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Abstract—This paper studies the individual secrecy
capacity region of the broadcast channel with receiver
side information. First, an achievable rate region is
established for the discrete memoryless case by employ-
ing superposition coding. Further, it is extended to the
corresponding Gaussian case, where the individual se-
crecy capacity region is characterized in case of a weak
or strong eavesdropper (compared to two legitimate
receivers). For the case left, inner and outer bounds are
established and the individual secrecy capacity region is
characterized for the low and high SNR regimes. Note
that the last case is distinctive due to the individual
secrecy constraint, in the sense that positive rate pair
is still possible although the eavesdropper may have
the advantage against at least one of the legitimate
receivers over the channel, unlike the situation if the
joint secrecy constraint is imposed.

I. Introduction

In this paper, we consider the problem of secure com-
munication over the broadcast channel with receiver side
information (BC-RSI) as shown in Fig. 1. In this model,
the transmitter wants to send two independent messages
to two receivers which have, respectively, the desired
message of the other receiver (already available in their
possession, e.g., due to previous communications) as side
information.

Note that the broadcasting capacity region of BC-RSI
(Fig. 1 without an eavesdropper) is completely character-
ized in [1]. For BC-RSI with an external eavesdropper, the
authors in [2] proposed achievable rate regions and outer
bounds subject to a joint secrecy constraint (whereby the
information leakage from both messages to the eavesdrop-
per is made vanishing). Differently from [2], we focus on
the problem under individual secrecy constraints that aims
to minimize the information leakage from each message to
the eavesdropper [3]. A parallel work [4] has considered
both the joint secrecy and individual secrecy aspects of
BC-RSI. Nevertheless, both [3] and [4] considered only the
discrete memoryless case.

This work is a continuation of our previous study on BC-
RSI with individual secrecy constraints [3]. As mentioned
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in [3], the concept of individual secrecy is motivated by
the fact that a joint secrecy constraint can be difficult or
even impossible to fulfill in certain cases. For instance,
if the eavesdropper has the same or a better channel
observation than at least one of the legitimate receivers,
then under joint secrecy constraint, positive rate pair for
both legitimate receivers is not possible at all. In such
cases, the individual secrecy serves as a more realistic and
affordable security solution.

The main contributions of the paper are as follows.
First, we propose an achievable individual secrecy rate
region (which generalizes the results provided in [3], [4])
by employing superposition coding. Further, the coding
scheme is extended to Gaussian case to characterize the in-
dividual secrecy capacity region in case of a weak or strong
eavesdropper (compared to two legitimate receivers), and
to derive an inner bound in case that the eavesdropper’s
channel is stronger than one receiver but weaker than the
other. In particular, for the last case, we also provide an
outer bound, which together with the inner bound, gives
the individual secrecy capacity region for the low and high
SNR regimes.

II. System model
Consider a discrete memoryless broadcast channel given

by p(y1, y2, z|x) with two legitimate receivers and one
passive eavesdropper, as shown in Fig. 1. The transmitter
aims to send messages m1,m2 to the legitimate receiver
1, 2, respectively. Suppose xn is the channel input to
convey m1,m2 in n channel uses, whilst yn1 (at receiver
1), yn2 (at receiver 2) and zn (at eavesdropper), are the
channel outputs. Besides, m2 (available at receiver 1) and
m1 (available at receiver 2), serve also as side information
that may help to decode the desired message.

Denote the average probability of decoding error at
receiver i as Pe,i. The rate pair (R1, R2) is said to be
achievable, if for any ε > 0, there exists an encoder-decoder
pair such that

1
n
H(Mi) ≥Ri − ε (1)

Pe,i ≤ε (2)
1
n
I(Mi;Zn) ≤ε, (3)
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Fig. 1: BC-RSI with an external eavesdropper.

for i = 1, 2 and for sufficiently large n. Note that (1) corre-
sponds to the targeted transmission rate; (2) corresponds
to the reliability constraint at the legitimate receivers;
while (3) corresponds to the individual secrecy constraints
against the eavesdropper.

