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Abstract— This paper studies the K-user Gaussian interference
channel with secrecy constraints. Two distinct network models,
namely the interference channel with confidential messages and
the one with an external eavesdropper, are analyzed. Using
interference alignment along with secrecy pre-coding at each
transmitter, it is shown that each user in the network can
achieve non-zero secure Degrees of Freedoms (DoFs) in both
scenarios. In particular, the proposed coding scheme achieves
K−2
2K−2

secure DoFs for each user in the interference channel
with confidential messages model, and K−2

2K
secure DoFs in the

case of an external eavesdropper. The fundamental difference
between the two scenarios stems from the lack of channel state
information (CSI) about the external eavesdropper. Remarkably,
the results establish the positive impact of interference on the
secrecy capacity of wireless networks.

I. INTRODUCTION

Recently, there has been a growing interest in the design
and analysis of secure wireless networks based on information
theoretic principles. For example, the secrecy capacity of
networks involving relay nodes is studied in [1], [2], while
the secrecy capacity of the wiretap channel with feedback is
studied by [3]. On the other hand, multiple access channels
with secrecy constraints were analyzed in [4], [5] and the
broadcast channel model was investigated in [6]. Finally, the
positive impact of multiple antennas and multi-path fading was
established in [7], [8], [9], [10].

In this work, we consider the K-user Gaussian interference
channel with secrecy constraints under a frequency-selective
fading model. Without the secrecy constraints, it has been re-
cently shown that a 1

2 degrees of freedom (DoF) per orthogonal
dimension is achievable for each source-destination pair in this
network [11]. The achievability of this result was based on the
interference alignment idea, by which the interfering signals
are aligned to occupy a subspace orthogonal to the intended
signals at each receiver. However, the impact of secrecy
constraints on the degrees of freedom in this model has not yet
been characterized. In fact, the only relevant work, which we
are aware of, is the study of the two-user discrete memoryless
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interference channels with confidential messages [12], [13],
[14] (our frequency selective model is fundamentally different
from this discrete memoryless scenario).

In this work, we consider two distinct models. In the first
scenario, one needs to ensure the confidentiality of each mes-
sage from all non-intended receivers in the network. Towards
this goal, we employ an interference alignment scheme along
with secrecy pre-coding at each transmitter. The interference
alignment scheme allows for aligning the non-intended signals,
which are to be secured, at each receiver in the network. Then,
the secrecy pre-coding ensures that the resulting multiple
access channel (from the K − 1 interfering users) does not
reveal any information about each non-intended message. This
way, we show that 1

4 secure DoF per orthogonal dimension is
achievable for each user in the three-user Gaussian interference
channel with confidential messages. We then generalize our
results to the K-user Gaussian interference channel showing
that K−2

2K−2 secure DoFs are achievable for each user. In the
second scenario, we study the external eavesdropper model in
which the network users need only to secure their messages
from the external eavesdropper. Here, the fundamental chal-
lenge is the lack of channel state information (CSI) about the
external eavesdropper fading coefficients. Despite this fact, it is
shown that 1/2−1/K DoFs is achievable in an ergodic setting.
This result provides evidence on the diminishing gain resulting
from knowing the instantaneous CSI of the eavesdropper a-
priori. Interestingly, comparing our results with those obtained
for point-to-point case [9], [10] reveals the positive impact of
interference on the secrecy capacity of the network. The basic
idea is that the coordination between several source-destination
pairs allows for hiding the information in the background
interference. Finally, we note that this paper only contains
a sketch of one proof summarizing the main idea underlying
our results. Interested readers can refer to the journal version
of the paper for the detailed proofs.

II. SYSTEM MODEL

A. K-User Gaussian Interference Channel with Confidential
Messages

We consider a K-user Gaussian interference network, com-
prised of K transmitter-receiver pairs, with confidential mes-



sages. We represent the channel output at the ith receiver as
follows:

Yi(f, t) =
K∑

k=1

hik(f)Xk(f, t) + Zi(f, t), (1)

where f ∈ {1, · · · , F} denotes the frequency slot index,
t ∈ {1, · · · , n} denotes the time slot index, Xk(f, t) is the
transmitted symbol of user k at frequency slot f during time t,
and Zi(f, t) ∼ N (0, 1) is the Gaussian noise at receiver i. We
assume that the channel coefficients are randomly generated
according to a continuous distribution and are fixed during
the communication period. We also assume that the channel
coefficients are known at every node in the network. 1

