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Abstract

• The joint activity of grid, place, and time cell populations forms
a neural code for paths.

•We measure the performance of a network of these populations,
as well as interneurons, which implement biologically realizable
de-noising algorithms.

• Simulations demonstrate that representation improves when ac-
tivity of a small fraction of the population is corrupted by noise.

A code for paths in space and time
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•Components: N neurons, M grid modules (m), with J neu-
rons, and T time cells

•Grid cell tuning curves:
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– u(θk − θm,j) is a unit vector in the direction of θk − θm,j.
– s ∈ [0, L]× [0, L] is the position stimulus.

– cm,j, θm,j, and λm are spatial phase offset, orientation offset,
and scaling ratio.

– Orientations: θm,j ∈ {−60◦, 0◦, 60◦}.
–Z is a normalizing constant (≈ 2.857399).

– fmax is the grid cell’s maximum firing rate.

•Place cells have bivariate Gaussian tuning curves with mean

ξ ∈ [0, L]× [0, L], ρ ∈ [−1
2,

1
2], and covariance
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)
.

•Time cells have univariate Gaussian tuning curves with mean
vt ∈ [0, τ ] and variance σ2

t ∈ [0.5, 8] seconds.

•Codewords (i.e., rows of C) are formed by concatenating ac-
tivities of these cells evoked by positions and times from paths
recorded from a rat engaging in a spatial navigation task.

De-noising network
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•This network is a bipartite graph consisting of N pattern neu-
rons and NI interneurons.

•Clustering:

– Interneurons are split intoM distinct clusters of n interneurons
per cluster, each connected to a distinct grid module.

– Interneurons are initially connected randomly to any grid cell
in the corresponding module, and any place and time cell.

Subspace learning

•Before denoising is possible, this network must learn (i.e.,
adapt its weights for) the hybrid code.

•Code subspace learning is complete when the interneurons
may be read to determine if the states of the pattern neurons
map to a valid codeword, i.e., when the network has developed a
connectivity matrix, W , whose rows are approximately perpen-
dicular to the code space.

• (anti)Hebbian learning update rule:

w← w − αt(y(x− yw

‖w‖2
) + ηΓ(w, θ)),

– αt is the learning rate at iteration t.

– y = x′w is the scalar projection of x onto w.

– θ is a sparsity threshold.

– η is a penalty coefficient.

– Γ is a sparsity enforcing function, approximating the gradient

of a penalty function, g(w) =
m∑
k=1

tanh(σwk
2), which, for ap-

propriate choices of σ, penalizes non-sparse solutions early in
the learning procedure.

De-noising algorithms
•Goal: Recover the correct pattern of activity, x from the noisy

state, xn = x + n, where n is this noise pattern.

• xnW
′ reveals inconsistencies in xn that the de-noising al-

gorithm seeks to correct in the feedback stage. To see this, con-
sider that xnW

′ = (x + n)W ′ = xW ′ + nW ′ ≈ 0 + nW ′.

Algorithm 1 Sequential de-
noising
Require: local weights, Wi, for each cluster, i ∈
{1, ...,M}, noisy pattern, xn, stopping threshold, ε

Ensure: denoised pattern, xd

1: xd ← xn

2: while t < Tmax or a cluster has an unsatisfied con-
straint do

3: for each cluster, i ∈ {1, ...,M} do
4: x← subpattern corresponding to cluster i
5: d← Modular Recall(x,Wi)
6: if |dWi| ≤ ε then
7: xd(cluster i’s subpattern indices)← d
8: end if
9: end for

10: t← t+ 1
11: end while

Algorithm 2 Modular Recall
Require: local weights for this cluster, W , maximum

number of iterations, Tmax, noisy subpattern, x, feed-
back threshold, φ

Ensure: denoised subpattern, d
1: d← p
2: while t < Tmax do
3: y← xW ′

4: r← y′W
5: if ‖y‖ < ε then
6: break;
7: end if
8: f ← |y′|·|W |

m∑
i=1

|W |

9: for each pattern neuron,j do
10: if fj ≥ φ then fj = sign(xj)
11: else fj = 0
12: end if
13: end for

d← d + f
14: end while

Fuzzy mean SAD
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•Denote true and estimated path images as X and X̂ .

•Construct Xfuzzy and X̂fuzzy, by convolving X and X̂ with a
bivariate Gaussian distribution of standard deviation, σfuzzy

•Fuzzy mean SAD (sum of absolute differences) is

Ψ(X, X̂) =
1

Np∑
i=1

(Xfuzzy(i) + X̂fuzzy(i))

Np∑
i=1

|X̂fuzzy(i)−Xfuzzy(i)|,

where Np is the number of pixels in the image.

Coding theoretic results
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•Define R =
rank(C)
N , normal-

ized rank of the code.

•R increases with increasing
T until additional time cells
contribute only redundant in-
formation, at which point their
inclusion reduces rank.

Subspace learning results
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•Define connection strength
from place cells to grid mod-
ules by 1

NI
(
∑

(i,j)
|wi,jwi,p|) (for

interneurons, i, grid cells, j, in
module m).

•Average connectivity of
place cells to grid modules de-
creases with increasing place
field width.

• Surprisingly time cells ex-
hibit the opposite trend when
organized as in [5], where cells
firing later in a sequence had
wider receptive fields.

De-noising results
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•Error rate (fraction of incor-
rect neurons after de-noising)
for E errant neurons before de-
noising for different noise fre-
quencies

•De-noising reduces errors:
log10(EN ) > log10(Pse) ⇐⇒
E
N > Pse ⇐⇒ E > NPse.

Decoding results
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•Temporal decoding error
increases with increasing mag-
nitude and frequency of noise.
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• Spatial decoding error
also increases with increasing
magnitude and frequency of
noise.
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•Fuzzy mean SAD is min-
imized for intermediate values
of E and frequency of noise.

• Surprisingly fuzzy mean
SAD drops off quickly for small
and increasing E and increases
slowly when E is near N .

Discussion
•Readily de-noisable codes including all cell types may be

constructed by proper choice of population parameters.

• Specific accuracy of decoding position or time alone de-
creases with increasing frequency and ubiquity of noise.

•Average strength of connection from place cells to grid
modules decreases with increasing width of place field.

•A population of time cells in which σt is positively corre-
lated with vt exhibits the opposite trend. Surprisingly, without
this correlation, the trend disappears.

•Accuracy of path representation is maximized when a
small number of participating cells are subject to noise with in-
termediate intensity.
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