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Abstract—We study the data reliability problem for a com-
munity of devices forming a mobile cloud storage system. We
consider the application of regenerating codes for maintaining
a file within a geographically-limited area. Such codes require
lower bandwidth to regenerate lost data fragments compared to
file replication or reconstruction. We investigate threshold-based
repair strategies where data repair is initiated after a threshold
number of data fragments have been lost due to node mobility.
We show that at a low departure-to-repair rate regime, a lazy
repair strategy in which repairs are initiated after several nodes
have left the system outperforms eager repair in which repairs
are initiated after a single departure. This optimality is reversed
when nodes are highly mobile. We further compare distributed
and centralized repair strategies and derive the optimal repair
threshold for minimizing the average repair cost per unit of time,
as a function of underlying code parameters.

Index Terms—Distributed storage, regenerating codes, mobile
cloud, data reliability.

I. INTRODUCTION

Local caching and content distribution from a community of
mobile devices has been proposed as an alternative architecture
to traditional centralized storage [1]–[3]. The so-called mobile
cloud storage systems reduce the traffic load of the already
over-burdened infrastructure network and improve content
availability in the event of network outages. Also, the cloud
storage system can be used for applications like cloud comput-
ing, mobile health care and mobile learning. In a mobile cloud
storage scenario, a file F is stored within a geographically-
limited area A by a community of mobile devices. A user
within A can download F from the community of mobile
devices, without accessing the network infrastructure.

However, content storage at mobile devices leads to frequent
data loss due to mobility. Since not all storage systems have the
same mobility, one may need to design the system according
to the mobility of the devices within. For example, cloud
storage system used for local caching may have a lower
mobility compared to one used for applications involving
mobile users. That’s because devices in local caching systems
are mostly stable whereas devices in applications involving
mobile users in a wireless network may move in and out of
the network more freely. When a mobile device storing F or
any fragment of F exits A, the stored data is lost. To deal
with such losses, redundancy is introduced in the form of data
replication or coding [4], [5]. In replication storage, copies of
F are stored at multiple devices within the community. More

This work is supported in part by the National Science Foundation under
Grants No. 1563622 and No. 1409172.

A

+
F

fragments

repair

Fig. 1: File maintenance in a mobile cloud storage system.

sophisticated coding schemes such as erasure coding achieve
the same reliability at lower storage overhead [6], [7]. Despite
the application of coding, a stored file F will eventually
be lost when a certain number of mobile devices (storage
nodes) depart from A. To maintain F over long time periods,
the mobile cloud system must be capable of recovering the
lost data. A repair scenario is shown in Fig. 1. Lost data is
recovered by downloading fragments from the storage nodes
that remain within A. The amount of data downloaded for
repair is referred to as the repair bandwidth. For mobile
communities, the repair bandwidth can be significant.

The file maintenance problem for distributed storage sys-
tems has been primarily studied assuming that erasure codes
are applied for redundancy [6], [8]. However, erasure codes
may not be bandwidth-efficient. The repair bandwidth can be
reduced by applying regenerating codes, which allow fragment
recovery without file reconstruction (see [9]–[12] and refer-
ences therein). Although regenerating codes lower the repair
bandwidth (per single node repair), the design of an efficient
repair strategy for a mobile cloud storage system involves cost
optimizations with respect to many parameters, including the
code redundancy factor, the device departure and fragment
repair rates, the threshold for initiating repair operations, and
the available communication bandwidth. In this paper, we
study the problem of minimizing the file maintenance cost, as
a function of the network dynamics, the code parameters and
the communication model for repairing lost data fragments.
Specifically, we make the following contributions.
• We focus on threshold-based file maintenance strategies,

in which repairs are initiated when a threshold number
of fragments is lost. We analyze two communication
models, namely distributed repair and centralized repair.
In distributed repair, the new storage nodes independently
download data from existing nodes to recover lost frag-
ments. In centralized repair, a leader node first recovers
F via reconstruction, before regenerating and distributing
the repaired fragments to new storage nodes.