III. Discrete memoryless BC-RSI with an
external eavesdropper

Theorem 1. An achievable individual secrecy rate region
for BC-RSI is given by the set of non-negative rate pairs
(R1, R2) such that

R1 ≤ min
{
I(V ;Y1|U) + min{I(U ;Y1), I(U ;Y2)},
I(V ;Y1|U)− I(V ;Z|U) +R2

}
,

R2 ≤ min
{
I(V ;Y2|U) + min{I(U ;Y1), I(U ;Y2)},
I(V ;Y2|U)− I(V ;Z|U) +R1

}
,

over all p(u)p(v|u)p(x|v) subject to I(V ;Yi|U) ≥
I(V ;Z|U) for i = 1, 2.

Proof: To establish the achievability of the above
region, we utilize the superposition coding with embedded
one-time pad and secrecy coding approaches.

Rate splitting: We split M1 = (M1k,M1sk,M1s) and
M2 = (M2k,M2sk,M2s), with both M1k and M2k of
entropy nRk, both M1sk and M2sk of entropy nRsk, M1s
of entropy nR1s and M2s of entropy nR2s. Thus we have
R1 = Rk +Rsk +R1s and R2 = Rk +Rsk +R2s.

Codebook generation: Fix p(u), p(v|u). First, randomly
generate 2nRk i.i.d sequences un(k), k ∈ [1 : 2nRk ], accord-
ing to p(u). Secondly, for each un(k), according to p(v|u),
randomly generate i.i.d sequences vn(k, sk, 1s, 2s, r) with
(sk, 1s, 2s, r) ∈ [1 : 2nRsk ] × [1 : 2nR1s ] × [1 : 2nR2s ] × [1 :
2nRr ].

Encoding: To send messages (m1,m2), choose un(k),
where k = mk , m1k⊕m2k.Given un(k), randomly choose
r ∈ [1 : 2nRr ] and find vn(k,msk,m1s,m2s, r), where
msk , m1sk⊕m2sk. Generate xn according to p(x|v), and
transmit it over the channel.

Decoding: Receiver 2, upon receiving yn2 , finds un(k̂)
such that (un(k̂), yn2 ) is jointly typical. With the knowl-
edge of m1k, decode m̂2k = m1k ⊕ k̂. Correspond-
ing to un(k̂), with the knowledge of m1, further find
vn(k̂, m̂sk,m1s, m̂2s, r̂) which is jointly typical with yn2 ;
and decode m̂2sk = (m1sk ⊕ m̂sk). Thus, m̂2 =
(m̂2k, m̂2sk, m̂2s).

Receiver 1, upon receiving yn1 , finds un(k̃) such that
(un(k̃), yn1 ) is jointly typical. Corresponding to un(k̃),
further find vn(k̃, m̃sk, m̃1s,m2s, r̃) which is jointly typical
with yn1 . With the knowledge of m2 = (m2k,m2sk,m2s),
decode m̃1 = (m2k ⊕ k̃,m2sk ⊕ m̃sk, m̃1s).

Analysis of the error probability of decoding: Assume that
(M1,M2) = (m1,m2) is sent. First consider Pe,2 at receiver
2. A decoding error happens iff one or more of the following
events occur:

E21 ={(un(m1k ⊕m2k), yn2 ) /∈ T (n)
ε },

E22 ={(un(m1k ⊕m′2k), yn2 ) ∈ T (n)
ε for some m′2k 6= m2k},

E23 ={(vn(m1k ⊕m2k,m1sk ⊕m2sk,m1s,m2s, r), yn2 ) /∈ T (n)
ε },

E24 ={(vn(m1k ⊕m2k,m
′
sk,m1s,m

′
2s, r

′), yn2 ) ∈ T (n)
ε ,

(m′sk,m′2s, r′) 6= (m1sk ⊕m2sk,m2s, r)}.

