
Secure Distributed Storage Systems: Local Repair
with Minimum Bandwidth Regeneration

(Invited Paper)

Ankit Singh Rawat∗, Natalia Silberstein†, O. Ozan Koyluoglu‡ and Sriram Vishwanath∗
∗Dept. of ECE, The University of Texas at Austin, Austin, TX 78712, USA, E-mail: {ankitsr, sriram}@utexas.edu
†Dept. of CS, Technion – Israel Institute of Technology, Haifa 32000, Israel, E-mail: natalys@cs.technion.ac.il
‡Dept. of ECE, The University of Arizona, Tucson, AZ 85721, USA, E-mail: ozan@email.arizona.edu

Abstract—This paper addresses the issue of securing informa-
tion stored on a distributed storage system from a passive eaves-
dropping attack. The security notion is perfect secrecy, i.e., the
system is said to be secure only if the mutual information between
the stored information and the observations at the adversary
is zero. The paper summarizes state of the art on securing
repair-efficient distributed storage systems. Then, storage systems
that employ locally repairable codes with minimum bandwidth
regenerating codes as local codes (MBR-LRCs) are investigated.
A secure file size upper bound and a construction of secure MBR-
LRCs are provided. These two are shown to match under special
cases, establishing the secrecy capacity of these systems.

I. INTRODUCTION

Designing efficient mechanisms to store large volumes of
data is an important problem as more and more information
is being generated and stored. Distributed storage system
(DSS), where data is stored on a network of storage nodes,
has emerged as the prevalent approach to address this ever
growing need for cloud storage. DSS must store data with
redundancy in order to tolerate inevitable node (disk) failures.
Erasure codes as opposed to simple replication allow for
resilience against node failures at the cost of small storage
overhead. Classical erasure codes exhibit high communica-
tion bandwidths when the content of a failed node has to
be reconstructed. Regenerating codes [1] are proposed to
have such bandwidth-efficient node repairs. Multiple alternate
classes of codes that enable efficient node repair have recently
been proposed in [1]–[10] and references therein. These codes
mainly consider repair-bandwidth [1], i.e., the amount of data
downloaded during a node repair from remaining nodes in the
system, and/or locality [6], i.e., the number of remaining nodes
contacted in the event of a node failure to perform node repair.
Another important issue that is crucial for successful imple-

mentation of a DSS is its resilience to adversarial attacks.
In these attacks, an adversary may attempt to gain access
to the valuable information stored on the system or may
want to modify the stored information in order to disrupt the
functions that utilize this stored information. In this paper,
we focus on the first kind of adversarial attacks where a
passive eavesdropper tries to obtain the stored information by
observing a certain number of nodes in the system. For this
eavesdropper model, we study the perfect secrecy capacity of
a DSS, i.e., the maximum amount of information that can

be stored on the system without leaking any information to
the eavesdropper. While addressing the secrecy capacity of a
DSS, we restrict ourselves to the coding schemes that ensure
reliability against node failures and enable efficient node
repairs as these properties are instrumental for practical storage
systems. In particular, we explore the secrecy capacity of a
DSS with minimum bandwidth regenerating locally repariable
codes (MBR-LRCs) [9], [11], where the system exhibits prop-
erties of minimum distance optimal locally repairable codes
(LRCs) [7] together with a node regeneration with minimum
repair bandwidth [1].
The rest of the paper is organized as follows. Sec. II

introduces our system model, preliminaries, and necessary
background material, where we summarize the existing lit-
erature on secrecy capacity of regenerating codes, LRCs,
and MSR-LRCs, a family of codes that combine minimum
storage regenerating (MSR) codes with LRCs to allow for
both small locality and regeneration efficiencies. In Sec. III,
we focus on secrecy capacity of MBR-LRCs [9], [11], where
the underlying codes are LRCs with minimum bandwidth
regenerating (MBR) codes as their local codes, and detail the
secrecy capacity achieving code constructions.

II. SYSTEM MODEL, PRELIMINARIES, AND BACKGROUND

A. System model

We consider a DSS that stores a file f that is M sym-
bols long (over a finite field F) on n live nodes. The file
f = (f1, . . . , fM) is first encoded into n data blocks x =
(x1,x2, . . . ,xn), each of length α over F. Each data block
is stored on a different node. During a node repair process, a
newcomer node contacts d out of the remaining n− 1 nodes
and downloads β symbols from each contacted node.

