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Abstract—This paper presents coding schemes for distributed
storage systems (DSS) that are secure against eavesdroppers,
while simultaneously enabling efficient node repair (regenera-
tion). Towards this, novel upper bounds on secrecy capacity
for minimum storage regenerating (MSR) codes and locally
repairable codes (LRCs) are derived. The eavesdropper model
considered in this paper incorporates the ability to listen in on
data downloaded during /> node repairs in addition to content
stored on ¢; nodes. Finally, this paper presents coding schemes,
based on precoding using Gabidulin codes, that achieve the upper
bounds on secrecy capacity and characterize the secrecy capacity
of DSS for various settings of system parameters.

Index Terms—Coding for distributed storage systems, locally
repairable codes, minimum storage regenerating codes, security.

I. INTRODUCTION

Data intensive and data generative applications are increas-
ingly pervasive, ranging from social networking to multimedia
uploads. Thus, storage in the “cloud” is gaining prominence,
where individuals and institutions use distributed storage ser-
vices whose physical structure and location is mostly unknown
to the user. This decentralized nature of cloud storage systems
makes them susceptible to a variety of issues, including failure
and passive/active attacks. Of particular interest to us in this
paper is an eavesdropping attack, where an unauthorized party
wishes to gain access to information stored on a distributed
storage system (DSS) through a set of compromized nodes
within the DSS.

In this paper, we focus on designing strategies for DSS that
are eavesdropper-resistant while simultaneously being resilient
to node failures. Resilience to node failures is an essential
and well studied feature of DSS, and it is desirable that such
resilience be possible with minimum repair bandwidth [1]
and (or) small locality [2]. In our work, we desire to build
on this literature, by developing coding schemes that counter
eavesdropping while being efficient in node repair.

The primary contribution of this paper is the design of
secure locally repairable codes (LRCs) for DSS. Towards this,
we first study the secrecy against eavesdropping attacks in DSS
that employ minimum storage regenerating (MSR) codes. We
adopt the eavesdropper model presented in [3], where, during
the entire life span of the DSS, the eavesdropper can access
data stored on ¢; nodes, and, in addition, it observes data
downloaded during node repair of an additional /5 nodes. We
derive an upper bound on secrecy capacity, the amount of data
that can be stored on the system without leaking information to
an eavesdropper, for DSS that employ MSR codes to facilitate

bandwidth efficient node repair. Our bound is novel in that it
can take into account the additional downloaded data observed
by the eavesdropper during node repairs, and is tighter than
the available bounds in the literature. We then present a
secure, exact repairable coding scheme with higher code rate
compared to that of [3]. Utilizing a special case of the obtained
bound, we show that the proposed coding scheme achieves the
optimal secure file size for any (1, {2) with o < 2 at the MSR
point.

Further, we study eavesdropper secrecy for LRCs that are
minimum distance optimal, i.e., codes with maximum worst-
case resilience for a given locality constraint. To the best of
our knowledge, there is limited understanding of secrecy for
LRCs, and our work is aimed at bringing these two concepts
together in a meaningful fashion. We derive an upper bound on
the size of data that can be stored in a locally repairable min-
imum distance optimal DSS that is secure against an (¢1, £2)-
eavesdropper. We consider two cases: (i) single parity node
per local group and (ii) multiple parity nodes per local group.
Multiple parity nodes per local group allow regenerating codes
to be used inside local groups [4], [S]. This enables bandwidth
efficient local repair of a failed node, which decreases the
amount of data that is revealed to an eavesdropper during
node repairs. We then provide coding schemes that achieve
the respective upper bounds in both cases.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a DSS with n nodes at a given time storing a
file £ of size M over Fy» without any secrecy constraint.
The file f = (f1,..., fam) is first encoded into n data blocks,
(x1,...,Xp), each of length o over Fym. In this paper, we
focus on linear coding where the encoding process can be
summarized as x; = {fTg}, ... fTg®}, for i € [n]. ([n]
denotes the set {1,2,...,n}.)