Thus Pe,2 can be upper bounded by Pe,2 ≤ Pr(E21) +
Pr(E22) + Pr(E23) + Pr(E24). By the LLN, Pr(E21) and
Pr(E23) tends to zero as n → ∞. For Pr(E22), since
un(m′2k ⊕m1k) is independent of (un(m2k ⊕m1k), yn2 ) for
m′2k 6= m2k, by the packing lemma [5], Pr(E22) tends to
zero as n→∞ if

Rk < I(U ;Y2). (4)

For Pr(E24), note that if (m′sk,m′2s, r′) 6= (m1sk ⊕
m2sk,m2s, r), then for given un(k) with k = m1k ⊕m2k,
vn(k,m′sk,m1s,m

′
2s, r

′) is independent of (vn(k,m1sk ⊕
m2sk,m1s,m2s, r), yn1 ). By the packing lemma [5], Pr(E24)
tends to zero as n→∞ if

Rsk +R2s +Rr < I(V ;Y2|U). (5)

At receiver 1, the decoder makes an error iff one or more
of the following events occur:

E11 ={(un(m1k ⊕m2k, y
n
1 ) /∈ T (n)

ε },
E12 ={(un(m′1k ⊕m2k), yn1 ) ∈ T (n)

ε for some m′1k 6= m1k},
E13 ={(vn(m1k ⊕m2k,m1sk ⊕m2sk,m1s,m2s, r), yn1 ) /∈ T (n)

ε },
E14 ={(vn(m1k ⊕m2k,m

′
sk,m

′
1s,m2s, r

′), yn1 ) ∈ T (n)
ε ,

(m′sk,m′1s, r′) 6= (m1sk ⊕m2sk,m1s, r)}.

So Pe,1 can be upper bounded by Pe,1 ≤ Pr(E11) +
Pr(E12) + Pr(E13) + Pr(E14). By the LLN, Pr(E11) and
Pr(E13) tend to zero as n → ∞. For Pr(E12), since
un(m2k ⊕m′1k) is independent of (un(m2k ⊕m1k), yn2 ) for
m′1k 6= m1k, by the packing lemma [5], Pr(E12) tends to
zero as n→∞ if

Rk < I(U ;Y1). (6)

For Pr(E14), note that if (m′sk,m′1s, r′) 6= (m1sk ⊕
m2sk,m1s, r), then for given un(k) with k = m1k ⊕m2k,
vn(k,m′sk,m′1s,m2s, r

′) is independent of (vn(k,m1sk ⊕
m2sk,m1s,m2s, r), yn1 ). By the packing lemma [5], it tends
to zero as n→∞ if

Rsk +R1s +Rr < I(V ;Y1|U) (7)



Analysis of individual secrecy: Due to the symmetric
roles of receiver 1 and receiver 2, we only need to prove
the secrecy of one message (e.g., M1). The other (e.g., the
secrecy of M2) follows by a similar proof.
For the secrecy of M1, we have

I(M1;Zn) =I(M1k,M1sk,M1s;Zn)
=I(M1k;Zn) + I(M1sk,M1s;Zn|M1k)

(a)= I(M1sk,M1s;Zn|M1k)
=I(M1sk;Zn|M1k) + I(M1s;Zn|M1k,M1sk)

(b)=I(M1s;Zn|M1k,M1sk)
=H(M1s)−H(M1s|M1k,M1sk, Z

n)
(c)
≤nR1s −H(M1s|Mk, Z

n),

where (a) is due to the fact that I(M1k;Zn) = 0 by
I(M1k;Zn) ≤ I(M1k;Zn,Mk) = I(M1k;Mk) = 0, which
follows by the Markov chain M1k →Mk → Zn; (b) follows
from the fact that I(M1sk;Zn|M1k) = 0 by

H(M1sk|Zn,M1k) ≥H(M1sk|Zn,M1k,Mk,Msk)
=H(M1sk|Mk,Msk)
=H(M1sk) = H(M1sk|M1k);

(c) is due to the fact that H(M1s|M1k,M1sk, Z
n) ≥

H(M1s|M1k,Mk,M1sk, Z
n) = H(M1s|Mk, Z

n), where the
last equality is because M1k,M1sk are independent of
M1s given Mk, Z

n, which is due to the Markov chain
M1s → (Zn,Mk)→ (M1k,M1sk).
To complete the proof that I(M1;Zn) ≤ nδ′(ε), we show

in the following H(M1s,M2s|Mk, Z
n) ≥ n(R1s + R2s) −

nδ′(ε) that implies H(M1s|Mk, Z
n) ≥ nR1s − nδ′(ε).