• We derive the optimal repair threshold that minimizes
the average repair cost per unit of time for each com-
munication model. Our results show that no one strategy
is optimal for all possible system configurations and mo-
bility patterns. At the low mobility-to-repair rate regime,
repairing at the regeneration threshold yields the optimal
strategy. On the other hand, at the high mobility-to-repair
rate regime, regenerating after a single fragment loss
minimizes the average repair cost per unit of time.

Although we present our analysis in the context of mobile
storage systems, we emphasize that our work is applicable in
any distributed storage system where fragment loss can occur.
This includes popular wired distributed storage architectures
such as HDFS [13], in which fragment loss occurs due to
server failures. Similar to a mobile storage cloud system,
the optimal threshold repair strategy for the wired domain
would depend on the fragment loss rate (server failure or
unavailability rate) and the various system parameters.

II. RELATED WORK

In reliable storage systems, information is replicated or
coded such that the original content can be recovered if some
limited fraction of the stored data is lost. Replication is the
most intuitive way to introduce redundancy. This method refers
to the maintenance of verbatim copies of the same file F .
Although replication is easy to implement, it suffers from high
storage and repair overhead.

Erasure codes incur less storage overhead compared to
replication while maintaining the same degree of reliability. In
particular, Maximum Distance Separable (MDS) codes achieve
the optimal tradeoff between failure tolerance and storage
overhead [14], [15]. An (n, k) MDS code encodes k data
chunks to n fragments and can tolerate up to n− k fragment
losses. Any k encoded fragments can be used to reconstruct F .
Fig. 2(a) shows the encoding process for a file F of size 4MB
using a (4, 2) erasure code. File F is split into k = 2 chunks
A and B, each of size 2MB. The two chunks are then encoded
into n = 4 fragments. The repair bandwidth for this scheme
equals the size of the original file. Reed-Solomon codes are
a classical example of MDS codes and are deployed in many
existing storage systems (e.g. [7], [16]–[18]).

Although erasure codes offer significant savings in storage,
their repair bandwidth is suboptimal. Regenerating codes trade
repair bandwidth for storage and can recover lost fragments
without reconstructing the entire file. They were initially
investigated in the seminal work of Dimakis et al. [9], which
focuses on the following setup. A file F of sizeM symbols is
encoded into n fragments, each of size α symbols, such that (i)
the file can be reconstructed from any k fragments, and (ii) a
lost fragment can be repaired by downloading β ≤ α symbols
from any d ≥ k fragments, resulting in a repair bandwidth of
γ = dβ. Dimakis et al. characterized the tradeoff between per
node storage (α) and repair bandwidth (γ) [9].

Fig. 2(b) shows an example of a (n, k, d, α, β) =
(4, 2, 3, 2, 1) regenerating code. Here, the file F is split into
k = 2 chunks each of size α = 2MB. The chunks are

encoded in n = 4 fragments, with each fragment being 2MB.
A failed node in this scenario can be regenerated by retrieving
fragments of size β = 1MB from d = 3 surviving nodes. This
yields a repair bandwidth of dβ = 3MB which is less that
kα = 4MB. Note, however, that regeneration can be applied
only if at least d fragments are available. If fewer than d but
more than k fragments remain available, the lost fragments
can only be repaired through file reconstruction.

In the context of mobile cloud systems, Pääkkönen et
al. considered a wireless device-to-device network used for
distributed storage [19]. The authors showed the energy con-
sumption for maintaining data using regenerating codes is
lower compared to retrieving a lost file from a remote source.
This result holds if the per-bit energy cost for communica-
tion between the mobile devices is lower than the cost for
communicating with the remote source.

