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Abstract—A general method of coding over expansions is pro-
posed, which allows one to reduce the highly non-trivial problem
of coding over continuous channels to a much simpler discrete
ones. More specifically, the focus is on the additive exponential
noise (AEN) channel, for which the (binary) expansion of the
(exponential) noise random variable is considered. It is shown
that each of the random variables in the expansion corresponds
to independent Bernoulli random variables. Thus, each of the
expansion levels (of the underlying channel) corresponds to a
binary symmetric channel (BSC), and the coding problem is
reduced to coding over these parallel channels while satisfying the
channel input constraint. This optimization formulation is stated
as the achievable rate result, for which a specific choice of input
distribution is shown to achieve a rate which is arbitrarily close to
the channel capacity in the high SNR regime. Remarkably, the
scheme allows for low-complexity capacity-achieving codes for
AEN channels, using the codes that are originally designed for
BSCs. Extensions to different channel models and applications
to other coding problems are discussed.

I. INTRODUCTION

In this work, we propose the method of constructing (binary)

expansions of discrete-time continuous alphabet channels, and

coding over the resulting set of parallel channels. We apply this

coding over expansions method to additive exponential noise

(AEN) channels, where the signal and noise terms constructing

the channel output are represented with their corresponding

binary digits. Focusing on the additive exponential noise

component, we show that the binary expansion of the noise

consists of independent Bernoulli distributed random variables

at each level. (The mean of each random variable is a function

of its level number in the expansion and the mean of the

underlying exponential noise.) This way, thanks to the expan-

sion technique, we show that continuous alphabet channels can

be considered as a set of parallel binary symmetric channels

(BSCs).

Instead of coding for every level in the expansion, we con-

sider signaling over a finite number of levels, and we resolve

the problem arising from carryovers either by considering

them as noise, or by decoding them the least significant bit

onwards to the most significant bit. For each case, we state

the corresponding achievable rate as an optimization problem,

where the rate is maximized over the choices of the Bernoulli

distributions for the signal transmission over each level with

the constraint that that the combined random variables satisfy

the channel input constraint. Then, utilizing an approximately

optimal input distribution, we show that one can celebrate the

achievability of an ǫ-gap to capacity result in the high SNR

regime. This method together with capacity-achieving low-

complexity codes (such as polar coding) allows one to achieve

the capacity of the AEN in the high SNR regime.

The additive exponential noise (AEN) channel is of par-

ticular interest as it models worst-case noise given a mean

and a non-negativity constraint on noise [1]. In addition, the

AEN model naturally arises in non-coherent communication

settings, and in optical communication scenarios. (We refer to

[1] and [2] for an extensive discussion on the AEN channel.)

Verdú derived the optimal input distribution and the capacity

of the AEN channel in [1]. Martinez, on the other hand,

proposed the pulse energy modulation scheme, which can

be seen as a generalization of amplitude modulation for the

Gaussian channels. In this scheme, the constellation symbols

are chosen as c(i − 1)l, for i = 1, · · · , 2M with a constant

c, and it is shown that the information rates obtained from

this constellation can achieve an energy (SNR) loss of 0.76
dB (with the best choice of l = 1

2 (1 +
√
5)) compared to

the capacity in the high SNR regime. Another constellation

technique for this coded modulation approach is recently

considered in [3], where log constellations are designed such

that the real line is divided into (2M − 1) equally probable

intervals. M of the centroids of these intervals are chosen

as constellation points, and, by a numerical computation of

the mutual information, it is shown that these constellations

can achieve within a 0.12 dB SNR gap in the high SNR

regime. Our approach, which achieves arbitrarily close to the

capacity of the channel, outperforms these previously proposed

modulation techniques.

The rest of the paper is organized as follows. The next

section describes the AEN channel model. In Section III, we

present the key result which shows that independent Bernoulli

distributed random variables occur in the binary expansion

of an exponential random variable. Armed with this result,

Section IV develops the expansion coding technique, where

we state the main results of the paper. Numerical results are

provided in Section IV-C, and the paper is concluded with a

discussion section (Section V).



