustness to the system, and hence they
have been analyzed in certain detail in existing literature.

In this paper, we generalize the notion of shift-map codes
to include codes similar to the grid cell code, and show
that this generalized family of codes enables the decoder to
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Fig. 1. Schematic diagram of the system model. The encoder generates
codewords X for source S ∈ [0, 1], which are transmitted over an AGN
channel. In addition to the noisy observation Y, the decoder has additional
knowledge (side information) that the source S lies in a subinterval W =
[Sl, Su] which is contained in [0, 1].

exploit the side information available only at the decoder
without modifying the encoding algorithm. This scenario
corresponds to the Wyner-Ziv source coding problem over
a point-to-point communication channel [16]–[19]. We find
that our generalized shift-map codes can be used to enable
robust joint source-channel coding over such a system. Given
that our generalization of shift-map codes share a strong
connection with redundant residue number systems (RRNS)
[20], we refer to our codes as RRNS-map codes.

The organization of this paper is as follows. Section II
describes the system model. In Section III, the shift-map code
is reviewed and generalized to the RRNS-map code. The
properties of the proposed construction are studied in Section
IV. Dynamic decoding with side information and an example
are provided in Section V. Finally, in Section VI, we conclude
the paper by offering the implications of the new coding
scheme and future research directions.

II. SYSTEM MODEL

Fig. 1 presents our system model. The continuous source
S is assumed to be uniformly distributed in the unit interval
[0, 1]. This source is encoded into N real-valued variables
X = (X1, X2, . . . , XN ). This codeword is transmitted over
an additive Gaussian noise (AGN) channel with the power
constraint E

[
(Xi)

2
]
≤ 1 for i = 1, 2, . . . , N . The re-

ceived signal Y = (Y1, Y2, . . . , YN ) is the sum of the
transmitted codeword and noise Z = (Z1, Z2, . . . , ZN ): For
i = 1, 2, . . . , N ,

Yi = Xi + Zi (1)
Zi ∼ N (0, σ2), (2)

where the noise terms, i.e., Zi’s, are zero-mean Gaussian
random variables with variance σ2 and independent of one
another and of the source.

The decoder has access to the side information that the
source S lies in a subinterval [Sl, Su] ⊆ [0, 1]. This side
information is assumed to be known to the decoder (receiver)
but not the encoder (transmitter), in a setting analogous to
a source coding with side-information problem [16], [17].
Here, the side information may come from another sensing

Fig. 2. The notion of threshold error in dimension-expansion mappings. A
source S of dimension 1 (e.g., the unit interval) is mapped to a codeword
X of higher dimension. This mapping may be viewed as an embedding of
a curve in a higher dimensional space. The length of the embedded curve is
L. If distant segments of the embedded curve are separated by a minimum
distance d, then noise in a ball of radius d/2 (e.g., blue vector) is decoded
as a point on the correct line segment, and the resulting error is a local
error. In contrast, a larger noise (e.g., red vector) is decoded to the adjacent
segment, and this phenomenon is referred to as the threshold error.

modality, or the decoder could have kept track of the source
to gain a priori knowledge about the support of the source.

The decoder uses the side information and the channel
output Y to produce an estimate of S, denoted as Ŝ. The
distortion D is defined as the mean square error in estimation:

D = E

[(
Ŝ − S

)2]
. (3)

The distortion defined in (3) generally has two distinct
components (Fig. 2). The first is due to codewords that are
mapped by noise to other codewords that represent nearby
points in the source. These errors occur frequently but the
magnitudes are small. The second is due to noise that maps
a codeword to another that represents a distant point in the
source. These errors, called threshold errors by Shannon [21],
are rare if the noise variance is small, but the magnitudes are
large (Fig. 2). By considering the probability of each case
and the corresponding mean square error, the distortion D in
(3) is given by:

D = P (Z /∈ T )E
[
(Ŝ − S)2|Z /∈ T

]
+ P (Z ∈ T )E

[
(Ŝ − S)2|Z ∈ T

]
, (4)

where T represents the set of noise vectors that produce
threshold errors.

