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Abstract—In this paper, the delay limited secrecy capacity of
the flat fading channel is investigated under two different as-
sumptions on the available transmitter channel state information
(CSI). The first scenario assumes perfect prior knowledge of
both the main and eavesdropper channel gains. Here, upper and
lower bounds on the secure delay limited capacity are derived
and shown to be tight in the high signal-to-noise ratio (SNR)
regime (for a wide class of channel distributions). In the second
scenario, only the main channel CSI is assumed to be available at
the transmitter. Remarkably, under this assumption, we establish
the achievability of non-zero secure rate (for a wide class of
channel distributions) under a strict delay constraint. In the two
cases, our achievability arguments are based on a novel two-
stage approach that overcomes the secrecy outage phenomenon
observed in earlier works.

I. INTRODUCTION

In many applications, there is a delay constraint on the

data to be transmitted via a wireless link. These applica-

tions range from the most basic voice communication to

the more demanding multimedia streaming. However, due

to its broadcast nature, the wireless channel is vulnerable

to eavesdropping and other security threats. Therefore, it is

of critical importance to find techniques to combat these

security attacks while satisfying the delay limitation imposed

by the Quality of Service (QoS) constraints. This motivates

our analysis of the fundamental information theoretic limits

of secure transmission over fading channels subject to strict

deadlines.

Recent works on information theoretic security have been

largely motivated by Wyner’s wire-tap channel model [1]. In

his seminal work, Wyner proved the achievability of non-zero

secrecy capacity, assuming that the wiretapper channel is a

degraded version of the main one, by exploiting the noise to

create an advantage for the legitimate receiver. The effect of

fading on the secrecy capacity was further studied in [2] in

the ergodic setting. The main insight offered by this work is

that one can opportunistically exploit the fading to achieve a

non-zero secrecy capacity even if the eavesdropper channel is

better than the legitimate receiver channel, on the average.

Delay limited transmission over fading channels has been

well studied in different network settings and using various
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traffic models. For example, in [3], the delay limited capacity

notion was introduced and the optimal power control policies

were characterized in several interesting scenarios. In [4], the

strict delay limitation of [3] was relaxed by allowing for

buffering the packets at the transmitter. In this setup, the

asymptotic behavior of the power-delay trade-off curve was

characterized yielding valuable insights on the structure of the

optimal resource allocation strategies [4]. More recently, the

scheduling problem of data transmission over a finite delay

horizon assuming perfect CSI was considered in [5]. Our work

can be viewed as a generalization of [3] where a secrecy

constraint is imposed on the problem. The extension to the

bursty traffic scenario is currently under investigation.

The delay limited transmission of secure data over fading

channels was considered previously in [8]. In this work,

the authors attempted to send the secure information using

binning techniques inspired by the wiretap channel results.

The drawback of this approach is that it fails to secure the

information in the particular instants where the eavesdropper

channel gain is larger than that of the main channel resulting

in the so-called secrecy outage phenomenon (as defined in

[8]). Unfortunately, in the delay limited setting, the secrecy

outage can not made to vanish by increasing the block length

leading to the conclusion that the delay limited rate achieved

by this approach is equal to zero for most channel distributions

of interest [8]. This obstacle is overcome by our two-stage

approach. Here, the delay sensitive data of the current block

is secured via Vernam’s one time pad approach [6], which was

proved to achieve perfect secrecy by Shannon [7], where the

legitimate nodes agree on the private key during the previous

blocks. Since the key packets are not delay sensitive, the

two nodes can share the key by distributing its bits over

many fading realizations to capitalize on the ergodic behavior

of the channel. Through the appropriate rate allocation, the

key bits can be superimposed on the delay sensitive data

packets so that they can be used for securing future packets.