Using the extended channel notation similar to [11], we
write the received vector at receiver i during time t as follows:

Ȳi(t) =
K∑

k=1

Hi,kX̄k(t) + Z̄i(t), (2)

where Ȳi(t) = [Yi(1, t) · · ·Yi(F, t)]T is the F × 1 column
vector of received signal at user i in time t, Z̄i(t) =
[Zi(1, t) · · ·Zi(F, t)]T is the F × 1 column vector of receiver
noise at user i, Hi,k is the F ×F diagonal matrix of channel
coefficients from transmitter k to receiver i, and X̄k(t) is the
F × 1 column vector of transmitted symbols of user k, for
some i, k ∈ K.

We assume that each transmitter k ∈ K has a secret message
Wk which is to be secured from the remaining K−1 receivers
while it can be decoded at the intended receiver k with
vanishingly small error probability. Considering F frequency
channels, which resembles parallel interference channels, our
(n, F, M1, · · · ,MK) secret codebook has the following com-
ponents:

1) The secret message sets Wk = {1, · · · ,Mk} for trans-
mitters k ∈ K.

2) Encoding functions fk(.) at transmitters k ∈ K, which
map the secret messages to the transmitted symbols, fk :
wk → (X̄k(1), · · · , X̄k(n)) for each wk ∈ Wk. At encoder
k, each codeword is designed according to the transmitter’s
average long-term power constraint P , i.e.,

1
nF

F∑

f=1

n∑
t=1

(Xk(t, f))2 ≤ P, k ∈ K.

3) Decoding functions φk(.) at receivers k ∈ K which map
the received symbols to estimates of the messages: φk(Yk) =
Ŵk, k ∈ K, where Yk = {Ȳk(1), · · · , Ȳk(n)}.

Reliability of the transmission of user k is measured by
Pe,k, where

Pe,k =
1

Mk

∑

wk∈Wk

Pr {φk(Yk) 6= wk|wk is sent} .

1We have the following notation in this work. Matrices are represented with
bold capital letters (X) and vectors are denoted as bold capital letters with
bars or tildes (for example, X̄ and X̃). We define K , {1, · · · , K} and
denote XS , {Xk|k ∈ S} for some S ⊂ K. Also, o(log(ρ)) means that
lim

ρ→∞
o(log(ρ))
log(ρ)

= 0.

We use equivocation rate to measure the security level. More
specially, for receiver i, the equivocation rates for each S ⊂
K − i is defined as

1
nF

H (WS |Yi) ,

where WS is the set of secret messages of the users in the set
S.

We say that the rate tuple (R1, · · · , RK) is achievable if, for
any given ε > 0, there exists an (n, F, M1, · · · ,MK) secret
codebook such that,

1
nF

log2 Mk ≥ Rk − ε, ∀k ∈ K,

max{Pe,1, · · · , Pe,K} ≤ ε, (3)

and
∑

k∈S
Rk − 1

nF
H (WS |Yi) ≤ ε, ∀i ∈ K, ∀S ⊂ K − i.

We also say that the secure degrees of freedom (per orthog-
onal frequency-time slot) tuple (η1, · · · , ηK) is achievable, if
the rate tuple (R1, · · · , RK) is achievable and

ηk = lim
ρk→∞

Rk
1
2 log(ρk)

for k ∈ K, in which ρk denotes the SNR at receiver k. As the
receivers have unit-variance noises we will have ρk = P in
the sequel.

B. K-User Gaussian Interference Channel with an External
Eavesdropper

In this model, we assume the existence of an external eaves-
dropper in the K-user interference network. The eavesdropper,
through a Multiple Access Channel (MAC) from the legitimate
users, has the following received signal

Ye(f, t) =
K∑

k=1

hek(f)Xk(f, t) + Ze(f, t), (4)

at frequency slot f and time slot t. The signal received at each
receiver is the same as (1). We assume that hik(f) is known at
all the nodes in the network, including the eavesdropper. On
the other hand, we consider two different scenarios regarding
to hek(f). In the first scenario, we assume that hek(f) is
known at all the nodes. In the second scenario, we assume
that hek(f) is only known at the eavesdropper. Hence, in
this more interesting scenario, the sources and receivers do
not have channel state information of the eavesdropper. The
components of the secret codebook of each transmitter in the
network can be represented as stated above. However, in this
network model, each transmitter must secure its own message
only from the external eavesdropper. Accordingly, we modify
the secrecy requirement by considering the equivocation rate
seen by the eavesdropper. We denote the observation at the
eavesdropper as Ye = {Ȳe(1), · · · , Ȳe(n)}, in which Ȳe(t)



is defined similarly as Ȳi(t) for t = 1, · · · , n; and we
represent the equivocation rate for a subset of users S ⊂ K as

1
nF

H (WS |Ye) .