B. Regenerating codes

In [1], Dimakis et al. establish a trade-off between repair-
bandwidth dβ and per node storage α for (n, k)-DSS, where
(i) content of any k nodes are sufficient to reconstruct the orig-
inal file f ; and (ii) any d out of remaining n− 1 nodes allows
node repair. The codes that achieve this repair-bandwidth vs.
storage trade-off are termed regenerating codes; in particular,
the codes that attain two extreme points of the trade-off are



referred to as minimum storage regenerating (MSR) codes and
minimum bandwidth regenerating (MBR) codes, respectively.
Explicit constructions for regenerating codes that enable exact
repair are presented in [2], [5], [12] and references therein.

C. Locally repairable codes

An (n,M, α)Fq vector code C such that |C| = qM, is said
to be a locally repairable code and denoted by (r, δ, α)-LRC,
if every encoded block in an n-blocks long codeword c =
(c1, . . . , cn) ∈ C is α symbols long, and for each i ∈ [n], there
exists a set Γ(i) ⊆ [n] with the following three properties:
(1) i ∈ Γ(i), (2) |Γ(i)| ≤ r+δ−1, and (3) minimum Hamming
distance of C|Γ(i), the code obtained by puncturing C over
blocks in [n]\Γ(i), is at least δ.

Distinct sets in {Γ(i)}i∈[n] are called local groups. For an
(n,M, r, δ, α)-LRC C, its minimum distance satisfies [8], [9]

dmin(C) ≤ n−
⌈M
α

⌉
+ 1−

(⌈M
rα

⌉
− 1

)
(δ − 1).

Explicit constructions for minimum distance optimal scalar
LRCs, i.e., α = 1, are presented in [6], [10], [13]–[15]. In [7],
Papailiopoulos et al. design dmin-optimal vector LRCs, i.e.,
α > 1, with a single local parity, i.e., δ = 2. [8], [9] present
codes that achieve this bound for general (α, δ) and have g
disjoint local groups with {Gi}i∈[g] denoting the set of indices
of nodes in g local groups. It follows from property (3) of
an (r, δ, α)-LRC that a node can be repaired by contacting
at most d = r nodes from a local group it belongs to, with
repair-bandwidth dα (here, β = α). An LRC where sub-codes
C|Γ(i) for each i ∈ [n] are MSR codes (MBR codes) is referred
to as an MSR-LRC (MBR-LRC). For an MSR-LRC or MBR-
LRC, it possible to lower repair-bandwidth by allowing for
d > r and β < α [8], [9]. We denote such a code by an
(r, δ, α, β, d)-LRC.

D. Gabidulin codes

Gabidulin codes [16] is a family of maximum rank distance
(MRD) codes which is shown to be an important component of
construction of secure and locally repairable DSS in [8], [15].
For an [N,K,D]qm Gabidulin code with m > N , encoding
process of a message vector (f1, . . . , fK) ∈ FKqm comprises
following two steps: 1) Construct a data linearized polynomial
of the form f (y) =

∑K
i=1 fiy

qi−1

. 2) Evaluate f (y) at N
linearly independent (over Fq) points in Fqm , {y1, . . . , yN} ⊆
Fqm , to obtain a Gabidulin codeword c = (c1, . . . , cN ) =
(f (y1), . . . , f (yN )) ∈ FNqm .

Next, we state properties of linearized polynomials which
prove instrumental in their application to DSS setting.

Property 1. A linearized polynomial f (y) =
∑K
i=1 fiy

qi−1

satisfies f (ay1 +by2) = af (y1)+bf (y2), for any y1, y2 ∈ Fqm
and a, b ∈ Fq .
Property 2. Given evaluations of f (·) at any K linearly in-

dependent (over Fq) points in Fqm , say {z1, . . . , zK}, one can
recover f (·) and therefore reconstruct data vector (f1, . . . , fK)
by performing polynomial interpolation.