This is referred as key renewal process in the sequel. This

process requires an initialization phase to share the key needed

for securing the first data packets. However, the loss in the

secrecy entailed by the initialization overhead vanishes in

the asymptotic limit of a large number of data packets. Our

analytical results establish the asymptotic optimality, with high

SNR, of this novel approach in the scenario where both the



DestinationSender
x(i)

w
m

(i) ∼ CN (0, 1)

w
e
(i) ∼ CN (0, 1)

g
m

(i)

g
e
(i)

y(i)

z(i)
Eavesdropper

Fig. 1. System Model

main and eavesdropper channel gains are known a-priori at the

transmitter (for a wide class of channel distributions). When

only the main channel CSI is available, this approach is shown

to achieve a non-zero constant secrecy rate for a wide class of

quasi-static channels (i.e., the class of invertible channels [3]).

The rest of the paper is organized as follows. Section II

details the system model and the notations used throughout

the rest of the paper. In Section III, our main results for both

the full and main CSI cases are obtained. Finally, Section IV

concludes the paper.

II. SYSTEM MODEL

The system model is as shown in Figure 1. A source node

(Alice) communicates with a destination node (Bob) over a

fading channel in the presence of an eavesdropper (Eve). We

adopt a block fading model, in which the channel is assumed to

be constant during a coherence interval and changes randomly

from an interval to another according to a bounded continuous

distribution. Also the coherent intervals are assumed to be

large enough to allow for the use of random coding techniques.

During any coherence symbol interval i, the signals received

at the destination and the eavesdropper are given by

y(i) = gm(i)x(i) + wm(i), (1)

z(i) = ge(i)x(i) + we(i), (2)

where x(i) is the transmitted symbol, gm(i) and ge(i) are the

main channel and the eavesdropper channel gains respectively,

wm(i) and we(i) are the i.i.d. additive white complex gaussian

noise with unit variance at the legitimate receiver and the

eavesdropper, respectively. We denote the power gains of the

fading channels for the main and eavesdropper channels by

hm(i) = |gm(i)|2 and he(i) = |ge(i)|2, respectively. We

impose the long term average power constraint P̄ , i.e.,

E[P (h)] ≤ P̄ , (3)

where P (h) is the power allocated for the channel state h =
(hm, he) and the expectation is over the channel gains.

The source wishes to send a message W ∈ W =
{1, 2, · · · , M} to the destination. In the following, our delay

constraint is imposed by breaking our message into packets

of equal sizes, where each one is encoded independently,

transmitted in only one coherence block, and decoded by

the main receiver at the end of this block. Accordingly, the

total number of channel uses is partitioned into b super-blocks.

Each super-block is divided into a blocks of n1 symbols,

where n = b a n1 and n1 denotes the length of coherence

intervals. We will further represent a fading block with tuple

(m, l) such that m ∈ {1, 2, · · · , b} and l ∈ {1, 2, · · · , a}.

We consider the problem of constructing (M1, n1) codes

(M = b a M1) to transmit the message of the block (m, l),
W (m, l) ∈ W1 = {1, 2, . . . , M1} to the receiver. Here,

an (M1, n1) code consists of the following elements: 1) a

stochastic encoder fn1(.) at the source that maps the message

w(m, l) to a codeword xn1(m, l) ∈ Xn1 , and 2) a decoding

function φ: Yn∗

→ W1 at the legitimate receiver, where

n∗ = (m − 1)an1 + ln1 denotes the total number received

signal dimension at the receiver at the end of the block (m, l).
The average error probability of an (M1, n1) code is defined

as

Pn1
e =

1

M1

∑

w∈W1

Pr(φ(yn∗

) 6= w|w was sent),

where yn∗

represents the total received signals at the legitimate

receiver at the end of the block (m, l). The equivocation rate

Re at the eavesdropper is defined as the entropy rate of the

transmitted message conditioned on the available CSI and the

channel outputs at the eavesdropper, i.e.,

Re
∆
=

1

n
H(W |Zn, hn

m, hn
e ), (4)