In the event of a node failure, a newcomer node contacts
d surviving nodes and downloads 3 symbols from each of
these d nodes. We use d; ; = f7(g},...,g®)V; ; to denote 3
symbols downloaded from node i for repair of node j. Here
Vi,; represents the o x (3 repair matrix for node j associated
with node 4. We refer to D; ; as the subspace spanned by rows
of (gf,...,8%)Vi . D; denotes the subspace downloaded to
node j. For a given set of nodes .4, we use the notation s 4 =
{si,i € A}, where s; denotes data stored on node i. (Note
that s; = x; for ¢ € [n].) A similar notation is adopted for the
downloaded symbols, and the subspace representation.



A. Regenerating codes

In their seminal work [1], Dimakis et al. characterize an
information theoretic trade off between repair bandwidth (d5)
and per node storage (o) for DSS satisfying the maximum
distance separable (MDS) or “any k out of n” property.
Two classes of codes that achieve two extreme points of
this trade off are known as minimum storage regenerating
(MSR) codes and minimum bandwidth regenerating (MBR)
codes, corresponding to minimum storage per node (i.e., o =
M/k) and minimum possible repair bandwidth (y = df =
«) respectively. For MSR codes, we have (aumgr, Bmsr) =
(%, ﬁ) On the other hand, MBR codes are char-

. 2Md 2M
acterized by (O(mbry ﬁrnbr) - (k(Qd—k-‘,—l)’ E2d—k+1) ) .

In [6]-[8] and references therein, regenerating codes that
allow exact node repair (data on the regenerated node is the
same as that stored on the failed node) are presented. In what
follows, we use the term exact-MSR to denote the MSR codes
that allow exact node repair.

B. Gabidulin codes

Gabidulin codes are an essential component of various
coding schemes presented in this paper. Gabidulin codes are
an example of maximum rank distance (MRD) codes [9].
Encoding a message (f1, fo,...,fx) to a codeword of an
[N, K, D] Gabidulin code over F,m consists of two steps:

Step 1: Construct a data polynomial f(y) = Zszl fiyd ™
over Fym.

Step 2: Evaluate f(y) at {y1,¥2,...,yn} C Fgm, N-
linearly independent (over IF;) points, to obtain a codeword

c=(f(y),---,flyn))-

Remark 1. The data polynomial (f(-)) constructed in the
first step of encoding for Gabidulin codes is called linearized

polynomial as it satisfies f(ay; + bya) = af (y1) + bf (y2),
where y1,y2 € Fgm and a,b € F, [10].
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Remark 2. Given evaluations of f(-) at any K linearly
independent (over F,) points in Fym, say (z1,...,2K), one
can get evaluations of f(-) at ¢® points spanned by F,-
linear combinations of (z1, ..., zxi) using linearized property
of £(*) (Remark 1). This allows one to recover ¢’ ~'-degree
polynomial f(-), and therefore to reconstruct data vector
(f1,---, fK), by performing polynomial interpolation. This
also establishes that Gabidulin codes are MDS codes.

C. Eavesdropper model and proof of secrecy

In [11], Pawar et al. consider a passive eavesdropper with
access to the data stored on ¢ (< k) storage nodes. However,
at the MSR point, an eavesdropper with access to data down-
loaded during node repairs as well may gain more information
as repair bandwidth is strictly greater than ay,s. Keeping this
in mind, we adopt the eavesdropper model defined in [3]. We
consider an ({1, ¢s)-eavesdropper, which can access the stored
data of nodes in the set £, and additionally can access both
the stored and downloaded data at the nodes in the set &
with |£1| = ¢; and || = f5. The eavesdropper is assumed to

know the coding scheme employed by the DSS. We present the
definition of achievability of a secure file size in the following.

Definition 3 (Security against an (¢, ¢5)-eavesdropper). A
DSS is said to achieve a secure file size of M?® against an
(€1, €2)-eavesdropper, if, for any sets & and & of size {1
and s, respectively, mutual information 1(f°;e) = 0. Here £*
denotes the secure file of size M?®, which is first encoded to
file f of size M, and e = (sg,,dg,) represents data observed
by the eavesdropper.

Throughout the paper, we use the following lemma to prove
that a coding scheme is secure.

Lemma 4 (Secrecy Lemma [3], [12]). Consider a system with
information symbols t°, random symbols r (independent of
£9), and an eavesdropper with observations given by e. If
H(e) < H(r) and H(r|f?,e) = 0, then I(f*;e) = 0. Here
H denotes entropy.