In a follow-up work, Pääkkönen et al. compared replication
with regeneration for a similar wireless P2P storage system [2].
They derived closed-form expressions for the expected total
energy cost of file retrieval using replication and regeneration.
They showed that the expected total cost of 2-replication
is lower than the cost of regeneration. However, only an
eager repair strategy was considered in the analysis. Moreover,
the advantages of regeneration were not fully exploited by
considering codes with different parameters. Pääkkönen et
al. also addressed the problem of tolerating multiple simul-
taneous failures [20]. They investigated the energy overhead
of regenerating codes in a cellular network. They showed that
large energy gains can be obtained by employing regenerating
codes. These gains depend on the file popularity. The authors
provided decision rules for choosing between simple caching,
replication, MSR and MBR codes, based on numerical results
on certain application scenarios. In our work, we analytically
provide decision rules to choose optimal repair strategies that
minimize the repair bandwidth per unit of time.

Pedersen et al. recently studied the cost of content caching
on mobile devices using erasure codes [21]. They derived
analytical expressions for the cost of content download and
repair bandwidth as a function of the repair interval. These
expressions were used to evaluate the communication cost
of distributed storage for MDS codes, regenerating codes,
and locally repairable codes. Their results show that in high
churn, distributed storage can reduce the communication cost
compared to downloading from a base station. They conclude
that MDS codes are the best performers in this setup.

III. SYSTEM MODEL

A. Network Model

We consider a distributed storage system (DSS) consisting
of mobile storage nodes that enter and exit a geographically-
limited area A. When a node departs from A, its data is lost.
As we are interested in the system performance due to network
dynamics, we do not consider data loss due to hardware fail-
ures. Such failures occurs orders of magnitude less frequently
than node departures. Following the network dynamics model
of prior works [8], [19], we model the time Xi spent by each
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Fig. 2: Storage of F using (a) a (n = 4, k = 2) erasure code and, (b) a (n = 4, k = 2, d = 3, α = 2, β = 1) regenerating code.

node within A as an exponentially distributed random variable
with parameter λ (i.e., Xi ∼ Exp(λ), ∀i). Random variables
{Xi} are assumed independent and identically distributed.

The repair time is modeled by an exponentially distributed
random variable with parameter µ. For ease of analysis, we
assume that µ is independent of the number of fragments that
need to be repaired. This model corresponds to independent
repairs that proceed in parallel at different nodes once the
repair process is initiated and it corresponds to the distributed
nature of the mobile cloud DSS. Finally, we define ρ = λ

µ as
the ratio of the departure-to-repair rate.

B. Storage Model

A file F of size M bits is stored in n storage nodes
using a regenerating code with parameters (n, k, d, α, β) (see
Fig. 2(b)). We focus on the two most popular types of
regenerating codes, namely Minimum Storage Regenerating
(MSR) codes and Minimum Bandwidth Regenerating (MBR)
codes. These two classes of codes operate at the end points of
the tradeoff between per node storage and repair bandwidth,
as introduced in [9]. MSR codes achieve minimum storage by
setting α = M/k and minimize the repair bandwidth under
this constraint. Their operating point is given by:

(αMSR, γMSR) =

(
M
k
,

Md

k (d− k + 1)

)
. (1)

Note that, for MSR codes, αMSR ≤ γMSR and hence, the per-
node storage is smaller than the repair bandwidth. MBR codes,
on the other hand, minimize the repair bandwidth (achieved
when γ = α), and operate at:

(αMBR, γMBR) =

(
2Md

2kd− k2 + k
,

2Md

2kd− k2 + k

)
. (2)

Instances of these codes can be found in [10]–[12].

C. File Repair Model

In our model, the system continuously monitors the redun-
dancy level and initiates a repair when τ nodes are left within
A. The determination of τ , the type of repair (regeneration,
reconstruction, or both) and the communication model for
fragment retrieval (centralized or distributed) form a file main-
tenance strategy. We note that the practical implementation
details of the redundancy monitoring mechanism and of the
communication protocols for retrieving various fragments are

beyond the scope of the present work. We focus on the
theoretical aspects of the maintenance process. Since repairs
are initiated only when the number of remaining nodes reaches
threshold τ , a repair strategy can be viewed as an i.i.d. system
recovery process occurring every ∆ seconds, where ∆ is
a random variable denoting the time elapsed between two
instances of a fully repaired system. For this recovery process,
we define the following costs.