H(M1s,M2s|Mk, Z
n) (d)= H(M1s,M2s|Un, Zn)

=H(M1s,M2s, Z
n|Un)−H(Zn|Un)

=H(M1s,M2s, Z
n, V n|Un)−H(V n|Un,M1s,M2s, Z

n)
−H(Zn|Un)

=H(V n|Un) +H(Zn|Un, V n)−H(V n|Un,M1s,M2s, Z
n)

−H(Zn|Un)
(e)
≥n(Rsk +R1s +R2s +Re) + nH(Z|U, V )
− nH(Z|U)− nε

(f)=n(R1s +R2s)− nδ′(ε)

where (d) is due to the fact that Un is uniquely
determined by Mk; (e) follows from H(V n|Un) =
n(Rsk + R1s + R2s + Re) by the codebook con-
struction and the choice of V n is randomly chosen
based on Mk,Msk,M1s,M2s which are presumed to
be uniformly distributed; moreover, H(Zn|Un, V n) =∑n
i=1 H(Zi|Ui, Vi) = nH(Z|U, V ) since the channel is

discrete memoryless; and, H(V n|Un,M1s,M2s, Z
n) ≤ nε

due to Fano’s inequality by taking

Rsk +Rr ≤ I(V ;Z|U)− ε′, (8)
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Fig. 2: Gaussian BC-RSI with an external eavesdropper.

since the eavesdropper can decode V n reliably by us-
ing typical set decoding given (Un,M1s,M2s, Z

n); and
H(Zn|Un) =

∑n
i=1 H(Zi|Zi−1, Un) ≤

∑n
i=1 H(Zi|Ui) =

nH(Z|U); (f) holds by taking

Rsk +Rr ≥ I(V ;Z|U)− 2ε′ (9)

and δ′(ε) = ε+ 2ε′.
Achievable individual secrecy rate region: Recall the non-

negativity for rates, the equalities imposed by rate split-
ting, the conditions for reliable communication at both
legitimate receivers, i.e., (4)-(7), and individual-secrecy at
the eavesdropper, i.e., (8)-(9).

Eliminating Re, Rk, Rsk, R1s, R2s by applying Fourier-
Motzkin procedure [5], we get the desired region.

Remark: Interestingly, we observe that:
1) Setting Y2 = ∅, i.e., R2 = 0, the region coincides with

the secrecy capacity region of the wiretap channel [6].
2) Letting Rk = 0 (i.e., U = ∅) and Rsk = 0 and

applying Fourier-Motzkin procedure, the derived region
reduces to an achievable region under the joint-secrecy
constraint (indicated by the above secrecy proof), which
coincides with the one established in [2].

3) Letting R2s = 0 and applying Fourier-Motzkin pro-
cedure, the derived region reduces to an achievable region
which includes [3, Proposition 6].

4) Taking U = V = X, the region reduces to the one
in [3, Proposition 3], which turns out to be the capacity
region in case of a strong eavesdropper.

5) Taking U = ∅, the region reduces to the one in [4,
Lemma 2]. Further taking V = X, it reduces to the one in
[3, Proposition 5] and [4, Theorem 2], which turns out to
be the capacity region in case of a weak eavesdropper.

IV. Gaussian BC-RSI with an external
eavesdropper

In this section, we consider the discrete-time Gaussian
BC-RSI as shown in Fig. 2. SupposeX is the channel input
with a power constraint P and the signals received by both
receivers and the eavesdropper are

Y1 = X +N1;
Y2 = X +N2;
Z = X +Ne,



where N1, N2 and Ne are additive white Gaussian noise
(AWGN) independent of X. Without loss of generality,
we assume that N1 ∼ N (0, σ2