We say that the rate tuple (R1, · · · , RK) is achievable, if,
for any given ε > 0, there exits an (n, F,M1, · · · ,MK) secret
codebook such that

1
nF

log2 Mk ≥ Rk − ε, ∀k ∈ K,

max{Pe,1, · · · , Pe,K} ≤ ε, (5)

and
∑

k∈S
Rk − 1

nF
H (WS |Ye) ≤ ε, ∀S ⊂ K.

We also define the achievable secure DoF tuple for the users
in this network model as was done in the previous section.

III. THE K-USER GAUSSIAN INTERFERENCE CHANNEL
WITH CONFIDENTIAL MESSAGES

Considering receiver i ∈ K of the interference network with
confidential messages and denoting its received observation as
Yi, the following lemma relates the equivocation rate for the
full message-set with the secrecy notion given in (3).

Lemma 1: For a given ε > 0, consider receiver i ∈ K. If
∑

k∈K−i

Rk − 1
nF

H (WK−i|Yi) ≤ ε,

then
∑

k∈S
Rk − 1

nF
H (WS |Yi) ≤ ε, ∀S ⊂ K − i.

Due to this observation, it is sufficient to consider the
closeness of the equivocation rate of the full message set, i.e.,
1

nF H (WK−i|Yi), to the sum of the message rates in the set
K − i for each i ∈ K to satisfy the secrecy constraints given
in (3).

Considering the three-user interference channel, we let F =
2m+1 for some m ∈ N. This is the (2m+1) symbol extension
of the channel considered in [11]. We now employ interference
alignment precoding using the matrices V̄k of [11], so that
the transmitted signals are of the form X̄k(t) = V̄kX̃k(t),
where X̃k(t) represents the (m + 1)× 1 vector of transmitted
streams from user 1 and m× 1 vectors of transmitted streams
from users 2 and 3. Here, the beamforming vectors of user
k, i.e., V̄k, is constructed according to the channel gains
of the network users and are used for the transmission of
the independently coded streams at each user, i.e., X̃k(t).
Denoting the number of streams at each user as mk (the
length of the vector X̃k(t)), these beamforming vectors (V̄ks)
can be constructed to satisfy two properties: 1) The non-
intended signals seen by each receiver (interfering signals that
are transmitted by the remaining users) are aligned within
some received signal subspace of that receiver. More precisely,
column spaces of matrices Hi,kV̄k for k ∈ K − i lie in a
subspace of dimension F − mi at the receiver i. 2) Desired

streams of a receiver spans a subspace orthogonal to the
one spanned by the interfering signals at that receiver. In
other words, the columns of Hi,iV̄i are independent and are
orthogonal to that of Hi,kV̄k for each user k ∈ K − i. This
way, F dimensional received signal space at each receiver is
used to create mi interference free dimensions, spanned by the
desired streams. Also, with an employment of the interference
alignment scheme, it is possible to align the non-intended
signals at each receiver. Hence, there exist two orthogonal
subspaces at each receiver, one consisting of intended streams
and the other consisting of the interfering signals transmitted
by the remaining users.

Now, considering receiver 1 as the eavesdropper for the
messages of users 2 and 3, we have the following MAC
seen by the eavesdropper. Transmitter 2 has m streams X̃2(t);
transmitter 3 has m streams X̃3(t). Now, due to interference
alignment, these streams span low dimensional received signal
space of receiver 1, while they seen as independent streams
to receivers 2 and 3, respectively. Here, receivers 2 and 3
can decode their desired streams through zero-forcing their
received signals, i.e., by multiplying Ȳi(t) with (Hi,iV̄i)H

to obtain the interference free desired streams. At this point,
we design the transmitted streams X̃2(t) and X̃3(t) according
to the MAC seen by the eavesdropping receiver 1 to satisfy
the secrecy requirement. Following a similar analysis for each
receiver, we satisfy the secrecy requirements of the network
and have the following result.