II. CHANNEL MODEL AND BACKGROUND

We consider the additive exponential noise (AEN) channel

given by

Yi = Xi + Zi, i = 1, · · · , n, (1)

where Zi’s denote additive noise terms and are independently

and identically distributed according to an exponential density

with mean EZ ; i.e., omitting the index i, the noise has the

following density:

p(z) =
1

EZ

e
−

z

EZ u(z), (2)

where u(z) = 1 for z ≥ 0 and u(z) = 0 otherwise.

The transmitter conveys one of the messages, m, which is

uniformly distributed in M, i.e., the random message M ∈
M , {1, · · · , 2nR}; and it does so by mapping the message

to the channel input using the encoding function f(·) : M →
Xn, where Xn

1 (m) = f(m), under the constraint that X = ℜ
and

1

n
E

[

n
∑

i=1

Xi

]

≤ EX , (3)

where EX is the maximum average energy.

The decoder uses the decoding function g(·) to map its

channel observations to an estimate of the message. Specif-

ically, g(·) : Yn → M, where the estimate is denoted by

M̂ , g(Y n).

The rate R is said to be achievable, if the average probability

of error defined by

Pe ,
1

|M|
∑

m∈M

Pr{g(Y n) 6= m|M = m is sent.} (4)

can be made small for large n. The capacity of AEN is denoted

by C, which is the maximum achievable rate R.

The capacity of AEN is given in [1], where

C = log(1 + SNR), (5)

where SNR = EX

EZ
, and the capacity achieving input distribu-

tion is given by

p∗(x) =

(

EX

(EX + EZ)2
e

−x

EX+EZ +
EZ

(EX + EZ)
δ(x)

)

u(x),

(6)

where δ(x) = 1 if x = 0, and 0 otherwise. Note that this is

the p∗(x) = argmax
p(x)

I(X ;Y ), where p(y|x) is given by the

AEN channel (1).

Surprisingly, while the capacity achieving input distribution

for the additive white Gaussian noise (AWGN) channel is

Gaussian, here the optimal input distribution is not exponen-

tially distributed. However, we observe that in the high SNR

regime, the optimal distribution gets closer to an exponential

distribution with mean EX + EZ .

III. EXPONENTIAL DISTRIBUTION: BINARY EXPANSION

We show the following lemma, which allows us to have in-

dependent Bernoulli random variables in the binary expansion

of an exponential random variable.

Lemma 1: Let Bl’s be independent Bernoulli random vari-

ables with parameters given by pl, i.e., Pr{Bl = 1} = pl
and Pr{Bl = 0} = 1 − pl, and consider the random variable

defined by

B =

∞
∑

l=−∞

2lBl. (7)

Then, the choice of

pl =
1

1 + eλ2l
, (8)

implies that the random variable B is exponentially distributed

with mean λ−1, i.e., the density of B is given by

p(b) = λe−λbu(b). (9)

Proof: The proof follows by extending the one given in

[4], which considers the expansion of a truncated exponential

random variable. (The proof is omitted here due to space

constraints and is given in [5].)

IV. CODING OVER EXPANSIONS

Our proposed coding scheme, referred to as expansion

coding, consists of constructing binary expansion of the chan-

nel and coding for the resulting (dependent) parallel binary

symmetric channels (BSCs). More specifically, for some non-

negative L1 and L2, binary expansion refers to a modulation

scheme over the binary expansion of the channel for levels

ranging from −L1 to L2, i.e.,

Yi ,

L2
∑

l=−L1

2lYi,l =

L2
∑

l=−L1

2l(Xi,l + Zi,l), (10)

where the expansions of the signal and noise are given by

Xi ,

L2
∑

l=−L1

2lXi,l, and Zi ,

L2
∑

l=−L1

2lZi,l. (11)

When we take the limit L1, L2 → ∞, the channel given by

(10) corresponds to the one given by (1).

We propose coding over the expansion levels of this chan-

nel. More specifically, the least significant bit channel is given

by

Yi,−L1
= Xi,−L1

⊕ Zi,−L1
, i = 1, · · ·n. (12)

A capacity achieving BSC code is utilized over this channel

with input probability distribution given by p−L1
. (For ex-

ample, the polar coding method [6], allows one to construct

capacity achieving codes for the l = −L1 level channel.)

Instead of directly using the capacity achieving code design,

we use the combination of the capacity achieving code and the

method of Gallager [7] to achieve a rate corresponding to the

one obtained by the mutual information I(Xl;Yl) evaluated

with an input distribution given by a Bernoulli distribution



with parameter pl. (The desired distributions will be made

clear in the following part.)