Definition 1 (Repair cost c(τ)). The number of bits c(τ) that
must be downloaded from the τ remaining nodes to restore n
fragments in A, when n− τ nodes have departed A.

Definition 2 (Average repair cost per unit of time r(τ)). The
average cost per unit of time for maintaining n fragments inA,
defined as c(τ) over the average time between two instances
of a fully repaired system, i.e., E[∆], with n fragments (r(τ)
is measured in bits per unit of time).

We determine the optimal file maintenance strategy for
different node departure rates, code parameters, and commu-
nication models for fragment retrieval.

IV. FILE MAINTENANCE STRATEGIES

Let τ denote the number of nodes remaining within A
after the departure of n− τ nodes. We focus on determining
the optimal repair threshold τ∗, which minimizes the average
repair cost per unit of time. We first compare the distributed
repair strategy with centralized repair strategy.

A. Distributed Repair
In distributed repair, nodes recover lost fragments by in-

dependently downloading relevant symbols from other nodes.
The repair process is initiated when τ nodes remain within A,
where k ≤ τ < n− 1 (when τ < k, the data is irrecoverably
lost). If τ ≥ d, fragment recovery can be performed through
regeneration. Each of the n− τ replacement nodes downloads
β symbols from d storage nodes and independently regenerates
a lost fragment. Fig. 3(a) demonstrates the distributed repair
process for a file F stored with a (n = 4, k = 2, d = 3, α =
2, β = 1) regenerating code. One fragment of F is lost because
node s9 departed from A. The lost fragment is regenerated at
s1 by independently downloading β = 1 symbol from three
nodes. The total repair bandwidth is equal to 3 symbols.

If τ < d, regeneration cannot be directly applied. To reduce
the repair cost, we consider a hybrid scheme consisting of
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Fig. 3: (a) Distributed repair: nodes independently regenerate a lost fragment by obtaining symbols from other nodes, (b)
centralized repair: a leader node reconstructs F and distributes lost fragments to new nodes.

regeneration and reconstruction. First, d−τ nodes are repaired
by downloading α symbols from k nodes and reconstructing
F . When d fragments become available, regeneration is ap-
plied to repair the remaining n − d nodes. Accordingly, the
repair cost is expressed by:

cD(τ) =

{
kα(d− τ) + γ(n− d), if τ < d

γ(n− τ), if τ ≥ d.
(3)

The subscript D in cD(τ) is used to denote the cost of dis-
tributed repair and γ denotes the regeneration cost of a single
fragment which depends on the underlying regeneration code
(see eqs. (1) and (2) for MSR and MBR codes, respectively).
From (3), it is evident that cD(τ) monotonically decreases
with τ. Moreover, the rate of cost change (with respect to τ )
is higher when τ < d. To determine the optimal threshold τ∗,
we are interested in minimizing rD(τ), which captures the
repair cost for maintaining n fragments per unit of time.

To calculate rD(τ), we use the continuous-time Markov
chain (CTMC) model shown in Fig. 4. This model captures
the periodic repair process when node departures occur inde-
pendently, the time spent by each node in A is exponentially
distributed with parameter λ, and the system recovery process
is exponentially distributed with parameter µ.

n -1n d. . .

nλ (n - 1)λ (d+1)λ

τ

(τ+1)λ

. . .
µ

Fig. 4: Markov chain for a threshold-based file maintenance.

The CTMC consists of n − τ + 1 states representing the
number of fragments that remain within A after each node
departure, until a repair at state τ is initiated. Note that we
have omitted states after τ in the CTMC model, because we
are interested in optimizing the periodic cost of repairing the
DSS at threshold τ . Moreover, the transition probability to
state τ − 1 is negligible for most realistic scenarios in which
µ� τλ. For cases when µ 6� τλ, we compute the mean time
it takes to depart from the optimal repair strategy of repairing
at state τ and interpret this event as a form of system error
which leads to data loss (see Section V-C).

