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Abstract—A coding problem, over a slotted system, is intro-
duced where the sender has to transmit one out of several packets
to the receiver, but learns the request only at the beginning of
each slot with prior statistical information about which packet
is needed at the receiver. There is an associated cost of sending
bits at each slot, and the goal is to minimize the expected cost
of the communication. A proactive coding scheme is proposed,
where the source proactively communicates with the receiver
before the receiver requests the message. This way, by designing
a cost optimal side information at the receiver, the scheme
is able to minimize the expected cost of the communication.
Numerical results are provided demonstrating the gains obtained
by proactive coding over the conventional coding technique.

I. INTRODUCTION

A. Problem statement
Consider a slotted system, in which a source communi-

cates with a single receiver through a channel. There are k
slots, and k binary message strings X(1), · · · ,X(k), where
X(i) ∈ {0, 1}N for all i ∈ {1, · · · , k}. The receiver is
interested in obtaining only one of the messages, however
the source does not know which message the receiver wants.
Let pi be the probability that the receiver requests message
i, satisfying

∑k

i=1 pi = 1. In addition, assume that the
channel capacity is large enough at each block, such that
the reliable communication of any number of bits to the
receiver is possible. However, there is a cost associated for
communicating a bit in each slot. Let Ci(b) be the cost of
communicating b bits in slot i.

The system operation is as follows. At the beginning of
the first slot, source asks the receiver whether it is interested
in receiving message X(1). If the answer is yes, then source
transmits the message, and communication ends with the total
cost of C1(N). However, if the answer is no, then the source
is allowed to communicate with the receiver during the first
slot, after which it asks again whether the receiver wants the
message X(2) at the beginning of the second slot.

The expected cost of communication C is defined as

C =

k
∑

i=1

piξ(i), (1)

where ξ(i) is the cost of the communication for the message
X(i). The goal is to minimize C while making sure that the
receiver gets the packet it wants.

B. Proactive source coding
A trivial strategy is to remain passive and transmit message

i fully whenever it is asked for. However, in certain cases it

may be preferable to transmit information before the receiver
asks for it. For example, assume that the receiver is going to
ask for message X(j) at slot j. If the cost of communication
in that slot is very high compared to a previous slot t, i.e.,
Cj(b) >> Ct(b), then the source may benefit in transmitting
some part of X(j) at slot t. This proactive behavior is the
focus of this paper.

In particular, our proactive source takes one of the two
actions at a given slot: 1) If the receiver does not request
the packet, it proactively transmits some information to build
up a relevant side information for the future communication,
2) If the receiver requests the packet, it only delivers the
remaining information thanks to the proactive coding during
the earlier slots. This process goes on until the receiver asks
to receive a particular message, after which the remaining
relevant information is transferred to the receiver.

A proactive source coding scheme [2NR1 , · · · , 2NRk−1 ,

2NR̂1 , · · · , 2NR̂k ] is defined as follows. Let T(i) ∈ T (i)
denote the information sequence available at the source prior
to slot i. For all i ∈ {1, · · · , k − 1}, the source encoder
assigns an index mi ∈ {1, · · · , 2NRi} to each possible
sequence t(i) ∈ T (i), and similarly for all i ∈ {1, · · · , k},
the encoder assigns another index m̂i ∈ {1, · · · , 2NR̂i} to
each possible sequence. At slot i, if the receiver does not
want the message X(i), then source sends the index mi(t(i))
over the perfect channel. Otherwise, it sends m̂i(t(i)). For
i ∈ {1, · · · , k}, the receiver decoder assigns an estimate
x̂(i) to each index pair (m1, · · · ,mi−1, m̂i). We say that
[R1, · · · , Rk−1, R̂1, · · · , R̂k] is achievable if there exist a
sequence of codes such that for any i ∈ {1, · · · , k},

P (X̂(i) 6= X(i)) → 0, N → ∞

With this scheme, ξ(i), i.e., the cost of transmission when the
receiver wants X(i) is given by

ξ(i) = Ci(NR̂i)+

i−1
∑

j=1

Cj(NRj). (2)

Here, the second term on the right hand side of (2) corresponds
to the costs incurred during the proactive transmission before
slot i, and the first term corresponds to transmission of the
rest of the message when the receiver asks for it at slot i.

C. Summary of results, relevant works, and organization
Throughout the sequel, we assume that transmission costs

are linearly scaling with the number of bits. This is modeled
as Cj(b) = cjb, for all b, and j ∈ {1, · · · , k}, where cj ∈ Z

+.