Noting that the sum is a modulo-2 sum in the above channel,

there will be carryovers from this sum to the next level, l =
−L1 + 1. Denoting the carryover seen at level l as Ci,l, the

remaining channels can be represented with with the following

Yi,l = Xi,l ⊕ Z̃i,l, i = 1, · · ·n, (13)

where the effective noise, Z̃i,l, is a Bernoulli random variable

obtained by the convolution of the noise and the carryover

q̃l , Pr{Z̃i,l = 1} = ql ⊗ cl , ql(1 − cl) + cl(1 − ql) with

ql , Pr{Zi,l = 1} and cl , Pr{Ci,l = 1}. Here, the carry

over probability is given by

cl = pl−1q̃l−1, l ∈ {−L1 + 1, · · · , L2}. (14)

Due to Lemma 1, the noise seen at each level will be

described by independent Bernoulli random variables, and

therefore, our coding scheme will be over the parallel channels

given by (13) for l = −L1, · · · , L2, where the noise for each

level is distributed as Pr{Z̃i,l = 1} = q̃l = ql ⊗ (pl−1q̃l−1),
and q̃−L1−1 , 0, p−L1−1 = 0.

A. Considering carryovers as noise

Using a capacity achieving code for BSCs, combined with

the Gallager’s method, expansion coding readily achieves the

following result.

Theorem 2: Expansion coding, when implemented with ca-

pacity achieving codes for the resulting BSCs, achieves the

rate given by

R1 =

L2
∑

l=−L1

H(pl ⊗ q̃l)−H(q̃l), (15)

for any L1, L2 > 0, where q̃l = ql ⊗ (pl−1q̃l−1) for l >
−L1 and q̃−L1

= q−L1
. To satisfy the energy constraint, pl ∈

[0, 0.5] is chosen such that

1

n
E

[

n
∑

i=1

Xi

]

=
1

n

n
∑

i=1

L2
∑

l=−L1

2lpl ≤ EX . (16)

The optimization problem stated in the result above is highly

non-trivial. However, utilizing the optimal input distribution

given in (6), one can adopt the following approximate dis-

tributions in Theorem 2. At a high SNR, we observe that

the optimal input distribution can be approximated by an

exponential distribution. Then, one can simply choose pl from
the binary expansion of the exponential distribution with mean

EX+EZ . To satisfy the power constraint, we use coding only

for EX

EX+EZ

of the time, and for the rest we set the channel

input to 0. (As a second approach, in the numerical results, we

compare this choice with that of choosing pl from the binary

expansion of the exponential distribution with mean EX .) The

next method gives a better rate result with a minimal increase

in complexity.

B. Decoding carryovers

In the scheme above, let us consider decoding starting from

the level l = −L1. The receiver will obtain the correct Xi,−L1

for i = 1, · · · , n. As the receiver has the knowledge of Yi,−L1

for i = 1, · · · , n, it will also have the knowledge of the correct

noise sequence Ni,−L1
for i = 1, · · · , n. With this knowledge,

the receiver can directly obtain Ci,−L1+1 for i = 1, · · · , n,
which is the carryover from level l = −L1 to level l = −L1+
1. Using this carryover sequence in decoding at level l =
−L1+1, the receiver can get rid of carryover noise. Thus, the

effective channel that the receiver will see can be represented

by

Yi,l = Xi,l ⊕ Zi,l, i = 1, · · · , n, (17)

for l = −L1, · · · , L2. We remark that with this decoding

strategy the effective channels will no longer be a set of

independent parallel channels, as decoding in one level affects

the channels at higher levels. However, if the utilized coding

method is strong enough (e.g., if the error probability decays

to 0 exponentially with n), then this carryover decoding error

can be made insignificant by increasing n for a given number

of levels (here, L1+L2 +1). We state the rate resulting from

this approach in the following.

Theorem 3: Expansion coding, by decoding the carryovers,

achieves the rate given by

R2 =

L2
∑

l=−L1

H(pl ⊗ ql)−H(ql), (18)

for any L1, L2 > 0, where pl ∈ [0, 0.5] is chosen to satisfy

1

n
E

[

n
∑

i=1

Xi

]

=
1

n

n
∑

i=1

L2
∑

l=−L1

2lpl ≤ EX . (19)

Compared to the previous case, the optimization problem is

simpler here as the rate expression is simply the sum of the

rates obtained from a set of parallel channels.