III. THE SHIFT-MAP AND ITS GENERALIZATION

A. The shift-map code

In shift-map based coding schemes, the first element of the
codeword X1 is initialized by the source and the remaining
elements Xi for i > 1 are generated by iterative scaling
followed by modulo operation [22]:

Xi =

{
biS mod 1 if i = 1

biXi−1 mod 1 if i > 1
(5)



where bi is a positive integer. As Xi ranges from 0 to 1, Xi+1

sweeps the same interval bi times. Thus, (5) is equivalent to
the following non-iterative definition:

Xi = aiS mod 1 (6)

ai =

i∏
j=1

bj (7)

A conventional way of choosing bi is that b1 = 1 and bj = α
for j > 1 where α is an integer greater than 1. Thus,

ai = αi−1. (8)

All the coding schemes based on the shift-map scheme as
described above, called shift-map codes [13]–[15], fall into
this category. In this paper, we start with the shift-map code
as defined by (6) with ai as in (8), then generalize this map
to a new construction.

B. The distortion of the shift-map code

The set of codewords generated by the shift-map
code forms parallel line segments with direction
(1, α, α2, . . . , αN−1) inside the unit hypercube (Fig. 3
left panel). The total arc-lengh over all segments is L, given
by

L(α) =
√

1 + α2 + · · ·+ α2(N−1). (9)

Thus, the unit source interval [0, 1] is stretched along the ith
dimension by the factor of αi−1, and L2 is called the stretch
factor [23].

There is a tradeoff between the stretch factor and the
minimum distance between the segments, which results in
a tradeoff between the two distinct sources of distortion
described above. For a given dimension N and a fixed noise
variance σ2, increasing L(α) by increasing α reduces the
size of local distortions when there is no threshold error.
This is because non-threshold errors correspond to decoding
errors along the correct line segment, and a fixed length of
coding line represents a smaller subinterval of the source with
increasing L(α). Thus, local squared error, the first term in
(4), scales as:

E
[
(Ŝ − S)2|Z /∈ T

]
∝ 1

L2
(10)

However, increasing the total length of the coding line means
that the number of segments must increase and the distance d
between them decreases. Specifically, the distance inversely
scales with α [15],

d ≈ 1

α
. (11)

Thus, the probability of threshold errors, which correspond
to decoding on the wrong line segment, increases. As a
result, the second term in the distortion of (4) grows with
an increasing stretch factor.

The optimal choice of the stretch factor must therefore
balance the two terms in (4): L should be as large as possible
to reduce the common but small local errors, while remaining
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Fig. 3. An examples of the shift-map with (a1, a2) = (1, 5) on the left
and the RRNS-map with (a1, a2) = (3, 4) on the right. Numbers next to
individual segments in blue indicate the order of the mapping as the source
marches from 0 to 1.

small enough to reduce the probability of very large threshold
errors. Therefore, the parameter α of the shift-map code is
chosen so that these two opposite effects are balanced and
resulting L stays in an intermediate range.

C. The RRNS-map: A generalization of the shift-map

We generalize the shift-map code by relaxing the condi-
tions on the coefficients ai. Instead of ai being defined as
the product of an integer bi with the preceding coefficient
ai−1 as in (7) or a geometric series as in (8), we choose
each ai independently from natural numbers. To be specific,
ai are chosen from any positive integers that are relatively
prime: gcd(ai, aj) = 1 if i 6= j, where gcd represents the
greatest common divisor. The reason we have this primality
constraint is as follows. If ai and aj (i 6= j) share a common
divisor other than 1, the mapping from S to X is not injective
and the resulting map cannot be used for coding the full
range of S. Representing a real number by its relationship to
relatively prime numbers is, in principle, closely related to
the redundant residue number system (RRNS) codes [20] in
which an integer is encoded by their residues with respect to
a set of relatively prime moduli.

In short, the RRNS-map is formulated as follows:

Xi = aiS mod 1 (12)
gcd(ai, aj) = 1 for i 6= j, (13)

where the scaling coefficients 1 < a1 < · · · < aN are
positive integers. We call the family of codes generated by
this map RRNS-map codes.