1), N2 ∼ N (0, σ2
2) and Ne ∼

N (0, σ2
e), respectively. According to the noise level in the

channels to both receives and the eavesdropper, the overall
channel can be regarded to be stochastically degraded
in different orders. For simplicity, we only consider their
corresponding physically degraded instances. The reason
is that the same analysis can be easily extended to the
stochastically degraded cases. So the following scenarios
are of our interest (w.l.o.g., we assume σ1 < σ2):
1) σ2

e ≥ σ2
2 ≥ σ2

1 , i.e., X → Y1 → Y2 → Z forms a
Markov chain,

2) σ2
2 ≥ σ2

1 ≥ σ2
e , i.e., X → Z → Y1 → Y2 forms a

Markov chain, and
3) σ2

2 ≥ σ2
e ≥ σ2

1 , i.e., X → Y1 → Z → Y2 forms a
Markov chain.

The individual secrecy capacity of the first two cases
can be derived by extending the aforementioned achiev-
ability scheme for discrete memoryless channel model to
the Gaussian scenario (and, the converse follows from [3,
Proposition 3 & Proposition 5]). For the third case, we
show in the following subsections that we can approach the
individual secrecy capacity region as P � σ2

2 or P � σ2
1 .

A. An outer bound
Proposition 2. An outer bound of the individual secrecy
capacity region for the Gaussian BC-RSI when X → Y1 →
Z → Y2 forms a Markov chain is given by the set of the
rate pairs (R1, R2) satisfying

R2 ≤C
(

(1− γα)P
γαP + σ2

2

)
;

R2 ≤ R1 ≤C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+R2,

for some α, γ ∈ [0, 1], and C(x) = 1
2 log(1 + x) is the

Gaussian capacity function.

Proof: We observe that
n

2 log 2πeσ2
e = h(Zn|Xn) = h(Zn|M1,M2, X

n)

≤ h(Zn|M1,M2) ≤ h(Zn|M2) ≤ h(Zn)
(a)
≤ n

2 log 2πe(P + σ2
e),

where (a) is due to the fact that for a random variable
with a fixed variance, Gaussian distribution maximizes the
entropy. It implies that there exist α, γ ∈ [0, 1], such that

h(Zn|M2) = n

2 log 2πe(αP + σ2
e); (10)

h(Zn|M1,M2) = n

2 log 2πe(γαP + σ2
e). (11)

In particular, we have

h(Zn|M1) = h(Zn)− I(M1;Zn)
(b)
≥ h(Zn)− nO(ε)

≥ h(Zn|M2)− nO(ε)

= n

2 log 2πe(αP + σ2
e)− nO(ε), (12)

which (b) is due to the individual secrecy constraint.
Similarly, we have
n

2 log 2πeσ2
2 = h(Y n2 |Xn) = h(Y n2 |M1,M2, X

n)

≤ h(Y n2 |M1,M2) ≤ h(Y n2 |M1) ≤ H(Y n2 )
(a)
≤ n

2 log 2πe(P + σ2
2).

There must exist a β such that

h(Y n2 |M1,M2) = n

2 log 2πe(βP + σ2
2). (13)

Therefore,

nR2 = H(M2) = H(M2|M1) (c)= I(M2;Y n2 |M1) + nO(ε)
= h(Y n2 |M1)− h(Y n2 |M1,M2) + nO(ε)
(d)
≤ n

2 log P + σ2
2

βP + σ2
2

+ nO(ε), (14)

where (c) is by Fano’s inequality and (d) is due to (13).
Recall the Markov chain (M1,M2) → Xn → Y n1 →

Zn → Y n2 . Applying the conditional entropy power in-
equality (EPI) [5, p.22], we obtain

h(Y n2 |M1,M2) ≥ n

2 log
[
2 2

nh(Zn|M1,M2) + 2πe(σ2
2 − σ2

e)
]
.

In addition to (13), we have

h(Zn|M1,M2) ≤ n

2 log 2πe(βP + σ2
e).