E. Eavesdropper model and proof of secrecy

Consider an (`1, `2) eavesdropper, which can access the
stored data of nodes in the set E1, and additionally can access
both the stored and downloaded data at the nodes in the set
E2 with `1 = |E1| and `2 = |E2|. This eavesdropper model,
defined in [17], generalizes the eavesdropper model considered
in [18]. A DSS is said to achieve a secure file size of Ms

against an (`1, `2) eavesdropper, if for any sets E1 and E2 of
size `1 and `2, respectively, we have I(fs; e) = 0. Here, fs

denotes the secure information of size Ms, and e represents
the eavesdropper’s observation vector.
The following lemma [17], [19] allows one to establish the

perfect secrecy for a given coding scheme for DSS.
Lemma 1. Consider a system with information symbols fs,
random symbols r (independent of fs), and an eavesdropper
with its observations given by e. If H(e) ≤ H(r) and
H(r|fs, e) = 0, then I(fs; e) = 0.

F. Secure regenerating codes

In [18], Pawar et al. establish the following upper bound on
the secure file size when the eavesdropper observes the content
of ` nodes.

Ms ≤
k∑

i=`+1

min{(d− i+ 1)β, α}. (1)

At MBR point when d = n− 1, [18] shows the tightness of
this bound. [17] proposes product matrix based secure coding
scheme achieving this bound for any ` < k at the MBR point
with general d. However, at the MSR point the coding scheme
proposed in [17] can only store a secure file of size (k− `1−
`2)(α − `2β). Note that the bound in (1) reduces to Ms ≤
(k − `1 − `2)α at the MSR point, which concludes that the
coding scheme from [17] characterizes secrecy capacity only
when `2 = 0. In [8], the following improved bound on secrecy
capacity at MSR point is obtained.
Theorem 1. For an (n, k)-DSS employing an MSR code, we
have

Ms ≤
k−`2∑

i=`1+1

(α− I(xi;di,k−`2+1, . . . ,di,k)) , (2)

where xi and di,j denote the data stored on node i and the
data downloaded from node i to perform node repair at node j,
respectively.

For linear exact-MSR codes with d = n− 1, a lower bound
on the mutual information terms in (2) is obtained for `2 ≤ 2
in [8]. In [20], Goparaju et al. generalize this lower bound to
`2 < k case, resulting in the following bound.
Corollary 1. For a linear (n, k) exact-MSR code with d = n−
1, secrecy capacity against an (`1, `2)-eavesdropper satisfies

Ms ≤ (k − `1 − `2)

(
1− 1

n− k

)`2
α. (3)

In [8], we present a secure coding scheme at the MSR point.



This construction first precodes the secure file and random
symbols using a Gabidulin code (similar to the classical secret
sharing scheme [21]) and then encodes the resulting symbols
with zigzag codes [5] (an MSR code). This scheme achieves
the secure file size in the right hand side of (3) for any `1 and
`2 when E2 ∩ [k] ≥ (`2 − 1). The characterization of secrecy
capacity in general remains open.

G. Secure locally repairable codes

For LRCs with a single local parity per local group, i.e.,
δ = 2, to perform node repair a newcomer node downloads
all the data stored on r surviving nodes from its own local
group. Therefore, all the information in the group is revealed
to an eavesdropper that observes the data downloaded during a
single node repair. In [8], we characterize the secrecy capacity
for dmin-optimal LRCs with single parity per local group:
Theorem 2. The secrecy capacity of an (r, δ = 2, α, β =
α, d = r)-LRC against an (`1, `2)-eavesdropper is

Ms = [µr + h− (`2r + `1)]
+
α, (4)

where [a]+ denotes max{a, 0}, and µ ≥ 0 and 0 ≤ h ≤ r are
positive integers such that n− dmin + 1 = µ(r + 1) + h.

For LRCs with multiple parities per local group, i.e., δ > 2,
the secrecy capacity depends on the node repair model em-
ployed by the system. For naı̈ve repair model, i.e., when a
newcomer contacts r out of r+δ−2 surviving nodes in its local
group and downloads all the data stored on these r nodes, we
get the same characterization of secrecy capacity as presented
in Theorem 2 with µ ≥ 0 and 0 ≤ h < r+δ−1 denoting two
positive integers such that n− dmin + 1 = µ(r + δ − 1) + h.