We also assume that the costs of the slots are non-causally
known at the source before the communication takes place.
We differentiate between two scenarios based on availability
of messages at the source. In the first, the source is assumed
to non-causally know all messages, i.e., the set {X(i)|i =
1, · · · , k}. Here, we also assume that the underlying messages
are independent. Under these assumptions, we construct an
optimum proactive coding scheme that achieves the minimum
expected cost. Then, we shift our focus to the more interesting
scenario, where the message X(i) is only available at the
source at the beginning of the i-th slot, and the messages
follow some correlation model given by a joint probability
distribution. For this scenario, we first provide an achievable
rate expression under the special case where the messages are
discrete memoryless source processes that satisfy a Markov
relationship. We use the result to provide an achievable cost
expression for the binary symmetric source (BSS) model,
where the source evolves through a binary symmetric channel
(BSC) after each slot. We derive the expected cost of the
proposed scheme, and state the problem as an optimization
problem. Then, we consider another case where the messages
consist of multiple modules, and the modules evolve through
the time slots as before. Here, we show that the proposed
scheme achieves the minimum expected cost. Finally, numer-
ical results are also provided for the BSS and BSC examples,
demonstrating the gains of the proposed proactive schemes
over the conventional technique.

The notion of predictive communication was introduced
in [5], where the authors map the predictability of user
behavior to spectral gain. In particular, they show that the
prediction diversity gain, i.e., the decay rate of the outage
probability when the predictive nature is exploited, increases
linearly with the prediction lookahead time. In this paper, we
focus on the source coding aspect of proactive communication
where the predictability of user behavior is captured in the
prior statistical information about which packet is going to
be requested by the destination. In particular, we consider a
general problem of proactive coding, where, for the consid-
ered cases, we reduce this problem to an efficient design of
side information at each slot. There are several fundamental
works on source coding with side information [1]–[3], [6]–
[8]. Of particular interest to this paper is [7], [8], where
the authors considered the problem of source coding when
a helper encoder exists in the system. This is essentially
our coding problem at each block, where the task of the
proactive scheme is to form optimal side-information to be
exploited in upcoming slots. We note that, according to our
best knowledge, the coding problem considered in this paper
(especially the general case with causal cost knowledge) has
not been addressed in the literature.

The rest of this paper is organized as follows. In Section
II, we study the non-causal scenario in which all k messages
are independent of each other, and all are available at the
source at the beginning of first slot. In Section III, we study
the causal scenario, in which we assume that the messages are
not available at the source initially, and message X(i) becomes

available at the source at the beginning of slot i. Here, we also
assume that the messages are correlated. Section IV includes
numerical results showing the gains that can be leveraged from
the proposed proactive coding scheme, and Section V provides
some concluding remarks.

II. THE NON-CAUSAL SCENARIO

In this section, we assume that all k messages are known
prior to the first slot at the source, and the messages are
i.i.d. and perfectly compressed, hence P (X(1), · · · ,X(k)) =
P (X(1)), · · · ,P(X(k)), and H(X(i)) = N for any i ∈
{1, · · · , k}. We now explain the proposed coding scheme,
which achieves the minimum cost. (The optimality of the
scheme is shown later in the following proof.) Due to the fact
that the messages are independent, joint encoding of sources
does not provide us any benefit. Therefore, the proactive
source coding problem in this case reduces to opportunistic
scheduling problem. Without sending partial messages, our
scheme makes a choice of transmitting messages either before
the receiver asks for it (proactive transmission), or when the
receiver requests it (no proactive transmission). Since the cost
per bit is linear, we can optimize the proactive allocation of
each message separately. Prior to the first slot, having the non-
causal knowledge of all the messages X(i) and costs ci, the
source runs an optimization problem to determine proactive
allocation of messages. Let i ∈ {2, · · · , k}, and consider the
message X(i). To determine the proactive allocation, we check

u = arg max
t∈{1,··· ,i−1}



(ci − ct)pi − ct(1− pi −
t
∑

j=1

pj)



 .

If the above expression is negative, or if the receiver wants
to receive a particular message before or during slot u, then
no proactive allocation is done. Otherwise, message X(i) is
transmitted at block u. We can interpret this expression as
follows. The expected cost advantage we gain per bit by
transmitting the message proactively is (ci − cu)pi. On the
other hand, the risk we take by transmitting it proactively is
cu[1 − pi −

∑u

j=1 pj ], since [1 − pi −
∑u

j=1 pj ] is the the
probability that proactive transmission is done, but the receiver
will not want message X(i). Using this scheme, we obtain the
following result.