We now show that the proposed scheme achieves the capac-

ity of AEN channel in the high SNR regime for a sufficiently

high number of levels. Towards this end, we provide a bound

for the capacity gap, ∆C , C − Ĉ, where

Ĉ =
SNR

1 + SNR

L+γ
∑

l=−L

[H(pl ⊗ ql)−H(ql)] (20)

is the achievable rate given in Theorem 3 with L1 = L,
L2 = L + γ, and γ = log(1 + SNR), when the approximate

input distribution discussed above (i.e., exponential with mean

EX+EZ) is used. First, we obtain the asymptotic behavior of

entropy at each level. (Without loss of generality, we assume

EZ = 1 in the following analysis.)

Lemma 4: Entropy of the Bernoulli random variable at level

l, H(ql), is bounded by

H(ql) < c1 · 2−l for l ≥ 0, (21)

H(ql) > 1− c2 · 2l for l ≤ 0, (22)
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Fig. 1: Signal and noise probabilities, and rate per level.

pl, ql, pl⊗ ql and rate at each level are shown, where γ = 15.
The coding scheme with L = 5 covers the significant portion

of the rate obtained by using all of the parallel channels. As

shown in the text, pl is a shifted version of ql.

where c1 and c2 are both constants taking the values c1 =
3 log e and c2 = log e.

Proof: Note that,

H(ql) = −ql log ql − (1− ql) log(1− ql)

= − 1

1 + e2l
log

1

1 + e2l
− e2

l

1 + e2l
log

e2
l

1 + e2l
.

When l ≤ 0, we obtain a lower bound as

H(ql) = log
(

1 + e2
l
)

− e2
l

1 + e2l
log e · 2l

> log(1 + 1)− log e · 2l

= 1− log e · 2l.

On the other hand, when l ≥ 0, by using the facts that log(1+
x) < log e · x for any 0 < x < 1, and ex > 1 + x+ x2/2 for

any x > 0, we have

H(ql) =
1

1 + e2l
log

(

1 + e2
l
)

+
e2

l

1 + e2l
log

(

1 + e−2l
)

<
1

1 + e2l
log

(

2e2
l
)

+ log
(

1 + e−2l
)

<
1 + 2l log e

1 + e2l
+ e−2l log e

<
1 + 2l log e

1 + 1 + 2l + 22l/2
+

1

1 + 2l
log e

< 2−l2 log e+ 2−l log e

= 2−l3 log e.

This lemma shows us that the tails bounds are exponential.

Although better bounds may exist, the exponential bound is

sufficient for further analysis. Based on the Lemma above, we

obtain the following.

Theorem 5: For any ǫ > 0, there exists an ǫ-dependent
(positive) constant c = log γ(1+8 log e)

ǫ
, such that if γ ≥ 2c

and L ≥ c, then the capacity gap is bounded by ∆C ≤ ǫ.
(The total number of levels is given by 2L + γ + 1, where
γ = log(1 + SNR).)

Proof: We first observe that

L+γ
∑

l=−L

[H(pl ⊗ ql)−H(ql)] =

L+γ
∑

l=−L

[H(pl ⊗ ql)−H(pl)]

+

L+γ
∑

l=−L

[H(pl)−H(ql)] ,

≥
L+γ
∑

l=−L

[H(pl)−H(ql)] , (23)

where the last inequality is due to the fact that H(pl ⊗ ql) ≥
H(pl). Observing that

pl+γ =
1

1 + e2l
= ql, (24)

and adopting Lemma 4, we have

(1) c ≤ l ≤ γ− c: H(pl)−H(ql) > 1− c2 · 2l−γ − c1 · 2−l,
(2) −c < l < c: [H(pl)−H(ql)]+ [H(pl+γ)−H(ql+γ)] =

H(pl)−H(ql+γ) > 1− c2 · 2l−γ − c1 · 2−(l+γ), and
(3) −L ≤ l ≤ −c and γ+c ≤ l ≤ γ+L:H(pl)−H(ql) > 0.