Comparing to (11) which gives that h(Zn|M1,M2) =
n
2 log 2πe(γαP +σ2

e), we have γα ≤ β. Further, recall (14)
and we obtain

nR2 ≤
n

2 log P + σ2
2

βP + σ2
2

+ nO(ε) ≤ n

2 log P + σ2
2

γαP + σ2
2

+ nO(ε)

= nC

(
(1− γα)P
γαP + σ2

2

)
+ nO(ε). (15)

Letting ε→ 0, we obtain the desired upper bound for R2
Now we proceed to bound R1. First we show R1 ≥ R2.

nR1 =H(M1) = H(M1|M2) ≥ I(M1;Y n1 |M2)
=I(M1;Y n1 , Zn|M2)− I(M1;Zn|M2, Y

n
1 )

(e)=I(M1;Zn|M2) + I(M1;Y n1 |M2, Z
n)

=h(Zn|M2)− h(Zn|M1,M2) + I(M1;Y n1 |M2, Z
n)

≥h(Zn|M2)− h(Zn|M1,M2)
(f)
≥h(Zn)− h(Zn|M1,M2)− nO(ε)
≥h(Zn|M1)− h(Zn|M1,M2)− nO(ε)
=I(M2;Zn|M1)− nO(ε)

(g)
≥I(M2;Y n2 |M1)− nO(ε)
=H(M2|M1)−H(M2|M1, Y

n
2 )− nO(ε)

(h)
≥nR2 − nO(ε), (16)



where (e) follows by the fact that I(M1;Zn|M2, Y
n

1 ) = 0,
which is implied by I(M1,M2;Zn|Y n1 ) = 0 due to the
channel degradedness, i.e., the Markov chain (M1,M2)→
Xn → Y n1 → Zn → Y n2 ; (f) is due to the individual
secrecy constraint; and (g) is due to the channel degrad-
edness, i.e., (M1,M2) → Xn → Y n1 → Zn → Y n2 ; (h) is
due to the Fano’s inequality. Finally, letting ε → 0, we
derive R1 ≥ R2.

On the other hand, we have

nR1 =H(M1) = H(M1|M2)
(i)
≤I(M1;Y n1 |M2) + nO(ε)
=I(M1;Y n1 , Zn|M2)− I(M1;Zn|M2, Y

n
1 ) + nO(ε)

(j)=I(M1;Zn|M2) + I(M1;Y n1 |M2, Z
n) + nO(ε)

=h(Zn|M2)− h(Zn|M1,M2)
+ I(M1;Y n1 |M2, Z

n) + nO(ε), (17)

where (i) is due to the Fano’s inequality and (j) is due to
the channel degradedness. Note that

I(M1;Y n1 |M2, Z
n)

= h(Y n1 |M2, Z
n)− h(Y n1 |M1,M2, Z

n)
≤ h(Y n1 |M2, Z

n)− h(Y n1 |M1,M2, X
n, Zn)

= h(Y n1 |M2, Z
n)− h(Y n1 |Xn, Zn)

= h(Y n1 , Zn|M2)− h(Zn|M2)− h(Y n1 |Xn, Zn)
(k)= h(Y n1 |M2) + h(Zn|Y n1 )− h(Zn|M2)
− h(Y n1 , Zn|Xn) + h(Zn|Xn)
(k)= h(Y n1 |M2) + h(Zn|Y n1 )− h(Zn|M2)
− h(Y n1 |Xn)− h(Zn|Y n1 ) + h(Zn|Xn)
= h(Y n1 |M2)− h(Zn|M2)− h(Y n1 |Xn) + h(Zn|Xn),

(18)

where (k) follows by the fact that h(Zn|M2, Y
n

1 ) =
h(Zn|Y n1 ) and h(Zn|Xn, Y n1 ) = h(Zn|Y n1 ) due to the
Markov chain (M1,M2)→ Xn → Y n1 → Zn.
Recall the Markov chain (M1,M2) → Xn → Y n1 →

Zn → Y n2 . We apply the conditional EPI [5, p.22] and
obtain

h(Zn|M2) ≥ n

2 log
[
2 n

2 h(Y n
1 |M2) + 2πe(σ2

e − σ2
1)
]
.