Proposition 1: The minimum expected cost of communica-
tion is equal to

C = Cbase − Cpro (3)

where Cbase = N
∑k

i=1 pici is the expected cost of commu-
nication assuming no proactive communication, and

Cpro =

N

k
∑

i=2

max
t∈{1,··· ,i−1}



(ci − ct)pi − ct(1− pi −

t
∑

j=1

pj)





+

is expected cost advantage we gain using proactive communi-
cation.



Proof: Here, we prove the optimality of the scheduler.
Let nj(i) denote the number of bits of the binary string X(j)
transmitted at slot i. Then, we can express (1) as follows.

C =

k
∑

i=1

pi





i−1
∑

j=1

NRjcj +NR̂ici





=

k
∑

i=1

pi





i−1
∑

j=1

k
∑

u=j+1

nu(j)cj + ci



N −

i−1
∑

j=1

ni(j)









Through modifications, one can express C as follows.

C =

k
∑

u=2





u−1
∑

j=1

cjnu(j)(1−

j
∑

t=1

pt)





+

k
∑

u=1

cupu



N −

u−1
∑

j=1

nu(j)





=

k
∑

u=2

u−1
∑

j=1

(cj − cu)punu(j) + cjnu(j)

(

1− pu −

j
∑

t=1

pt

)

+

k
∑

u=1

cupuN

where the last term is equal to Cbase and is constant. Max-
imizing C over nu(j)’s, we can see that nu(j) = N if
j = argmaxj(cj − cu)pu + cj

(

1− pu −
∑j

t=1 pt

)

, and 0

otherwise.

III. CAUSAL MESSAGE AVAILABILITY

In this section, we consider the case where all messages
X(i) are unknown prior to first slot, and each message X(i)
is acquired by the source at the beginning of slot i. We assume
that the messages are not independent, and generated accord-
ing to some probability mass function P (X(1), · · · ,X(k)).
Note that if we assume otherwise, such that the messages
are independent of each other, then the solution is trivial, as
proactive communication is not possible.

In the following part, we are concerned with constructing
coding schemes when P (X(1), · · · ,X(k)) has a certain struc-
ture. We first consider the memoryless markov model, where
the source evolves through a Markov relation after each slot.
As an example, we provide a Binary Symmetric Source (BSS)
process. Then, we focus on a scenario, where the messages
consist of multiple modules, and the modules evolve through
the time slots.

A. Memoryless Markov Model
Before giving the cost results, we define the memoryless

markov model.
Definition 1: X(1), · · · ,X(k) is a memoryless markov

process if X(1), · · · ,X(k) is generated according to
∏N

i=1 PX1,··· ,Xk
(x1i, · · · , xki) where X1 → X2 · · · → Xk

form a Markov chain.

Proposition 2: Let X(1), · · · ,X(k) be a memoryless
markov process. Then, the rate pair [2NR1 , · · · , 2NRk−1 ,

2NR̂1 , · · · , 2NR̂k ] is achievable if

R1 ≥ I(U1;X1)

Ri ≥ I(Ui;Xi|Ui−1), ∀i ∈ {2, · · ·k − 1}

R̂j ≥ H(Xj |Uj−1), ∀j ∈ {1, · · · k}

for some random variables U1, · · · , Uk−1 generated according
to pUi|Xi,Ui−1,···U1

(ui|xi, ui−1, · · · , u1) for i ∈ {2, · · · , k −
1}, and p(u1|x1) for i = 1.
The proof is omitted. With the aid of this proposition, we
provide an achievable cost expression for the BSS process,
which is a memoryless markov process. First, we define the
BSS relation.

Definition 2: The memoryless markov process
X(1), · · · ,X(k) is also a BSS − αi process if for any
i, Xi = Bern(0.5) and for any i ∈ {1, · · · , k − 1},
Xi+1 = Xi ⊕ Zi, where Zi = Bern(αi) is independent of
Xi.
Let us define ∗ operator as a∗b = (1−a)b+(1−b)a, ∀a, b ∈
R. Then, we have the following result on the BSS case.