In the shift-map codes, Xi is related to S by a multiplying
factor α(i−1), and Xi with larger i encodes local changes of
the source with larger sensitivity. This could be a potential
problem in the presence of noise: Xi with i larger than
a certain value may not convey any information about the
source due to the larger sensitivity to noise. On the other
hand, in RRNS-map codes, one can choose ai’s within
a small range so that all the Xi’s contain non-vanishing
information about the source.

Fig. 3 compares a shift-map code (left panel) and a RRNS-
map code (right panel) with similar stretch factors. The



numbers in blue next to line segments indicate the order
of the encoding line segments, as the source point moves
from 0 toward 1. In the conventional shift-map code, Xi

monotonically increases, and the resulting line segments
are ordered sequentially. However, in the RRNS-map code,
the order may be interleaved. As we will see next, this
interleaving is a key advantage of the RRNS-map codes over
conventional shift-map codes, because it allows the decoder
to exploit side information by decreasing the probability of
threshold errors while maintaining the size of local errors.

For example, let’s compare the two cases shown in Fig.
3: The shift-map code has (a1, a2) = (1, 5) (left panel) and
the RRNS-map code has (a1, a2) = (3, 4) (right panel). Both
codes have essentially the same stretch factor (L2 = 1+52 ≈
32 + 42) and minimum distances (0.20) between line seg-
ments. Therefore, without additional information about the
source, decoders for both codes have the same performance.
Now, suppose the decoders are informed that the source lies
in the subinterval [0.5, 0.75], corresponding to segments 3
and 4 for the shift-map code and segments 4 and 5 for
the RRNS-map code. In the shift-map code, the distance
between the candidate segments remains the same because
they lie next to each other. In contrast, the distance between
candidate segments is much larger in the RRNS-map code
because they are non-consecutive, resulting in a much lower
threshold error.

Thus, the design goal for the RRNS-map code is two-
fold. The first is to achieve well-spaced segments with the
same or approximately the same stretch factor as the shift-
map counterpart, to obtain the same distortion in the absence
of side information. The second is to interleave the order
of the coding segments so that neighboring segments encode
distant subintervals of the source and conversely, so that con-
tiguous intervals of the source are encoded by distant coding
segments. When this interleaving property is combined with
the side information, the effective minimum distance between
coding segments increases without a decrease in local stretch
factor, and, consequently, the distortion decreases.

In the next section, we study the properties of the RRNS-
map code in more detail. Decoding with side information at
decoder is discussed in the section that follows.

IV. THE RRNS-MAP CODE

A. Geometric interpretation: “Line packing” problem
From a geometrical perspective, finding a good RRNS-

map code satisfying goals stated above is the problem of
finding the direction a = (a1, a2, . . . , aN ) of the line such
that it winds around the N -dimensional torus (or hypercube
with periodic boundary conditions), with maximal separation
between segments as viewed in the hypercube. As explained
earlier, choosing coordinates of a with relatively prime inte-
gers ensures that the line does not sweep the same point more
than once. This line packing problem is a number theoretic
problem that involves searching over the domain of relatively
prime integers. We will deal with this problem numerically,
after defining the search domain and the objective as follows.

The search domain is the set of vectors with relatively
prime numbers as their coordinates, denoted as A:

A = {(a1, a2, . . . , aN )|gcd(ai, aj) = 1 if i 6= j;

ai < aj if i < j}, (14)

where the coordinates of the vector in A are ordered by size.
One might think that the requirement of relatively prime
coordinates is too stringent and that the size of the search
space A itself would be small. However, it turns out that
this is not the case. As the dimension N grows, the ratio
of the points with relatively prime coordinates to the points
with integer coordinates quickly approaches to one [24]. This
means that the size of this search domain is as large as set
of all the integer points.

To simplify the problem, we restrict the search range to
those elements in A with coordinates that are not greater than
amax, denoted as

Aamax = {(a1, a2, . . . , aN ) | gcd(ai, aj) = 1 if i 6= j;

ai < aj if i < j; ai ≤ amax for ∀i} (15)

This restriction keeps stretch factors from being too large and
resulting in a very small distance between coding segments
with severe threshold errors and large distortion.