where hn
m = {hm(1), · · · , hm(n)} and hn

e =
{he(1), · · · , he(n)} denote the channel power gains of

the legitimate receiver and the eavesdropper in n symbol

intervals, respectively. We consider only the perfect secrecy

(in the sense of [1]) which requires the equivocation rate Re

to be ǫ close to the message rate. The delay limited perfect

secrecy rate Rs,d is said to be achievable if for any ǫ > 0,

there exists a sequence of codes (2n1Rs,d , n1) such that for

any n1 ≥ n1(ǫ), we have

Pn1
e ≤ ǫ

Re ≥ Rs,d − ǫ

for any fading block (m, l).
Finally, we give some notational remarks. We denote the

delay limited secrecy rate and capacity as R
(F )
s,d and C

(F )
s,d

for the full CSI case (both gm and ge are known a-priori

at the transmitter). We respectively use the notation R
(M)
s,d

and C
(M)
s,d for the main CSI case (only gm is known a-priori

at the transmitter). We denote [x]+ = max{x, 0}. And, we

remark that the expectations are with respect to channel gains

throughout the sequel.

III. MAIN RESULTS

A. Full CSI Scenario

First, we give a simple upper bound on the delay limited

secrecy capacity that will be used later to establish the opti-

mality of the proposed approach in the high SNR regime.

Theorem 1: The delay-limited secrecy capacity when both

gm and ge are available at the transmitter, C
(F )
s,d , is upper



bounded by

C
(F )
s,d ≤ max

P (h)

s.t. E[P(h)]≤P̄

min
{

R(F )
s , R

(F )
d

}

, (5)

where R
(F )
s and R

(F )
d are given as follows.

R(F )
s = E [log(1 + P (h)hm) − log(1 + P (h)he)]

+

R
(F )
d = min

h

log(1 + P (h)hm)

Proof: For a given power allocation scheme P (h), we

have

R
(F )
s,d ≤ R(F )

s , (6)

for any achievable delay limited secrecy rate R
(F )
s,d , since

imposing delay constraint can only degrade the performance.

We also have, for a given P (h),

R
(F )
s,d ≤ R

(F )
d , (7)

since imposing secrecy constraint can not increase the achiev-

able rate. Then, combining (6) and (7), and maximizing over

P (h), we obtain

R
(F )
s,d

≤ max
P (h)

min{R
(F )
d

, R(F )
s }, (8)

for any achievable delay-limited secrecy rate R
(F )
s,d , which

proves our result.

The following result establishes a lower bound on the delay

limited secrecy capacity using our novel two-stage approach.

The key idea is to share a private key between Alice and Bob,

without being constrained by the delay limitation. Then, this

key is used to secure the delay sensitive data to overcome

the secrecy outage phenomenon. In the steady state, the key

renewal process takes place by superimposing the key on the

delay sensitive traffic. More precisely, as outlined in the proof,

the delay sensitive traffic (secured by the previous key) serves

as a randomization signal in the binning scheme used to secure

the current key. Finally, since he is known a-priori at the

transmitter, one can further increase the delay limited secrecy

rate by dedicating a portion of the secure rate to the delay

sensitive traffic (as controlled by the function q(h) in the

following theorem).

Theorem 2: The delay-limited secrecy capacity in the full

CSI scenario is lower bounded as follows.

C
(F )
s,d ≥ R

(F )
s,d = max

P (h), q(h)

s.t. E[P(h)]≤P̄

[

min
h

{R′′
s (h) + Ro(h)}

]

, (9)

where

R′′
s (h) = Rs(h) − R′

s(h),

Rs(h) = [log(1 + P (h)hm) − log(1 + P (h)he)]
+

,

R′
s(h) = [log(1 + P (h)hm) − log(1 + P (h)q(h))]+,

such that q(h) is an arbitrary chosen function satisfying

q(h) ≥ he ∀ he, and Ro is chosen to satisfy the followings.