Proposition 3: Considering X(1), · · · ,X(k) is a BSS−αi

process, the minimum cost is upper bounded as

C = min
β1,··· ,βk−1

N
k
∑

i=2

pi

( i−1
∑

j=2

[

H(βj−1 ∗ αj−1 ∗ βj)

−H(βj)
]

cj + (1−H(β1))c1 +H(βi−1 ∗ αi−1)ci

)

+Np1

subject to: βi ∈ [0, 1/2], ∀i ∈ {1, · · · , k − 1}

Proof: The proof follows from Proposition 2. Assume
that a genie gives us bit budgets (β1, · · · , βk−1) for proactive
transmission. Let us define Vi = Bern(βi). Then, choose
U1 = X1 ⊕ V1. Therefore, X2 = X1 ⊕ Z1 = U1 ⊕ V1 ⊕ Z1.
Choose U2 = U1 ⊕ V1 ⊕ Z1 ⊕ V2, and similarly, choose
Ui = Xi ⊕ Vi, hence Ui = Ui−1 ⊕ Vi−1 ⊕ Zi−1 ⊕ Vi. Then,
for any i ∈ {2, · · · , k − 1} and j ∈ {2, · · · , k}

R1 ≥ I(U1;X1) = 1−H(β1)

Ri ≥ I(Ui;Xi|Ui−1)

= I(Ui ⊕ Ui−1;Xi ⊕ Ui−1|Ui−1)

= I(Vi−1 ⊕ Zi−1 ⊕ Vi;Vi−1 ⊕ Zi−1|Ui−1)

= H(αi−1 ∗ βi−1 ∗ βi)−H(βi)

R̂j ≥ H(Xj |Uj−1)

= H(αj−1 ∗ βj−1)

R̂1 ≥ H(X1) = 1

is achievable. Weighing with the appropriate costs ci’s, and
optimizing the cost expression over (β1, · · · , βk−1), we com-
plete the proof.

B. Multiple Modules
In this part, we study a model which resembles the operation

of a web server. We assume that each message X(i) is



composed of M i.i.d. modules X1(i), · · · ,XM (i) of size n,
where n = N/M , and Xj(i)∼Bern(0.5)n. We assume that
the modules are perfectly compressed, i.e., H(Xj(i)) = n,
∀i ∈ {1, · · · , N}, j ∈ {1, · · · ,M}. At the beginning of a
new time slot i, each module is renewed with probability αi,
otherwise, stays the same. Furthermore, we assume that each
renewed message is independent of all previous messages.
Therefore, we can see that the messages form a Markov chain,
i.e., P (X(j)|X(j−1), · · · ,X(1)) = P (X(j)|X(j−1)). This
system models the operation of a news server where a user
logs on to the server and downloads all the posts at a random
time of the day, the statistics of which is known at the server.
Slots in this case represent the hours of the day, and each post
gets deleted and replaced by a new post with probability αi,
the probability of which vary from hour to hour.

Note that, similar to the non-causal messages case in Section
II, the modules are independent of each other, hence joint
encoding of modules would not provide us any additional
benefit. Due to the fact that cost function is linear, one can
also show that dividing the modules into chunks would not
provide any additional benefit either. Therefore, this problem
also reduces to opportunistic scheduling problem, where we
optimize over the slots that modules are transmitted.

Proposition 4: Considering X(1), · · · ,X(k) is as defined,
the minimum cost is

C = min
β′

1
,··· ,β′

k−1

N

k
∑

i=2

pi

( i−1
∑

j=1

β′
jcj

+ (βi−1 + (1− βi−1)αi−1)ci

)

+Np1

subject to: β′
i ≥ 0

β1 = [1− β′
1]

+

βi =
[

(βi−1 + (1− βi−1)αi−1)− β′
i

]+
, i > 1

(4)
Now, we explain our cost achieving scheme. Let U(i) denote
the message transmitted proactively at node i. Each U(i)
is formed by picking randomly and uniformly from X(i),
the modules that does not exist in U(1), · · · ,U(i − 1),
such that U(i) = [Xπ1

(i), · · · ,Xπl
(i)] where π1, · · · , πl ∈

{1, · · · ,M}. It is straightforward to show that for this case,
the cost expression is as given in (1) where

ξi =

i−1
∑

j=1

cjH(U(j)) + ciH(X(i)|U(j − 1), · · · ,U(1)) (5)

Let ε > 0. Assume that a genie gives us bit budgets
(β′

1, · · · , β
′
k−1) for proactive transmission such that

H(U(i)) ≤ (β′
i + ε)N, ∀i ∈ {1, · · · , k − 1} (6)

We form U(1) from X(1) by randomly and uniformly picking
modules from X(1) with probability β′

1, and form U(i + 1)
from (X(i + 1)|U(i), · · · ,U(1)) by randomly uniformly
picking from X(i + 1) the modules that does not exist in
U(i), · · · ,U(1), with probability max(1, β′

i/(βi−1 + (1 −
βi−1)αi−1)). The choice of this probability ensures that there

exists some sufficiently large M such that (6) is satisfied, and
P
(

Xj(i) /∈ (U(i), · · · ,U(1))
)

≤ βi + ε. Assume that for
the receiver wants message i, where i ∈ {2, · · · , k}. Then, at
slot i, the source transmits modules in X(i) that does not
exist in U(i − 1), · · · ,U(1). For i = 2, we can see that
H(X(2)|U(1)) ≤ N(β2 + (1− β2)α2 + ε), and for arbitrary
i, H(X(i + 1)|U(i), · · · ,U(1)) ≤ N(βi + (1 − βi)αi + ε).
Combining with (5), we can see that the cost expression is
achievable.