Next, the objective of the line packing problem is to find
the direction of the interleaving coding line, a ∈ Aamax

, that
maximizes the distance between neighboring lines. Let us call
the set of all the codewords generated by a as X , which is
the set of parallel line segments inside of the unit hypercube
pointing direction a. To find the minimum distance, let’s
consider the hyperplane inside the unit cube that is orthogonal
to a and passes through the center of the hypercube, denoted
by H . Algebraically, this hyperplane is

H =
{
x ∈ [0, 1]N | a · (x− c) = 0

}
, (16)

where c =
(
1
2 ,

1
2 , . . . ,

1
2

)
is the center of the unit hypercube

and · represents the inner product. Then, each line segment
in X intersects with H at a point and set of those intersecting
points are denoted as X ∗. Considering the codeword gener-
ated as x = as mod 1 from (12) and (13), we have the set
of such intersections X ∗ given by:

X ∗ = H ∩ X
=

{
x ∈ [0, 1]N | a · (x− c) = 0;

x = as mod 1; 0 ≤ s < 1} . (17)

Consequently, maximizing the distance between the coding
line is equivalent to maximizing the minimum distances
between points in X ∗ in the (N − 1) dimensional space.

B. The global structure of X ∗

We study the properties of the projected points X ∗ for a
given a. Due to the modulo operation in (17), the structure
of X ∗ may change significantly even for small change in a.
Thus, instead of directly dealing with (17), let’s first consider
the intersections of X and the faces of the unit hypercube and



then project those onto H . This will provide the cardinality
of X ∗ as well as a procedure to identify all the points in X ∗.

First, we analyze the number of points in X ∗ for a given
a. Let Hi be the hyperplane that is orthogonal to the ith axis
and contains the origin:

Hi =
{
x ∈ RN |ei · x = 0

}
, (18)

where ei is the unit vector with zero in all the coordinates
other than the ith coordinate. Then, X intersects with the face
of the unit hypercube on Hi at the origin and at additional
(ai− 1) points. This is summarized in the following lemma.

Lemma 1. X intersects with Hi at ai points with corre-
sponding source S = j

ai
, j = 0, 1, . . . , ai − 1:

Xi = Hi ∩ X

=

{
aS mod 1

∣∣∣∣S =
j

ai
, j = 0, 1, . . . , ai − 1

}
(19)

and

|Xi| = ai (20)

Proof: By the definition of Xi = Hi ∩ X , Xi is the set
of points in X with the ith coordinate being zero, which is
equivalent to

aiS = 0 (mod 1). (21)

Since 0 ≤ S < 1, 0 ≤ aiS < ai. Thus, (21) has ai solutions
of S, namely S = j

ai
, j = 0, 1, . . . , ai − 1.

Next, the relative primality of ai’s in (13) implies that the
projections of Xi\0 onto H are disjoint as shown in the next
lemma.

Lemma 2. If i 6= j,

Xi ∩ Xj = 0, (22)

where 0 represents the vector corresponding to the origin
(0, 0, . . . , 0).

Proof: Trivially, 0 ∈ Xi for all i = 1, 2, . . . , N . Next,
it is shown by contradiction that there is no other element in
the intersection. Suppose that there is an element other than
0 in the intersection: x ∈ Xi ∩ Xj such that x 6= 0. This
implies that there exists s ∈ (0, 1) satisfying (21) for both ai
and aj . In other words, ais = m and ajs = n with integers
0 ≤ m < ai and 0 ≤ n < aj . Since ai and aj are relatively
prime from (13), this can happen only when s = 0, which
contradicts the assumption that x 6= 0.

Lemma 1 and 2 lead to the following theorem about the
number of points in X ∗.

Theorem 1. Given an RRNS-map code satisfying (13),
the cardinality of X ∗, the intersection between the coding
segments X and the orthogonal hyperplane H , is

|X ∗| = 1 +

N∑
i=1

(ai − 1) (23)

Proof: From Lemma 1, |X ∗i | = ai. From Lemma 2,
X ∗i are disjoint for distinct i except 0. Thus, the number of
points in |X ∗| other than the origin is given by adding the
cardinality of non-origin points of |X ∗i | which is (ai − 1).
Thus, (23) immediately follows by adding one (for the origin)
to the sum.