E[Ro(h)] ≤ E[R′
s(h)]

Ro(h) ≤ min {log(1 + P (h)hm), log(1 + P (h)he)} (10)

Sketch of the Proof: In our scheme, we require Alice to

transmit a delay constrained data message and a key to Bob.

The key is used to encrypt data and thus should be secured

from Eve. A given message w ∈ {1, 2, · · · , 2(n(R
(F )
s,d

))} is

transmitted by sending ba data packets of equal length, each

represented by D(m, l), where each packet is encoded inde-

pendently and sent with rate R
(F )
s,d during the corresponding

block of the channel. We further divide a packet to be trans-

mitted at block (m, l) into two parts D1(m, l) and D2(m, l).
The first part of data packet is transmitted along with the

generated key using the one-time pad scheme, whereas the

second part is transmitted as a secret message. We use a

separation strategy similar to [9] by sending public and private

messages simultaneously. But, in contrast to [9], we here have

the fading channel as the resource from Alice to Bob and Eve

and we exploit it to secure the key, and hence, the message. We

now describe the initial key generation and key renewal. For

the very first a blocks (the super-block m = 1), we transmit the

key, K(1), from Alice to Bob securely. Utilizing the ergodicity

of the channel, we can transmit a key of length an1E[R′
s(h)]

bits [2]. Then, for any super-block m, we will use the key

K(m− 1) for the one time pad, and also generate a new key

K(m) for the use in the next super-block. For any given block

(m, l), we use the n1Ro(h) remaining bits of the key K(m−1)
and denote the corresponding bits as K̃(m, l). These bits

are used in a one-time pad scheme to construct Do(m, l) =
D1(m, l) ⊕ K̃(m, l). The encrypted bits are then mapped to

a message w1(m, l) ∈ {1, 2, · · · , 2n1Ro(h)}. The message w1

along with a possible additional randomization is transmitted

along with the secret data. Here, the secret data we sent within

a block is two-fold: w2(m, l) ∈ {1, 2, · · · , 2(n1R′′
s (h))} which

carries the corresponding data D2(m, l) and the key message

wk(m, l) ∈ {1, 2, · · · , 2(n1R′
s(h))}. These latter messages will

allow us to generate the key K(m) of the super block m.

Since b → ∞, a → ∞, n1 → ∞, it can be easily shown

that the rates Ro(h), R′
s(h), and R′′

s (h) are achievable within

a given block. Furthermore, the average key rate, E[R′
s(h)],

is achievable within any super-block (see, e.g., [2]).

We finally argue that the equivocation rate at the eavesdrop-

per can be made arbitrarily close to the message rate with the

proposed scheme. Here, we consider equivocation computation

per block, which will imply the equivocation computation for

the overall message. For a given block (m, l), the security of

w1(m, l) follows from the one-time pad encryption (as the

key is secured from the eavesdropper [7]) and the security of

w2(m, l) follows from the wire-tap channel result along with

the secure rate choice R′
s(h) and R′′

s (h) [1]. We note that

during the first super-block w1(1, l) is not encrypted. However,

this will not affect the overall secrecy of the data as b → ∞.

Hence, the equivocation rate can be made close to the message

rate as b → ∞, a → ∞, and n1 → ∞.

The achievable rate is then minimized over h to satisfy the

delay limitation and then maximized over all power control

policies and functions q(h) (used to allocate rate for w2). This

proves the desired result.



The final step in this section is to prove the asymptotic

optimality of the proposed security scheme in the high SNR

regime. The following result establishes this objective by

showing that the upper and lower bounds of Theorems 1 and 2

match in this asymptotic scenario.

Lemma 3: In an asymptotic regime of high SNR, i.e., P̄ →
∞, the delay limited secrecy capacity is given by

lim
P̄→∞

C
(F )
s,d = Ehm>he

[

log

(

hm

he

)]

, (11)

assuming that E

[

1
min(he,hm)

]

is finite. Moreover, the capacity

is achieved by the proposed one-time pad encryption scheme

coupled with the key renewal process.