For the CTMC in Fig 4, the departure rate from a state i
equals the node departure rate λ, times the number of nodes
which store fragments at state i. When the repair process is

initiated, the system transitions from state τ to state n because
all fragment repairs nodes proceed in parallel. For the CTMC,
we define the expected average cost rD(τ) per unit of time as

rD(τ) =
cD(τ)

E[∆]
, (4)

where E[∆] is the average time between two transitions
through the nth state in the periodic repair process1. For ∆,

∆ = Tn + Tn−1 + · · ·+ Tτ+1 + Tτ , (5)

where Ti denotes the time that the system stays at state i (inter-
departure time) and Tτ is the expected time for completing
repairs so that n− τ fragments are recovered (return to state
n). The random variables Ti are independent and exponentially
distributed with parameter iλ, whereas Tτ is exponentially
distributed with parameter µ. In particular, E[Ti] = 1

iλ and
E[Tτ ] = 1

µ . Therefore, E[∆] is the sum expectation of
independent exponential random variables.

E[∆] =

n∑
i=τ+1

1

iλ
+

1

µ
=
Hn,τ

λ
+

1

µ
, (6)

where Hn,τ =
∑n
i=τ

1
i . Combining (4) and (6), we obtain the

average repair cost per unit of time as follows.

rD(τ) =
cD(τ)

E[∆]
=

{
λµ(kα(d−τ)+γ(n−d))

µHn,τ+λ
, if τ < d

λµ(γ(n−τ))
µHn,τ+λ

, if t ≥ d.
(7)

We use (7) to determine the optimal threshold τ∗ which
minimizes rD(τ). This is given by Propositions 1 and 2.

Proposition 1. For regeneration (d ≤ τ ≤ n−1), the optimal
repair threshold τ∗ is given by

τ∗ =

{
d, ρ ≤ Hn−1,d

n−d−1 −
1
n

n− 1, otherwise.
(8)

Proof. Due to space limitations, the proof is provided in our
technical report [22].

Proposition 1 determines the ρ regime for which repairs
at τ = d, an instance of lazy repair, is more efficient than
initiating repairs at τ = n− 1, referred to as eager repair. In

1The alternative definition of rD(τ) = E
[
cD(τ)

∆

]
is not useful because

the expectation is infinite. This is due to the infinitesimally small values that
can be obtained by ∆, whereas cD(τ) remains lower bounded.



the following Lemma, we show that there is always a positive
ρ for which lazy repair is more efficient that eager repair.

Lemma 1. There is always some ρ > 0 for which lazy repair
(τ∗ = d) is more efficient than eager repair (τ = n − 1),
independent of the code parameters used for regeneration.

Proof. Due to space limitations, the proof is provided in our
technical report [22].

We now examine if there is a ρ regime for which the hybrid
scheme, i.e., reconstruction plus regeneration results in a lower
expected cost per unit of time compared to regeneration only.
This rate regime is given by the following proposition.

Proposition 2. For regeneration plus reconstruction (k ≤ τ ≤
d), the optimal repair threshold τ∗ is given by

τ∗ =

{
k, ρ ≤ γ(n−d)Hd,k

kα(d−k) −Hn,d

d, otherwise.
(9)

Proof. Due to space limitations, the proof is provided in our
technical report [22].

Similar to Lemma 1, we investigate if the highest departure-
to-repair rate for which reconstruction at k is more efficient
than regeneration is always positive independent of the code
parameters. Unlike the case of Lemma 1, we show that for
a certain relationship between n, k, γ, and α, regeneration is
strictly more efficient than regeneration plus reconstruction,
independent of ρ. For any other code parameters, the most
efficient strategy depends on ρ.