On the other hand, if regenerating codes are employed as
local codes per group (when δ > 2), and repair-bandwidth
efficient node repairs are performed, then one can improve the
secrecy capacity of DSS against eavesdropping attacks. In [8],
we consider MSR-LRCs that have MSR codes as their local
codes. In particular, for a special set of parameters, secrecy
capacity is characterized as follows [8].
Theorem 3. For an (r, δ > 2, α, β, d)-MSR-LRC, the secrecy
capacity against an (`1, `2)-eavesdropper with `2r + `1 ≤
µr + min{h, r} is given by

Ms = (µr + min{h, r} − `2 − `1)α− `2(r − 1)β. (5)

An achievability scheme for MSR-LRC was presented in [8].
This scheme, based on Gabidulin codes, generalizes the con-
struction for secure MSR codes. Moreover, [8] presents a
general bound on Ms for all (`1, `2) with `1 + `2 < k.
However, there is a gap between the bound and secure file size
of the scheme in [8] for `1 and `2 not covered by Theorem 3.

III. SECRECY IN DSS EMPLOYING MBR-LRCS

In this section, we consider secure MBR-LRCs. Recall that
MBR-LRCs is a family of (r, δ, α, β, d)-LRCs where each
local code, i.e., sub-code obtained by puncturing the code
outside a local group, is an MBR code. The concept of MBR-
LRCs is first introduced in [9]. For an MBR-LRC, we have

the following upper bound on its minimum distance [9].

dmin ≤ n− P (inv)(M) + 1, (6)

where the function P (inv)(·) is defined as

P (inv)(v1Mloc + v0) = v1(r + δ − 1) + ν (7)

for some v1 ≥ 0, 1 ≤ v0 ≤ Mloc, where ν is uniquely
determined from α(ν − 1) −

(
ν−1

2

)
β < v0 ≤ αν −

(
ν
2

)
β and

Mloc = rα −
(
r
2

)
β. We refer the reader to [9] for a detailed

introduction to MBR-LRCs. In [11], Kamath et al. present
the first explicit construction of distance optimal MBR-LRCs
(w.r.t. (6)) for a wide range of system parameters.
In what follows, we assume for simplicity that (r+ δ−1)|n.

Note that the distance optimal MBR-LRCs necessarily have
disjoint local groups [9] and that, for MBR-LRCs, the amount
of data downloaded during a node repair is exactly equal to
what is eventually stored on the newcomer; as a result, without
of loss of generality, we can assume that `1 > 0 and `2 = 0.
Assuming that an MBR-LRC has g disjoint local groups, we
denote an (`1, 0)-eavesdropper with E1 = ∪gi=1E i1, where E i1
represents the sets of indices of eavesdropped nodes in i-th
local group. Let |E i1| = li1, which implies that `1 =

∑g
i=1 l

i
1.

A data collector contacts to nodes in the set K = ∪gi=1Ki with
|K| ≤ n−dmin+1 to reconstruct the file. Here, Ki denotes the
set of indices of nodes that the data collector contacts in i-th
local group. The following lemma provides an upper bound
on the secrecy capacity of an (r, δ, α, d, β)-LRC with g local
groups [8].
Lemma 2. For a DSS employing an (r, δ, α, β, d)-LRC that
is secure against an (`1, `2)-eavesdropper, we have

Ms ≤
g∑

i=1

H(xKi |xEi1) for all
(
{E i1,Ki}gi=1

)
∈ X , (8)

where X denotes the set of tuples ({E i1,Ki}gi=1) that are
allowed under our model.

Next, we utilize Lemma 2 to obtain an explicit upper
bound on the secrecy capacity for MBR-LRCs. Let vector
l1 = (l11, . . . , l

g
1) denote a pattern of eavesdropped nodes. We

assume that µ and h are integers such that n − dmin + 1 =
µ(r+δ−1)+h, where µ ≥ 0 and 0 ≤ h < r+δ−1. We define
h̃ = min{r, h} and assume l1 < µr+ h̃ (otherwise the secrecy
capacity is necessarily zero as implied by the following).
Theorem 4. For an (r, δ > 2, α, β, d)-MBR-LRC, the secrecy
capacity against an (`1, 0)-eavesdropper satisfies

Ms ≤ ρ
r−1∑

i=ξ+1

(d− i)β + (µ− ρ)

r−1∑

i=ξ

(d− i)β +

h̃−1∑

i=ν

(d− i)β,

where (ξ, ρ, ν) is a tuple of positive integers such that ξ < r,
ρ ≤ µ, ν ≤ min{h, ξ}, and `1 = ξµ+ ρ+ ν.