Proof: We only need to consider the lower bound since

the right hand side of (11) is the ergodic secrecy capacity

in the high SNR regime, which is by definition an upper

bound on the delay limited secrecy capacity. To this end, we

set q(h) = he resulting in R′′
s (h) = 0. Furthermore, we let

P (h) = c
min(he,hm) , where c is a constant, which is chosen

according to the average power constraint. The achievable rate

expression in the high SNR regime is then given by

lim
P̄→∞

R
(F )
s,d = lim

P̄→∞

min
h

Ro(h), (12)

where Ro(h) is chosen to satisfy

E[Ro(h)] ≤ E[log(1 + P (h)hm) − log(1 + P (h)he)]
+]

Ro(h) ≤ log(1 + c) (13)

As P̄ → ∞, it is easy to see that c → ∞ since

E

[

1
min(he,hm)

]

is finite, implying that the second constraint

in (13) is loose. Also, it is easy to see that the first constraint

converges to the right hand side of the lemma. Then, by

choosing Ro(h) = Ehm>he

[

log
(

hm

he

)]

, both constraints of

(13) are satisfied and our result is proved.

The above claim is validated numerically in Fig. 2, where

Chi-square distribution of degree n = 4 is used for the

statistics of channel gains of the legitimate receiver and the

eavesdropper (the gains are assumed to be independent). In

our simulation, we set q(h) = he (hence R′′
s = 0) and use

channel inversion power control policy for the achievable rate.

Remarkably, even with the suboptimal choice of q(h) and

P (h), lower and upper bounds coincides at the high SNR

regime.

B. Only Main Channel CSI Scenario

In this section we assume that only the legitimate receiver

CSI is available at the transmitter. First, we have the following

upper bound.

Theorem 4: The delay-limited secrecy capacity when only

the legitimate receiver channel state is available at the trans-

mitter, C
(M)
s,d , is upper bounded by

C
(M)
s,d ≤ max

P (hm)

s.t. E[P(hm)]≤P̄

min
{

R(M)
s , R

(M)
d

}

(14)
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Fig. 2. Simulation results for the full CSI case

where R
(M)
s and R

(M)
d are given as follows.

R(M)
s = E [log(1 + P (hm)hm) − log(1 + P (hm)he)]

+

R
(M)
d = min

hm

log(1 + P (hm)hm)

Proof: The proof follows the same argument as that of

Theorem 1 with the power control policy P (hm).
The achievability scheme in this scenario is different from

the previous scenario in two key aspects: 1) the lack of knowl-

edge about he forces us to secure the whole delay sensitive

traffic with the one time pad approach (i.e., setting the rate

of w2 to zero) to overcome the secrecy outage phenomenon

and 2) the binning scheme of the key renewal process must

now operate on the level of the super-block to average-out

the fluctuations in he. On the other hand, the delay sensitive

packet must be decoded after each block which makes it more

challenging to use it as a randomization for hiding the key. The

achievable rate reported in the following result is obtained by

superimposing the binning scheme used in [2], to achieve the

ergodic secrecy rate for the key, on the delay limited traffic

(secured by the key bits sent in the previous super-blocks).

Theorem 5: The delay-limited secrecy capacity in the only

main CSI scenario is lower bounded as follows.

C
(M)
s,d ≥ R

(M)
s,d = max

P(hm)

s.t. E[P(hm)]≤P̄

min

{

Rs, R
(M)
d

}

, (15)

where Rs and R
(M)
d are given as follows.

Rs = E[log(1 + P (hm)hm) − R
(M)
s,d − log(1 + P (hm)he)]

+

R
(M)
d = min

hm

log(1 + P (hm)hm)

Sketch of the Proof: First, fix a power control policy

P (hm). We then divide the channel uses into super-blocks

and further divide each super-block into blocks as done in the

proof of Theorem 2. In this scenario, we utilize the achievable

secure rate within a block only for the key generation. That is,



data is transmitted using only the one-time pad encryption in

contrast to the scheme used in Theorem 2. More specifically,

the key is decoded at the end of each super-block whereas the

data packets are still decoded block by block using the key

sent in the previous super-block.