Theorem 2: For the three-user Gaussian interference chan-
nel with confidential messages, a secure DoF of ηk = 1

4 per
frequency-time slot for each user k ∈ {1, 2, 3} is achievable
almost surely.

Proof: Sketch of the proof is given in Section VI.A.
Considering the general K-user interference channel, and

following an analysis similar to the one given in Section VI.A,
we obtain the following result.

Theorem 3: For the K-user Gaussian interference channel
with confidential messages, a secure DoF of ηk = K−2

2K−2 per
frequency-time slot for each user k ∈ K is achievable almost
surely.

IV. THE K-USER GAUSSIAN INTERFERENCE CHANNEL
WITH AN EXTERNAL EAVESDROPPER

In this section, we consider the external eavesdropper case.
First, it is easy to see that when the eavesdropper CSI is
available a-priori at the different transmitter and receivers,
then our results in the previous section extend naturally. Intu-
itively, one can imagine the existence of a virtual transmitter
associated with the external eavesdropper transforming our K-
user network into another one with K + 1-users. This way,
one can achieve a secure DoF of ηk = (K+1)−2

2(K+1)−2 = K−1
2K

per frequency-time slot for each user using the scheme of the
previous section. In particular, for a two-user network with an
external eavesdropper, it is possible to achieve 1

4 secure DoFs
if the eavesdropper CSI is available at the transmitters. More
formally, we have the following result.



Corollary 4: For the K-user Gaussian interference channel
with an external eavesdropper, a secure DoF of ηk = K−1

2K per
frequency-time slot for each user k ∈ K is achievable almost
surely (assuming the availability of the eavesdropper CSI).

More interestingly, it is still possible to achieve positive
secure DoF per user even without the eavesdropper CSI in an
ergodic setting. To illustrate the idea, let’s consider the K = 3
case. Here, the users of the network has 3m+1

2m+1 total DoF while
the MAC seen by the eavesdropper can only have 2m+1

2m+1 DoF
from its observations. Hence, via the appropriate choice of
secrecy codebooks, the m

2m+1 additional DoF can be evenly
distributed among the network users on the average, allowing
for a 1

6 secure DoF per user without any requirement on the
eavesdropper CSI. In the general case, we have the following
result (the detailed proof will be reported in the journal paper).

Proposition 5: For the K-user Gaussian interference chan-
nel with an external eavesdropper, a secure DoF of ηk = 1

2− 1
K

per frequency-time slot for each user k ∈ K is achievable in
the ergodic setting (in the absence of the eavesdropper CSI).

Remarkable, a point-to-point channel with an external
eavesdropper was shown to have zero DoF [10]. In our
case, as we add more user pairs to the network, each user-
pair is able to achieve non-zero DoF for K ≥ 2. This
seemingly surprising result is due to interference alignment
which allows the transmitters to pack their information in low
dimensionality subspace (as seen by the eavesdropper), and
hence, impairing the ability of the eavesdropper to distinguish
any of the transmitted messages efficiently.

V. CONCLUSIONS

In this work, we have obtained achievability results for the
secure DoFs in the K-user Gaussian interference channel with
frequency/time selectivity. By using the interference alignment
scheme with secrecy pre-coding at each transmitter, we have
shown that each user in the network can achieve non-zero se-
cure DoFs under the confidential message and external eaves-
dropper models. The most interesting aspect of our results is,
perhaps, the discovery of the role of interference in increasing
the secrecy capacity of multi-user wireless networks.

VI. APPENDIX

A. Sketch of the Proof of Theorem 2

Here Rk is chosen such that

lim
ρk→∞

Rk
1
2 log(ρk)

=
1
4
,

so that ηk = 1
4 is the achievable DoF at user k = 1, 2, 3 for

sufficiently high n and F .
We fix an m ∈ N and let m1 = m + 1 and mk = m,

∀k 6= 1 to analyze coding over F = 2m + 1 frequency slots.