Now, to prove the converse, we use induction. For i ∈
{1, · · · , k − 1}, j ∈ {1, · · · ,M}, define µj(i) such that
µj(i) = 1 if module j is renewed between slots i and i − 1
and 0 otherwise. Let the bit budgets for U(i)’s are as given
in (6). Then, we have

H(X(2)|U(1)) =
M
∑

j=1

H(Xj(2)|U(1))

(a)
=

M
∑

j=1

(

H(Xj(1)|U(1))P (µj(1) = 0)

+H(Xj(2))P (µj(1) = 1)

)

(b)

≥
(

M
∑

j=1

H(Xj(1))−H(U(1))
)

(1− α1)

+
M
∑

j=1

H(Xj(2))α1

(c)

≥(N −N(1− β1 + ε))(1− α1) +Nα1

≥N(β1 + (1− β1)α1 − ε)

where (a) follows from the fact that Xj(i) is independent of
Xk(i) for any j, k ∈ {1, · · · ,M}, i ∈ {1, · · · , k}, (b) also
follows from the independence of Xj(i)’s, and due to the fact
that P (µj(i) = 1) = αi, for all i, j, and (c) follows from
(6). For a given i ∈ {2, · · · , k − 1}, assume that we have
H(X(i)|U(i−1), · · · ,U(1)) ≥ N(βi−1+(1−βi−1)αi−1+ε).
Then,

H(X(i+ 1)|U(i), · · · ,U(1))

=
M
∑

j=1

(

H(Xj(i)|U(i), · · · ,U(1))P (µj(i) = 0)

+H(Xj(i+ 1))P (µj(1) = 1)
)

≥

[ M
∑

j=1

H(Xj(i)|U(i− 1), · · · ,U(1))

−H(U(i))

]

(1− αi) +
M
∑

j=1

H(Xj(i+ 1))αi

(d)

≥N(βi + (1− βi)αi − 2ε) (7)

where (d) follows from (4) and (6). Equations (6),(7), in
conjunction with (5), concludes the proof.



IV. NUMERICAL RESULTS

In this section, we illustrate the superiority of our proactive
coding schemes to the conventional schemes using simula-
tions. In both setups, there are k = 10 slots, and the cost
per bits at each slot ci is randomly generated by using a
scaled Chi-square distribution of order 2. The reason for this
choice is to make sure that ci’s are invertible, otherwise the
expected cost of communication yields unreliable results. We
also assume that the probability of requesting message i is
uniform, i.e., pi = 1/k, ∀i ∈ {1, · · · , k}. We analyze how the
expected cost expression varies with the variance of ci.

In the first example, we study the scenario in Section II
in which the messages are known initially. In Figure 1, we
plot the expected cost of communication in our proactive
scheme and the conventional scheme, in which no proactive
communication is performed.It can be clearly observed from
the figure that the gap between expected costs increase as
the variance of ci’s increase, which support the result of
Proposition 1. In the second example, we study the multiple
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Fig. 1. Comparison of our proactive scheme, and basic scheme (no proactive
communication), messages known initially

modules scenario in Section III-B, where the source learns
the request only at the beginning of the slot. In Figure 2,
we compare the expected cost in the conventional scheme, to
our proactive scheme when the module renewal probability
αi = 0.05. The result shows that our gains by using proactive
coding increase when variance of ci’s increase.

V. CONCLUSION

In this paper, we introduced the problem of proactive
source coding and considered in details two special cases,
i.e., messages known initially at the source, and messages are
obtained causally. In each case, we developed upper bounds on
expected cost results, and proved the tightness of the bounds
for a wide range of parameters. We also demonstrated the
superiority of the proactive source coding scheme as compared
to the conventional one using numerical examples. Our current
investigations are focused on 1) the case where the cost per
bit ci’s is only known causally at the source, 2) the problem
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Fig. 2. Comparison of our proactive scheme, and basic scheme (no proactive
communication), multiple modules, αi = 0.05

of proactive lossy source coding, and 3) the proactive joint
source-channel coding problem.
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