Combining these pieces together, and lower bounding the

summation over indices l ∈ [−L : L + γ] by considering the

summation over l ∈ [−c+ 1 : γ + c− 1], we obtain

L+γ
∑

l=−L

[H(pl ⊗ ql)−H(pl)] ≥
L+γ
∑

l=−L

[H(pl)−H(ql)]

>

γ−c
∑

l=c

(

1− c2 · 2l−γ − c1 · 2−l
)

+

c−1
∑

l=−c+1

(

1− c2 · 2l−γ − c1 · 2−(l+γ)
)

> γ
(

1− (c1 + c2)2
−c − (c1 + c2)2

c−γ−1
)

> γ(1− 2−c8 log e), (25)

where the last inequality uses the assumption that γ ≥ 2c.
Thus, we obtain a bound for the capacity gap

∆C = γ − 2γ − 1

2γ

L+γ
∑

l=−L

{

[H(pl ⊗ ql)−H(pl)]

+ [H(pl)−H(ql)]

}

≤ γ − (1− 2−γ)γ(1 − 2−c8 log e)

< γ2−γ + γ2−c8 log e

≤ γ2−c(1 + 8 log e)

= ǫ,
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Fig. 2: Numerical results. R1: The rate obtained by consid-

ering carry over as noise. R2: The rate obtained by decoding

carry overs at each level. C1: Choosing pl from the binary ex-

pansion of the exponential distribution with mean EX+EZ . To

satisfy the power constraint, only a fraction of the channel uses

(i.e., EX/(EX + EZ) of the time) is utilized. C2: Choosing

pl from the binary expansion of the exponential distribution

with mean EX . Solid and dotted curves correspond to coding

over 41 and 21 number of levels, respectively.

where we used γ ≥ 2c and choose c = log γ(1+8 log e)
ǫ

. Fig. 1

helps explicate the key steps of the proof.

C. Numerical results

We calculate the rates obtained from the two schemes above

(R1 in Theorem 2 and R2 in Theorem 3) with two different

input probability distribution choices (denoted by C1 and C2):

• C1: Choosing pl from the binary expansion of the expo-

nential distribution with mean EX + EZ . To satisfy the

power constraint, we use coding only for the fraction of

the channel uses (i.e., EX/(EX + EZ) of the time).

• C2: Choosing pl from the binary expansion of the expo-

nential distribution with mean EX .

The first choice closely resembles the optimal distribution

given in (6). However, as the unused channels vanish in the

high SNR regime, we expect that both choices result in the

same rate as SNR gets large. Numerical results are given in

Fig. 2. It is evident from the figure (and from the analysis given

in Theorem 5) that the proposed technique, when implemented

with sufficiently large number of levels, outperforms the SNR

gaps previously reported in [2] and [3].

V. DISCUSSION

We note the followings.

• Expansion coding allows the construction of good chan-

nel codes for discrete-time continuous channels using

good discrete memoryless channel codes. For instance,

one can utilize binary expansion together with polar

codes. The underlying code is q-ary polar code, as we

need to implement Gallager’s method in constructing the

input distribution p(x) = Ber(pl) for coding over level

l. (See, e.g., [6], [8] for details.) In addition, expansion

modulation can be implemented over a q-ary expansion of
the channel, and any good code for the resulting modulo

q-sum channel can be used.

• Avestimehr et al. [9] have introduced the deterministic

approximation approach for point-to-point and multi-user

channels. The basic idea is to construct an approximate

channel for which the transmitted signals are assumed to

be noiseless above the noise level. Using this high SNR

approximation, one only needs to deal with the interfer-

ence seen at a particular receiver (in a networked model).

Expansion coding scheme can be seen as a generalization

of these deterministic approaches. Here, the (effective)

noise in the channel is carefully calculated and the system

takes advantage of coding over the noisy levels at any

SNR. This generalized channel approximation approach

can be useful in reducing the large gaps reported in the

previous works.

• Although our discussion is limited to the AEN channel,

where the proposed scheme outperforms the previously

proposed modulation schemes and performs arbitrarily

close to the capacity of the AEN channel, the expansion

coding refers to a more general framework and is not

limited to such channels. Towards this end, our ongoing

efforts are focused on utilizing the proposed scheme

for AEN multiple-user channels, and for their AWGN

counterparts.
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