We generate, for each user k, 2nmk

“
F

mk
(Rk+Rx

k)
”

codewords
each of length nmk, where the entries are independent and
identically distributed (i.i.d.) ∼ N (0, P−ε

ck
). These codewords

are then randomly partitioned into Mk = 2nFRk message bins,
each of consisting of Mx

k = 2nFRx
k codewords. Hence, for

user k, the secrecy codebook we will use is of dimension
Mk ×Mx

k , and an entry of the codebook will be represented
by X̂k(wk, wx

k), where the bin index wk ∈ Wk is called as the
secrecy message and the codeword index wx

k ∈ {1, · · · ,Mx
k }

is called as the randomization message. We remark that the
secure transmission rate per orthogonal time and frequency
slot is Rk with this scheme.

Now, to send a message wk, the transmitter k looks into
the bin wk ∈ Wk and randomly selects a codeword in
this bin, denoted by the index wx

k , according to uniform
distribution. It thus obtains X̂k(wk, wx

k) of size mk × n. We
further denote the elements of this matrix as X̂k(wk, wx

k) =
[X̃k(1), · · · , X̃k(n)], where each element is an mk×1 vector.
Here, for each symbol time t ∈ {1, · · · , n}, transmitter k
employs the interference alignment scheme, and maps X̃k(t)
to X̄k(t) via X̄k(t) = V̄kX̃k(t). At this point, we remark
that ck is chosen to satisfy the power constraint for each user:
ck = tr(V̄kV̄H

k )
F . So that, the power of the transmitted signal

satisfies the long term power constraint for each user. Here, we
choose the interference alignment vectors V̄k as given in [11].

Now, to satisfy the achievability requirements for every
eavesdropper i ∈ K, we choose the secrecy and randomization
rates as below.

Rk =
1
F

min
i∈K

{
I(X̃i(t); Ȳi(t))

}

− 1
(K − 1)F

max
i∈K

{
I(X̃K−i(t); Ȳi(t)

}
(6)

Rx
k =

1
F

min
i∈K,S⊂K−i

{
1
|S|I(X̃S(t); Ȳi(t)|X̃K−S−i(t))

}

Here, we note that, in the high SNR regime, as the channel
matrices are of full rank with probability one, we have

I(X̃i(t); Ȳi(t)) =
mi

2
log(P ) + o(log(P )),

I(X̃K−i(t); Ȳi(t)) =
F −mi

2
log(P ) + o(log(P )),

and

I(X̃S(t); Ȳi(t)|X̃K−S−i(t)) =
r

2
log(P ) + o(log(P )),

where r = m or r = m + 1 depending on i and S .
Hence the equations above become

Rk =
m− 1
8m + 4

log(P ) + o(log(P )),

and
Rx

k =
m

8m + 4
log(P ) + o(log(P )),

respectively as ρk = P →∞.
We note that, with the employment of the interference

alignment scheme, it is possible to have mi interference free
desired streams at each receiver i. At this point, as the above
rates are inside the capacity region for each user, Ri + Rx

i ≤
1
F I(X̃i(t); Ȳi(t)), ∀i ∈ K, each user can decode its own



streams. Hence, for a given ε there exists n(ε) such that for
n > n(ε), we have max{Pe,1, · · · , Pe,K} ≤ ε.

Now, it remains to be shown that we can satisfy the secrecy
requirements of the network given in (3) in the high SNR
regime. Here, denoting the observation of the eavesdropper as
Yi, we write the following.

H(WK−i|Yi) = H(WK−i,Yi)−H(Yi)
= H(WK−i,W

x
K−i,Yi)−H(W x

K−i|WK−i,Yi)−H(Yi)
= H(WK−i) + H(W x

K−i|WK−i) + H(Yi|WK−i,W
x
K−i)

−H(W x
K−i|WK−i,Yi)−H(Yi)

= H(WK−i) + H(W x
K−i)− I(WK−i,W

x
K−i;Yi)

−H(W x
K−i|WK−i,Yi), (7)

where the last equality follows from the fact that
H(W x

K−i|WK−i) = H(W x
K−i) as the randomization (i.e.,

codeword) indices are independent of the message (i.e., bin)
indices.

We now bound each term of (7). Firstly, we have

I(WK−i,W
x
K−i;Yi) ≤ I(X̃K−i(1), · · · , X̃K−i(n);Yi)

due to the Markov chain

{WK−i, W
x
K−i} → {X̃K−i(1), · · · , X̃K−i(n)} → Yi.