Similarly, all the points in X ∗ for a given a are identified
by repeating the same procedure (first identifying Xi and then
projecting those onto H) algebraically. Let xij be an element
in Xi with corresponding source S = j

ai
, j 6= 0 from (19):

xij =

(
a1
ai
j, . . . ,

ai−1
ai

j, 0,
ai+1

ai
j, . . . ,

aN
ai
j

)
mod 1, (24)

where i = 1, 2, . . . N and j = 1, . . . ai − 1. To project this
point onto H , we find the orthogonal basis of H by finding
the null space of a. Considering aT as a (1×N) matrix and
performing the singular value decomposition, we obtain

aT =
[
a1 a2 . . . aN

]
= UΣVT , (25)

where Σ contains only one non-zero singular value at the
first row and all the other singular values are zero. Thus, the
first column of V corresponds to the non-zero singular value
and the remaining (N − 1) columns of V are the orthogonal
basis of the null space of a, denoted as a N×(N−1) matrix
B. Therefore, the projection of xij onto H is

x∗ij = BT (xij − c), (26)

where c =
(
1
2 ,

1
2 , . . . ,

1
2

)
is the center of the hypercube.

C. The local structure of X ∗ determines the probability of
threshold error.

After all the points in X ∗ are identified from (24) and
(26), the local structure between neighboring points in X ∗
determines the probability of threshold error. The Voronoi
regions of point x∗ij ∈ X ∗ is defined as

V (x∗ij) =
{
x ∈ X ∗

∣∣ ||x− x∗ij ||2 < ||x− x′||2,
x′ ∈ X ∗,x′ 6= x∗ij

}
, (27)

where || · ||2 is the L2 norm. When the noise Z falls outside
of this Voronoi region, a threshold error occurs. Thus, the
probability of threshold error is given by the probability of
the noise falling outside of the Voronoi region, which is an
(N − 1) dimensional polytope.

The probability of threshold error can be computed based
on the observation that the region outside of the Voronoi
region is the union of the half spaces defined by the bound-
aries of the Voronoi region. Using the union bound, the
probability of threshold error is bounded from above by
the sum of individual probabilities. It is shown that this
union bound is very tight in a high-dimensional space and
used as an approximation of the probability of threshold
error, called union bound estimate (UBE) [25]. In addition,
this calculation involves only the number of neighbors and
distances between them.
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Fig. 4. Codeword X and its projection to the orthogonal plane X ∗ either
without (A) and with (B) side information at decoder. Numbers in the right
denote the order as the source increases from 0 and the green regions are
the Voronoi regions of the center point.

To be specific, the union bound estimate of the probability
of threshold error is calculated as follows. Suppose that true
codeword X is in the ith segment in X and let Ej be the event
that X + Z is closer to another segment j than to segment i
with probability Pj . Then the probability of threshold error
is the probability that any of such event happens:

P (T ) = P

⋃
j 6=i

Ej

 = P

 ⋃
j∈N(i)

Ej

 , (28)

where N(i) represents the neighbors of i excluding i. Con-
sidering the union bound for (28), we have an upper bound
on P (T ) with the union replaced by the summation of
corresponding probabilities:

P (T ) ≤
∑

j∈N(i)

Pj (29)

=
∑

j∈N(i)

(
1− Φ

(
dj
2σ

))
(30)

≡ PUth, (31)

where dj is the distance to the jth neighbor and Φ(x) is
the cumulative distribution function of the standard normal
variable defined by 1√

2π

∫ x
−∞ e−

t2

2 dt. In addition, if the
distances to neighboring points are close to one another
d ≈ dj , j ∈ N(i), the union bound in (31) is further
simplified to

PUth ≈ K

(
1− Φ

(
d

2σ

))
, (32)

where K is the number of neighbors.