In addition to (10) which gives that h(Zn|M2) =
n
2 log 2πe(αP + σ2

e), we have

h(Y n1 |M2) ≤ n

2 log 2πe(αP + σ2
1). (19)

Combining (17) and (18), we have

nR1 ≤ h(Zn|M2)− h(Zn|M1,M2) + I(M1;Y n1 |M2, Z
n)

≤ h(Y n1 |M2)− h(Zn|M1,M2)− h(Y n1 |Xn)
+ h(Zn|Xn)

= h(Zn|M1)− h(Zn|M1,M2) + h(Y n1 |M2)
− h(Zn|M1)− h(Y n1 |Xn) + h(Zn|Xn)

= I(M2;Zn|M1) + h(Y n1 |M2)− h(Zn|M1)
− h(Y n1 |Xn) + h(Zn|Xn)

(l)
≤ nR2 + h(Y n1 |M2)− h(Zn|M1)− h(Y n1 |Xn) + h(Zn|Xn)
= nR2 + h(Y n1 |M2)− h(Zn|M1)− h(Nn

1 ) + h(Nn
e )

(m)
≤ nR2 + n

2 log (αP + σ2
1)σ2

e

(αP + σ2
e)σ2

1
+ nO(ε)

= nR2 + nC

(
αP

σ2
1

)
− nC

(
αP

σ2
e

)
+ nO(ε), (20)

where (l) is due to the fact that I(M2;Zn|M1) ≤ H(M2) =
nR2; and (m) is due to (12) and (19). Finally, letting ε→
0, we get the desired upper bound for R1.

Letting ε→ 0, (15), (16) and (20) together establish the
outer bound.

Remark: Interestingly, γ = 1 corresponds to the joint se-
crecy constraint, since γ = 1 implies that h(Zn|M1,M2) =
h(Zn) according to (11). However, in case of (M1,M2)→
Y n1 → Zn → Y n2 , we have, under joint secrecy constraint,
that

nR2 = H(M2) = I(M2;Y n2 |M1) ≤ I(M1,M2;Y n2 )
≤ I(M1,M2;Y n2 , Zn) = I(M1,M2;Zn) = 0.

That is, only positive R1 is possible. And, R1 ≤
C
(
P/σ2

1
)
− C

(
P/σ2

e

)
is obtained by taking α = 1 via

Wyner’s secrecy coding [7]. This is consistent with our
observation in [3, Proposition 1].

B. An inner bound
Proposition 3. An inner bound of the individual secrecy
capacity region for the Gaussian BC-RSI in case that X →
Y1 → Z → Y2 forms a Markov chain, is given by the set of
the rate pairs (R1, R2) satisfying

R2 ≤C
(

(1− γα)P
γαP + σ2

2

)
;

R2 ≤ R1 ≤C
(
γαP

σ2
1

)
− C

(
γαP

σ2
e

)
+R2,

where α, γ ∈ [0, 1].

Proof: For a fixed pair α, γ ∈ [0, 1], one can derive an
inner bound of (R1, R2) by applying superposition coding
as described in the following.

Codebook generation: Randomly and independently gen-
erate 2nR2 sequences un(k), k ∈ [1 : 2nR2 ], each i.i.d.
N (0, (1 − γα)P ); and 2n(R1−R2+Rr) sequences vn(s, r),
(s, r) ∈ [1 : 2n(R1−R2)]× [1 : 2nRr ], each i.i.d. N (0, γαP ).

Encoding: To send the message pair (m1,m2) with
m1 = (m1k,m1s), where m1k is of the same length as
m2, the encoder encapsulates m1k and m2 in mk with
mk , m1k ⊕ m2, randomly chooses r ∈ [1 : 2nRr ], and
transmits xn(m1,m2) = un(mk) + vn(m1s, r).

Decoding: Receiver 2 decodes mk from yn2 = un(mk) +
(vn(m1s, r) + nn2 ) while treating vn(m1s, r) as noise, and



further recovers m2 with his knowledge of m1. The prob-
ability of decoding error tends to zero as n→∞ if

R2 ≤ C
(

(1− γα)P
γαP + σ2

2

)
. (21)

Receiver 1 uses successive cancellation. It first decodes
mk from yn1 = un(mk) + (vn(m1s, r) + nn1 ) while treating
vn(m1s, r) as noise, and recovers part of m1, i.e., m1k,
with the knowledge ofm2. The probability of this decoding
error goes to zero as n→∞ if R2 ≤ C

(
(1−γα)P
γαP+σ2

2

)
, since it

implies that R2 ≤ C
(

(1−γα)P
γαP+σ2

1

)
by the fact that σ2

1 ≤ σ2
2 .