A given message w ∈ {1, 2, · · · , 2nR
(M)
s,d }, is divided into

ba data packets, each represented by D(m, l), where each

packet is sent with rate R
(M)
s,d during the corresponding block

of the channel. The data packet D(m, l) is transmitted along

with the generated key using the one-time pad scheme. Initial

key generation and key renewal is similar to the scheme in

Theorem 2. For any super-block m, we use the key K(m−1)
for the one-time pad, and also generate a new key K(m) for

the use in the next super-block.

For any given block (m, l), we use the n1R
(M)
s,d remaining

bits from the key K(m − 1) and denote corresponding bits

as K̃(m, l), where we set K(0) = ∅. These bits are used in

a one-time pad scheme to construct Do(m, l) = D(m, l) ⊕
K̃(m, l). The encrypted bits are then mapped to a message

w(m, l) ∈ {1, 2, · · · , 2n1R
(M)
s,d }. At this point, we choose the

rate of this message to satisfy R
(M)
s,d ≤ R

(M)
d to allow a fixed

rate transmission for every fading state, i.e., to satisfy the delay

limitation. For the key renewal process, the binning scheme is

constructed as in the achievable scheme used in [2]. The output

bits are then grouped in blocks with rates given by log(1 +

P (hm)hm)−R
(M)
s,d . We then combine those bits with the R

(M)
s,d

reserved for the encrypted data packet and encode them using

a capacity achieving codebook (for the main channel). Each

codeword is decoded at the end of the block releasing the delay

sensitive packet. In order to decode the key bits, on the other

hand, one must wait till the end of the binning codeword (i.e.,

a super-block). Following the argument given in [2], one can

see that the following key rate can be achieved with perfect

secrecy (as b → ∞, a → ∞, and n1 → ∞).

Rs = E[log(1 + P (hm)hm) − R
(M)
s,d − log(1 + P (hm)he)]

+.

Therefore, if R
(M)
s,d is chosen as in the theorem, there will be

enough key bits to encrypt the message of the following block.

Similar to Theorem 2, the un-encrypted messages during the

very first block becomes negligible as b → ∞, and the

secrecy requirement can be satisfied. The achievable rate is

then maximized over all power control policies satisfying the

average power constraint to obtain the desired result.

Interestingly, one can easily verify that for a wide class of

invertible channels (i.e., E

(

1
hm

)

is finite), the rate R
(M)
s,d

is

non-zero. Numerical results are provided in Fig. 3, where Chi-

square distribution of degree n = 4 is used for the channel

gains. Here, channel inversion power control policy is used for

both the upper and lower bounds. The non-zero delay limited

rate is evident in the figure.

IV. CONCLUSION

We have studied the delay-limited secrecy capacity of the

slow-fading channel under different assumptions on the CSI

at the transmitter. Our achievability arguments are based on
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Fig. 3. Simulation results for the main CSI case.

a novel two-stage scheme that allows for overcoming the

secrecy outage phenomenon for a wide class of channels. The

scheme is based on sharing a delay tolerant private key, using

random binning, and then using the key to encrypt the the

delay sensitive packets in a one time pad format. For the full

CSI case, our scheme is further shown to be asymptotically

optimal, i.e., high SNR regime, for many relevant channel

distributions. When only the main channel CSI is available,

the two-stage scheme achieves a non-zero secure rate, under

a strict delay constraint, for invertible channels. Finally, one

can easily identify avenues for future works; three of them are

immediate, namely 1) obtaining sharp capacity results for finite

values of SNR, 2) characterizing the optimal power control

policies, and 3) extending the framework to bursty traffic by

allowing for buffer delays.
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