V. DYNAMIC DECODING WITH SIDE INFORMATION

Now, let’s turn our attention to the role of the side informa-
tion about the source S at decoder. Suppose that the decoder

is informed that S ∈ [Sl, Su] with length ∆S = Su−Sl ≤ 1.
With this additional information about the source, the number
of line segments considered for decoding decreases as ∆S
decreases and, as a result, the effective minimum distance
increases. Fig. 4 illustrates how the side information is used
in decoding with an example of the 3-dimensional RRNS-
map code with (a1, a2, a3) = (3, 5, 7). In Fig. 4A, there is no
additional information about S. Thus, decoder should search
for all the segments in X in the left panel. Corresponding
X ∗ is shown in the right panel with the Voronoi region of
the center point in green. In contrast, in Fig. 4B, additional
information S ∈ [1/3, 2/3] is provided to the decoder. Then,
the decoder only needs to consider five segments shown in
black in the left panel. The number of candidate segments for
decoding decreases from 12 to 5. The right panel shows the
projection of those five segments in black while gray points
do not need to be considered any more. Because the segments
are well interleaved, the reduced number of active points
in X ∗ results in increased distance between each neighbor.
Consequently, the Voronoi region of the center point expands.
We refer to this phenomenon as the dynamic decoding with
side information.

A. With side information, the minimum distance increases
and the number of active points decreases.

Next, we quantify this scaling behavior as a function ∆S,
the reduced range of input due to the side information at the
decoder.

The most important property is the distance to the neigh-
boring points because this determines the exponent of the
probability of threshold error. We assume that the points
in X ∗s are equally-spaced with minimum distance d in the
(N − 1) dimensional hyperplane H . Under this condition,
the volume of the Voronoi region multiplied by the number
of the points is equal to the volume of H .

|X ∗s |Vol(Vs) = Vol(H), (33)

where |X ∗s | is the number of active points, Vol(Vs) is the
volume of the Voronoi region, Vol(H) is the volume of the
orthogonal hyper plane H inside of the unit hypercube. Since
the length of the source interval scales down by a factor of
∆S, the remaining active points also scales with the same
factor:

|X∗s | = |X∗|∆S. (34)

The volume of the Voronoi region, which is a polytope in the
(N−1) dimensional space, scales with O(d(N−1)) while the
volume of H is approximately constant [2]. Thus, we have
the following scaling of d with respect to ∆S for a fixed
dimension N :

d(N−1) = Ω(1/∆S). (35)

B. Finding RRNS-map codes with desired properties

We report that there exists an RRNS-map code with the
minimum distance scaling as predicted in (35).



We performed an exhaustive search for all a with odd
integers in A50 from (15) with N = 5, amax = 50. Only
the odd numbers are considered for ai to fix a reference
point from which the minimum distance and the number of
neighbors are calculated, which is described as follows. The
side information about the source interval is varied such that
the length of the interval ∆S changes while its center remains
at 0.5: S ∈ [0.5−∆S/2, 0.5+∆S/2] with ∆S varying from
0.1 to 1 by increments of 0.1. Since all ai’s are odd integers,
S = 0.5 always corresponds to the center of the code space
c = (0.5, 0.5, . . . , 0.5). For each a and ∆S, points in X ∗
are found from (24). The active points X ∗s corresponding the
intervals are identified and the Voronoi region of the reference
point c is calculated by an efficient algorithm in [26] ported
into Matlab [27]:

Vs(c) = {x ∈ X ∗s | ||x− c||2 < ||x− x′||2,
x′ ∈ X ∗s ,x′ 6= c} , (36)

where || · ||2 is the L2 norm. Among A50 with odd integers
and N = 5, a = (9, 11, 13, 17, 23) with L = 34.5 produces
the largest minimum distance averaged over the range of ∆S
considered.

Fig. 5 shows the minimum distance (left panel) and the
number of neighbors (right panel) as functions of ∆S. Blue
circles in the figure are numerical calculations and black
lines are the analytical predictions from (35) and (34). In
Fig. 5 left panel, the minimum distance increases stepwise
with decreasing ∆S and overall scaling agrees well with the
prediction from (35). In Fig. 5 right panel, even though there
is a quite large fluctuation in the number of neighborhoods,
the overall trend shows that |X ∗s | decreases as ∆S decreases
from 1 towards 0. Shift-map codes with similar stretch
factors, shown in red squares (L = 18.5 with α = 2)
and diamonds (L = 86.0 with α = 3), have comparable
minimum distances and the numbers of neighbors to those
of the RRNS-map code without side information (∆S = 1).
However, the minimum distances of the shift-map codes
remain constant.