Combining with the fact that

I(X̃K−i(1), · · · , X̃K−i(n);Yi) ≤ nI(X̃K−i(t); Ȳi(t))+nδ(1)
n

we have

I(WK−i,W
x
K−i;Yi) ≤ nI(X̃K−i(t); Ȳi(t)) + nδ(1)

n , (8)

where δ
(1)
n → 0 as n →∞.

Secondly, we have

H(W x
K−i) = log


∏

k 6=i

Mx
k


 = nF

∑

k∈K−i

Rx
k

= nI(X̃K−1(t); Ȳ1(t)). (9)

Finally, we can bound

H(W x
K−i|WK−i,Yi) ≤ nδ(2)

n , (10)

where δ
(2)
n → 0 as n → ∞. Roughly speaking, this is due

to the fact that the eavesdropper can decode randomization
messages given the secret messages WK−i and the observation
Yi with the Fano’s inequality.

Plugging the bounds (8), (9), and (10) to (7) and dividing
both sides of by nF , we have

1
nF

(H(WK−i)−H(WK−i|Yi)) ≤ δP,i + δ
(1)
n + δ

(2)
n

F
, (11)

where

δP,i , I(X̃K−i(t); Ȳi(t))− I(X̃K−1(t); Ȳ1(t)) ≥ 0, (12)

for i = 1, 2, 3.
Here, as n →∞ and m →∞, we can make δP,i+δ(1)

n +δ(2)
n

F
arbitrarily small. Hence, utilizing Lemma 1, we have readily
satisfied

∑

k∈S
Rk − 1

nF
H (WS |Yi) ≤ ε, ∀i ∈ K, ∀S ⊂ K − i. (13)

To summarize, given an ε > 0, there exist n0 and m0 such
that, for any n > n0 and m > m0 we satisfy the achievability
requirements given in (3) for a given P . As P →∞, by taking
m → ∞ appropriately, we have Rk = 1

8 log(P ) + o(log(P ))
for k = 1, 2, 3. Hence, each user in the three-user interference
network is able to achieve 1

4 secure DoF per orthogonal
frequency and time dimension.

REFERENCES

[1] Y. Oohama, “Coding for relay channels with confidential messages,” in
Proc. IEEE Information Theory Workshop (ITW’01), Cairns, Australia,
pp.87-89, Sept. 2001.

[2] L. Lai and H. El Gamal, “The relay-eavesdropper channel: Cooperation
for secrecy,” IEEE Trans. Inform. Theory, 2006, submitted.

[3] L. Lai, H. El Gamal, and H. V. Poor, “The wiretap channel with
feedback: Encryption over the channel,” IEEE Trans. Inform. Theory,
Apr. 2007, submitted.

[4] E. Tekin and A. Yener, “The general Gaussian multiple access and two-
way wiretap channels: Achievable rates and cooperative jamming,” IEEE
Trans. Inform. Theory, 2008, to appear.

[5] Y. Liang and H. V. Poor, “Multiple access channels with confidential
messages,” IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 976-1002,
March 2008.

[6] A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure broadcasting,”
IEEE Trans. Inform. Theory, 2007, submitted.

[7] A. Khisti and G. Wornell, “The MIMOME channel,” in Proceedings of
the 45th Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, 2007.

[8] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap
channel,” IEEE Trans. Inform. Theory, 2007, submitted.

[9] Y. Liang, H. V. Poor, and S. Shamai (Shitz), “Secure communication
over fading channels,” IEEE Trans. Inform. Theory, vol. 54, no. 6, June
2008.

[10] P. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading
channels,” IEEE Trans. Inform. Theory, 2006, submitted.

[11] V. R. Cadambe and S. A. Jafar, “Interference alignment and spatial
degrees of freedom for the k user interference channel,” IEEE Trans.
Inform. Theory, 2007, submitted.

[12] R. Liu, I. Maric, P. Spasojevic, and R. Yates, “Discrete memoryless
interference and broadcast channels with confidential messages,” in
Proc. 44th Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, Sept. 2006.

[13] ——, “Discrete memoryless interference and broadcast channels with
confidential messages:secrecy rate regions,” IEEE Trans. Inform. Theory,
2007, submitted.

[14] Y. Liang, A. Somekh-Baruch, H. V. Poor, S. Shamai, and S. Verdu,
“Cognitive interference channels with confidential messages,” in Pro-
ceedings of the 45th Annual Allerton Conference on Communication,
Control and Computing, Monticello, IL, September 26-28, 2007.