Proof. For an MBR-LRC, we have

H(xKi
|xEi1) ≤

min{|Ki|,r}−1∑

j=li1

(d− j)β. (9)
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Fig. 1: Description of construction for secure MBR-LRC.

Now, we consider the data collector defined by K1 =
G1,K2 = G2, . . . ,Kµ = Gµ; Kµ+2 = · · · = Kg = ∅; and
Kµ+1 ⊂ Gµ+1 such that |Kµ+1| = h; and an eavesdropper
with eavesdropping pattern l1 so that l11 = · · · = lρ1 =
ξ + 1; lρ+1

1 = · · · = lµ1 = ξ; lµ+2
1 = · · · = lg1 = 0;

and lµ+1
1 = ν. By using Lemma 2 and (9), we obtain the

upper bound.

Next, we present an achievability scheme for secure MBR-
LRCs. (See Fig. 1.)
Construction I: Assume that n = g(r + δ − 1) and `1 =
ag + b, for a ≥ 0 and g > b ≥ 0. Let r be a random vector
which contains

κ(`1) = g

a−1∑

i=0

(d− i)β + (`1 − ga) (d− a)β

i.i.d. random symbols distributed uniformly in Fqm . As-
sume further κ(`1) ≤ M = µMloc + h̃α −

(
h̃
2

)
β. Given

fs = (fs1 , . . . , f
s
Ms), a file containing Ms = M − κ(`1)

symbols from Fqm , define f = (r, fs) = (f1 = r1, f2 =
r2, . . . , fM−Ms = rM−Ms , fM−Ms+1 = fs1 , . . . , fM =
fsMs). Then, encode M symbols long f using the two stage
encoding process for MBR-LRCs presented in [11]:
Step 1: Encode f to a codeword of an [N = gMloc,K =
M, D = gMloc −M + 1] Gabidulin code over Fqm . (See
Section II-D for encoding process of a Gabidulin code.)
Step 2: Partition gMloc symbols of the Gabidulin codeword

into g disjoint groups of sizeMloc each. Then, apply an (r+
δ− 1, r) MBR code (over Fq) with file size Mloc inside each
local group.
In the following, we show the security of this scheme and a

special case result.
Proposition 1. An MBR-LRC C obtained from Construction I
achieves security against an (`1, 0)-eavesdropper. Moreover,
C attains the upper bound of Theorem 4 if µ + 1 = g or
`1 ≤ µ+ min{h, 1}.

Proof. In order to establish the claim in the proposition,
we need to show that I(e; f) = 0, where e denotes the
observations of any (`1, 0)-eavesdropper. We apply Lemma 1
for this. It follows from the rank accumulation profile [9]
of local MBR codes that H(e) ≤ κ(`1) = H(r). Then, it

remains to show H(r|fs, e) = 0 holds as well, i.e., the second
requirement in Lemma 1. For this, we outline a decoding
mechanism for random symbols r given fs and e. Consider
that the eavesdropper observes maximum possible number of
independent symbols, i.e., |e| = κ(`1). Since (r + δ − 1, r)
MBR codes utilized in the second step of encoding process of
MBR-LRC from [11] have their encoding coefficients over Fq ,
it follows from Property 1 of linearized polynomials that all
encoded symbols and therefore, symbols in e are evaluations
of data polynomial f (·). From these, we can remove the
contribution of fs to obtain ẽ, which are evaluations of f̃ (y) =∑κ(`1)
i=1 riy

qi−1

at κ(`1) linearly independent (over Fq) points.
Now it follows from Property 2 of linearized polynomials
that these evaluations, i.e., ẽ, are sufficient to recover f̃ (·)
by performing polynomial interpolation. Therefore, one can
obtain r given fs and e.
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