It is also interesting to compare the number of neighbors
produced by the RRNS-map codes to that by regular lattices
in the same dimension. Finding the regular lattice with the
largest density in a given dimension is equivalent to finding
a way to arrange as many spheres with the same radii as
possible so that they barely touch (“kiss”) with one another.
The number of such spheres touching the one at the center
is called the kissing number and finding the largest possible
kissing number in a given dimension is the kissing number
problem [28]. In the four dimensional space, the highest
attainable kissing humber that is known is 24 with lattice D4

[28], shown as cyan star in Fig 5 right panel. Interestingly,
the RRNS-map code with this choice of a produces the
number of neighbors K close to the kissing number of D4

when ∆S = 1 (without side information). This hints that the
RRNS-map code with a = (9, 11, 13, 17, 23) is indeed well-
spaced in the (N − 1) dimensional orthogonal hyperplane.
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Fig. 5. Minimum distance (left) and the number of neighbors (right) of
active points X ∗

s for a = (9, 11, 13, 17, 23) as function of the interval
length of side information. Blue circles indicate numerically found values
and black lines indicate analytical predictions from (35) for left and (34)
for right. Red squares and diamonds are for shift-map codes with similar
stretch factors. The asterisk in cyan represents the highest value attainable
by regular lattice in (N − 1) = 4 dimensional space, which is 24 by lattice
D4 [28].

In the left panel of Fig. 6, the probabilities of threshold
error for the RRNS-map code (blue circles) and the shift-map
codes (red squares and diamonds) are shown for σ = 0.05.
Those are union bounds calculated from (31) using numeri-
cally found minimum distances and the numbers of neighbors
shown in Fig. 5. The black line shows the union bound for
RRNS-map code from the analysis of the average number of
neighbors and the minimum distance using (32). The analysis
agrees well with the numerical results and shows that the
probability of threshold error for the RRNS-map code drops
as ∆S decreases. In contrast, the probability of threshold
error stays constant for the shift-map codes.

Finally, the right panel of Fig. 6 shows that the RRNS-map
code outperforms other analog codes when side information
is provided to the decoder. The green dashed line in Fig.
6 right panel shows the average distortion of the repetition
code: σ2

N with N = 5. The black cross represents the
distortion of the tent-map code [13, Eq. (16a) and (16b)].
Lower bounds on the distortions of the shift-map codes
are derived similarly to [15, Appendix B], which remain
constant regardless of the amount of the side information
at the decoder. Without the side information (∆S = 1),
the upper bound of the distortion of the RRNS-code with
a = (9, 11, 13, 17, 23) is close to the lower bounds of those
shift-map codes with similar stretch factors. However, with
additional side information (∆S < 1), the former becomes
smaller than the latter; the RRNS-map code outperforms the
shift-map code.

VI. CONCLUSIONS

Motivated by the way spatial location is encoded in the
brain as well as the robust joint source channel problem
with side information, we generalize shift-map codes in this
paper to a new family, called RRNS-map codes. In RRNS-
map codes, scaling coefficients are chosen as relatively prime
numbers rather than a geometric series determined by a
fixed integer. The new coding scheme based on the RRNS-
map allows the decoder to exploit side information about
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Fig. 6. Probability of threshold error for the RRNS-map code decreases as
the decoder has access to more side information (decreasing ∆S) (left). The
distortion of RRNS-map is compares to those of other analog codes (right).
The distortion of RRNS-map code without any side information (∆S = 1)
is similar to those of shift-map codes with similar stretch factor (α = 2, 3).
But, as more side information is revealed to the decoder (as ∆S decreases),
the distortion of the RRNS-code decreases. This contrasts the other analog
codes whose distortions remain constant regardless of side information.

the source to produce a lower threshold error while the
encoder does not change its encoding policy. The threshold
error of the RRNS-map code is lower than the correspond-
ing conventional shift-map code, because the probability of
threshold error drops with side information, and the distortion
due to local error remains unchanged. Consequently, lower
distortion is achieved with the knowledge of side information
at the decoder.

Finding a good RRNS-map code is a line packing problem,
which translates to solving a mixed integer program. We nu-
merically solve this problem and find an example RRNS-map
code that possesses a homogeneous structure that resembles
a lattice. This code results in a superior performance when
varying degrees of side information is made available to the
decoder.
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