Lemma 2. For any departure-to-repair ratio ρ, regeneration
is strictly more efficient than regeneration plus reconstruction
for codes satisfying nγ < k2α.

Proof. Due to space limitations, the proof is provided in our
technical report [22].

We further explore the condition in Lemma 2 for MSR and
MBR codes. For MSR codes, we obtain that dn < k2(d−k+1)
by substituting the operation points of MSR from (1). Simi-
larly, for MBR codes, we obtain that n < k2 by substituting
the operation points of MBR from (2). Note that Lemma 2
does not enumerate all possible codes for which regeneration is
strictly more efficient than regeneration plus reconstruction for
any λ. This is because we have used bounds on the harmonic
function to derive the analytic formulas. Numerical bounds
could provide a more accurate range of code parameters for
which Lemma 2 is true.

B. Centralized Repair

In the centralized strategy, repairs are performed by a
leader node in two stages. In the first stage, the leader node
downloads α symbols from k nodes and reconstructs F . In the
second stage, the leader node transmits α bits to each of the
remaining (n−τ−1) nodes to restore the remaining (n−τ−1)
fragments. Fig. 3(b) shows an example of centralized repair
for a (n = 4, k = 2, d = 3, α = 2, β = 1) regenerating code.
Nodes s2 and s9 have departed from area A, leading to the

loss of their respective fragments. Node s5, who acts as a
leader, downloads α = 2 symbols from k = 2 other nodes to
reconstruct F . It then distributes α = 2 symbols to s1 and s7
to restore the system reliability. The repair cost of centralized
repair is given by:

cC(τ) = α (k + n− τ − 1) . (10)

In (10), the subscript C in cC(τ) is used to denote the cost of
centralized repair. The node departure process does not vary
with the repair strategy. Therefore, the same CTMC model
shown in Fig. 4 applies for the centralized repair. According
to (4), the average repair cost rC(τ) is given by:

rC(τ) =
cC(τ)

E[∆]
=
λµα(k + n− τ − 1)

µHn,τ + λ
. (11)

The optimal threshold τ∗ which minimizes r(τ) is obtained
in Proposition 3.

Proposition 3. The optimal repair threshold τ∗ which mini-
mizes r(τ) for centralized repair is given by

τ∗ =

{
k, ρ ≤ kHn−1,k

n−k−1 −
1
n

n− 1, otherwise
(12)

Proof. Due to space limitations, the proof is provided in our
technical report [22].

Using Proposition 3, we can determine the optimal repair
strategy for any ρ, when centralized repair is employed. We
note that according to Lemma 1, the value kHn−1,k

(n−k−1) −
1
n is

strictly positive for any code parameters. Therefore, there is
always a departure-to-repair ratio for which lazy repair is more
efficient than eager repair, independent of the code used for
regeneration and reconstruction.

V. ANALYSIS OF MAINTENANCE STRATEGIES

In this section, we characterize the ρ regime for which
lazy repair is more cost-efficient than eager repair. Moreover,
we determine the optimal repair strategy (decentralized vs.
centralized) as a function of the code parameters, when the
departure and repair rates are fixed. To ease the reader to our
analysis, we summarize the cost of repair in Table I.

A. Eager vs. Lazy Repair
According to the results of Propositions 1, 2, and 3, we

classify the departure-to-repair ratios into a low departure-to-
repair rate regime (ρlow) and a high departure-to-repair rate
regime (ρhigh). The two regimes are defined by finding the
lowest and highest rates, based on the bounds stated in the
three propositions.

ρlow = min
{ Hn−1,d

n− d− 1
− 1

n
,
γ(n− d)Hd,k

kα(d− k)
−Hn,d,

kHn−1,k

(n− k − 1)
− 1

n

}
. (13)

ρhigh = max
{ Hn−1,d

n− d− 1
− 1

n
,
γ(n− d)Hd,k

kα(d− k)
−Hn,d,

kHn−1,k

(n− k − 1)
− 1

n

}
. (14)



TABLE I: Cost comparison of repair strategies at different thresholds.