(This implies that R2 ≤ R1.) Then it subtracts off un(mk)
and decodes vn(m1s, r) + nn1 to recover (m1s, r) and thus
m1s, i.e., the rest of m1. The probability of this decoding
error tends to zero as n→∞ if

R1 −R2 +Rr ≤ C
(
γαP

σ2
1

)
. (22)

Secrecy: The eavesdropper could decode mk from zn =
un(mk)+(vn(m1s, r)+nne ). However, mk does not disclose
any information aboutm1s andm2, individually. Subtract-
ing off un(mk) from zn, the eavesdropper gets a better
observation vn(m1s, r) + nne , which actually does not help
to recover m1s if

Rr ≈ C
(
γαP

σ2
e

)
. (23)

In other words, the secrecy of m1s is guaranteed by the
embedded secrecy coding in the choice of vn.

As a conclusion, (R1, R2) is achievable under the in-
dividual secrecy constraints, once R1, R2, Rr satisfy (21),
(22) and (23).

Eliminating Rr, we get the desired region of (R1, R2),
which concludes our proof of achievability.

C. Individual-secrecy capacity region
Proposition 4. If σ2

2 ≥ σ2
e ≥ σ2

1, and P � σ2
e or P � σ2

1 ,
the individual secrecy capacity region for the Gaussian BC-
RSI is given as the set of (R1, R2) satisfying

R2 ≤C
(

(1− γα)P
γαP + σ2

2

)
;

R1 ≤C
(
γαP

σ2
1

)
− C

(
γαP

σ2
e

)
+R2,

where γ, α ∈ [0, 1].

Proof: Consider the gap between the inner and outer
bounds derived in previous subsections. If we take the
same choice of α, γ in both bounds, it is easy to see that
the gap occurs only in R1, which is

C

(
αP

σ2
1

)
− C

(
αP

σ2
e

)
− C

(
γαP

σ2
1

)
+ C

(
γαP

σ2
e

)
=1

2 log (αP + σ2
1)(γαP + σ2

e)
(αP + σ2

e)(γαP + σ2
1) → 0,

as P � σ2
e or P � σ2

1 , regardless of the values of α, γ.

As a conclusion, we have the following proposition.

Proposition 5. The individual secrecy capacity region for
the Gaussian BC-RSI is the set of (R1, R2) satisfying
• as σ2

e ≥ σ2
2 ≥ σ2

1 :

R1 ≤ min
{
C

(
P

σ2
1

)
− C

(
P

σ2
e

)
+R2, C

(
P

σ2
1

)}
;

R2 ≤ min
{
C

(
P

σ2
2

)
− C

(
P

σ2
e

)
+R1, C

(
P

σ2
2

)}
,

• as σ2
2 ≥ σ2

1 ≥ σ2
e :

R1 = R2 ≤ C
(
P

σ2
2

)
,

• as σ2
2 ≥ σ2

e ≥ σ2
1 , and P � σ2

e or P � σ2
1 :

R1 ≤C
(
γP

σ2
1

)
− C

(
γP

σ2
e

)
+R2;

R2 ≤C
(

(1− γ)P
γP + σ2

2

)
, where γ ∈ [0, 1].

V. Conclusion
In this paper, we studied the problem of secure com-

munication over BC-RSI under the individual secrecy
constraints. As a general result, we proposed an achievable
individual secrecy rate region by employing superposition
coding with embedded secret key and secrecy coding
approaches. In addition, we investigate the corresponding
Gaussian BC-RSI, where the capacity region is character-
ized not only for a weak or strong eavesdropper (compared
to two legitimate receivers), but also for the low and high
SNR regimes when the eavesdropper channel is stronger
than one receiver but weaker than the other.
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