Distributed Repair Centralized Repair
Regeneration Regeneration + Reconstruction Reconstruction

Code rD(n− 1) rD(d) rD(k) rC(n− 1) rC(k)

MSR nMdλµ
k(d−k+1)(µ+nλ)

M(n−d)dλµ
k(d−k+1)(λ+µHn,d)

M[k(d−k+1)(d−k)+d(n−d)]λµ
k(d−k+1)(λ+µHn,k)

nMλµ
µ+nλ

(n−1)Mλµ
k(λ+µHn,k)

MBR 2nMdλµ
k(2d−k+1)(µ+nλ)

2M(n−d)dλµ
k(2d−k+1)(λ+Hn,d)

2Md(n+kd−k2−d)λµ
k(2d−k+1)(λ+Hn,k)

2nMdλµ
(2d−k+1)(µ+nλ)

2(n−1)Mdλµ
k(2d−k+1)(λ+µHn,k)

Noting that Hn−1,d

n−d−1 −
1
n <

kHn−1,k

(n−k−1) −
1
n for k < d, the two

regime expressions can be simplified to

ρlow = min
{ Hn−1,d

n− d− 1
− 1

n
,
γ(n− d)Hd,k

kα(d− k)
−Hn,d

}
.

ρhigh = max
{γ(n− d)Hd,k

kα(d− k)
−Hn,d,

kHn−1,k

(n− k − 1)
− 1

n

}
.

For any ρ ≤ ρlow, the repair cost per unit of time is minimized
when lazy repair is applied since that choice of ρ would
be lower than the bounds found in (8),(9) and (12) and the
corresponding repair thresholds are the lowest possible. On
the other hand, for any ρ ≥ ρhigh, eager repair (i.e., repair
at τ∗ = n − 1) yields the lowest r(τ). These findings hold
for both distributed and centralized repair. If the departure-
to-repair rates do not lie in either of the ρ regimes, then
the optimal repair policy (eager vs. lazy) depends on the
relationship of the code parameters and the repair strategy
(centralized or distributed).

B. Centralized vs. Distributed Repair

We now fix the departure rate λ and repair rate µ to compare
the repair cost of centralized vs. distributed repair per unit
of time, as a function of the code parameters. Specifically,
we determine relationships between n, k, d and the code type
(MSR vs. MBR) for which an optimal strategy can be derived.
Our results are stated in the following two propositions.

Proposition 4. For d ≤ τ∗ ≤ n − 1, using MBR codes and
distributed repair minimizes the average repair cost per unit
of time, if d > n+k−1

3 .

Proof. Due to space limitations, the proof is provided in our
technical report [22].

We now prove that if τ∗ lies between k and d, using MSR
codes with centralized repair is optimal.

Proposition 5. For k ≤ τ∗ < d, the optimal repair strategy
is given by centralized repair with MSR codes.

Proof. Due to space limitations, the proof is provided in our
technical report [22].

C. Mean Time to Data Loss for Periodic Repairs

We now examine the Mean Time to Data Loss (MTTDL)
for the periodic threshold repair process. For our purposes,
we consider that data is lost if the DSS transitions from state
τ to state τ − 1 instead of state n. That is, if a node leaves
the system before repairs are completed when initiated at state
τ , the repair process is abandoned and the system eventually
reaches state k−1, at which data is lost. In this case, the file F

is reinstated at the mobile nodes by a central entity. Note that
when τ > k repairs could be re-initiated at state τ−1, because
at least k fragments remain available. We opted not to consider
this option for the MTTDL calculation to capture the periodic
nature of the threshold repair strategy. The MTTDL reflects
the period of time at which the DSS oscillates between states
n and τ . The time to reach state k − 1 assuming no repairs
are attempted after state τ is given by:

Proposition 6. For a threshold-based repair strategy attempt-
ing regeneration at state τ , the MTTDL is given by

MTTDL =

∞∑
i=1

( iHn,τ

λ
+
i− 1

µ
+
Hτ,k−1

λ

)
(1−p)(i−1)p, (15)

where p = τλ
τλ+µ .

Proof. Due to space limitations, the proof is provided in our
technical report [22].

The MTTDL is a decreasing function of τ . This is intuitive
considering that the rate λτ of departing from state τ decreases
with τ , making it more probable to return to state n. Moreover,
the average time it takes to reach state τ from state n increases
with τ . This indicates that the periodic repair of the DSS will
on average have last longer if a lazy repair strategy is adopted.

D. Numerical Examples

In this section, we validate our theoretical results be
providing numerical examples. Fig. 5(a) shows r(τ) when
d > n+k−1

3 and ρ = 10−4 . According to Proposition 4,
for this combination of code parameters, a distributed repair
strategy with MBR codes (D-MBR) achieves the minimum
r(τ) for all d ≤ τ∗ ≤ n− 1. The minimum occurs at τ∗ = d.
Moreover, according to Proposition 5, centralized MSR codes
(C-MSR) minimize r(τ) for k ≤ τ < d. This is verified in all
plots of Fig. 5, for which the cost is minimized by the C-MSR
strategy when τ∗ = k, if τ < d. In Fig. 5(b), we show r(τ)
when d < n+k−1

3 and ρ = 10−4. For this case, there is no
one scheme with optimal cost for any value of d ≤ τ ≤ n−1.
For τ > 16, D-MBR is optimal, whereas for 10 ≤ τ ≤ 15,
C-MSR becomes optimal. C-MSR achieves the lowest overall
cost at τ = k.

We also studied the impact of ρ, when the code parameters
are fixed to (n = 30, k = 20, d = 25). Fig. 5(c) shows the
average cost per unit of time (r(τ)) when ρ = 10−4. For
this ρ regime, a lazy repair strategy with τ∗ = d minimizes
r(τ), with D-MBR codes achieving the lowest cost. On the
other hand, eager repair becomes optimal for any ρ > ρhigh.
This is observed in Fig. 5(d), in which the value of ρ has
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Fig. 5: Cost r(τ) vs. repair threshold (τ ) for: (a) d > n+k−1
3 , (b) d < n+k−1

3 >, (c) ρ = 10−4, (d) ρ = 1.

been increased to one. D-MBR codes still remain the optimal
option, however, the optimal repair threshold is now shifted to
τ∗ = n− 1. Note that at the high ρ regime, all codes exhibit
the same behavior. The average cost per unit of time becomes
a decreasing function of τ .

Finally, on the right y-axis of the plots in Fig. 5, we
show the MTTDL values for the given set of parameters. As
expected, the MTTDL is an decreasing function of τ due to
the corresponding increase in departure rate from state τ with
the value of τ . The MTTDL becomes impractical in the high ρ
regime, because nodes frequently leave area A before repairs
can be completed.

VI. CONCLUSION AND FUTURE WORK

We analyzed threshold-based repair strategies for maintain-
ing files in mobile cloud storage systems. We derived the
optimal repair thresholds for both distributed and centralized
repair schemes under fragment regeneration and/or reconstruc-
tion. Our results show that optimal thresholds are dependent
on system configurations, the underlying code parameters
and mobility-to-repair rate ratio. For high mobility-to-repair
scenarios, eager repair minimizes the average repair cost per
unit of time. Under low mobility-to-repair ratio, lazy repair is
optimal in terms of average repair cost.

As part of our future work, we will consider a more
advanced repair model in which fragment repairs occur under
a fixed bandwidth constraint. This assumption makes the repair
rate µ dependent on the repair threshold τ . Moreover, we will
investigate a sequential repair model in which the system may
oscillate between states k and n, once repairs are initiated.
Finally, we will generalize our model to the case where repairs
are initiated at a every state with some probability and study
the cost vs. MTTDL tradeoff.
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