Proof: We have I(f*;e) = H(e) — H(e|f®) (i) H(e) —

b (&
H(elf*)+H(elf*,r) < H(r)—I(e;r|t*) < H(r|t*,e) Lo,

where (a) follows by non-negativity of H(e|f®,r), (b) is due
to H(e) < H(r), (c) follows as r and f* are independent, (d)
is due to H(r|f*,e) =0. |

D. Locally repairable codes

An (n, k)-DSS is said to be an (r,, ) LRC when for each
stored block s; (of size «), there exists a set of nodes I'(7) such
that (i) 7 € I'(4), (i) [T'(¢)] < 7+ ¢ — 1, and (iii) minimum
distance of C|p(;), the code obtained by puncturing C over
T'(3), is at least d.

Remark 5. Property (iii) implies that each element j € T'(i)
can be written as a function of any set of r elements in T'()
(not containing j). Whereas, properties (ii) and (iii) imply that
H(T(i)) < ro.

Distinct sets in {I'(7) };[,,) are called local groups. We have
following general bound on the minimum distance (d,i,) of
an (n,k,d,r,0,a) DSS [4], i.e., (n,k,d)-DSS with (7,9, @)
locality,

dmin(C) < — Hﬂ +1- (Hﬂ - 1) (6 - 1).

Note that d = r is possible as r nodes in I'(7)\{¢} can be used
to repair node ¢. [4], [S] present codes that achieve this bound
for general § and have g disjoint local groups with {G;};c[g]
denoting the set of indices of nodes in g local groups. [2], [13],
[14], and [15] present d,in-optimal scalar LRCs (o = 1). In
[16], Papailiopoulos et al. present d,i,-optimal vector LRCs
with a single local parity, i.e, § = 2.

III. SECURE MINIMUM STORAGE REGENERATING CODES

In [11], Pawar et al. establish the following upper bound on
the secure file size when an eavesdropper observes the content
of ¢ nodes.



~ “out ™
>¢n+égr **¢n+£2
\A . \A ,/

Fig. 1: An information flow graph associated with an (n, k)
DSS in the presence of an (¢1,¢3)-eavesdropper. For the
eavesdropper, we have &; {X1,...,%¢,} and & =
{Xn+1,---,Xn+e, - Here, we assume that Xg_p,+1,...,Xg
fail subsequently in the order specified by their indices and are
repaired by introducing nodes X1, ...,Xnte, respectively.

Data collector (DC) contacts X, ...,Xk—rty, Xn+1;- - - s Xn-4ty
to reconstruct the original data stored on the DSS.
k
M < > min{(d—i+1)B,a}. (1)

i=0+1

At the MBR point, when d = n — 1, Pawar et al. [11] show
the tightness of this bound. [3] proposes product matrix based
secure coding schemes achieving this bound for any ¢ < k at
the MBR point with general d. However, the product matrix
based coding scheme proposed in [3] can only store a secure
file size of (k— {1 —¥¢3)(av—£23) at the MSR point, where the
bound in (1) reduces to M* < (k—{1—{2)c, which concludes
that the coding scheme from [3] characterizes secrecy capacity
only when ¢ = 0. In this paper, we improve the upper bound
on secrecy capacity against ({1, {5)-eavesdropper at the MSR
point. We subsequently present a secure coding scheme against
(£1, ¢2)-eavesdropper by combining the classical secret sharing
scheme [17] with an existing class of exact-MSR codes. The
proposed coding scheme has higher rate compared to that
proposed in [3] and characterizes the secrecy capacity when
ly < 2 for any /.

A. Improved bound on secrecy capacity at the MSR point

In this subsection, we utilize the standard approach of
computing a cut in information flow graph [1], [11] associated
with a DSS in order to get the following (improved) bound
on secrecy capacity at the MSR point:

Theorem 6. For an (n,k) MSR code, we have

k}*fz £2
M< N la—dim [ Y Diny, | |- 2)
i=f+1 j=1

Proof: We consider the information flow graph and the
eavesdropper shown in Fig. 1. The proof follows, compare to
that of (1) in [11], by considering leakage from nodes ¢; +
1,...,k — {5 to {3 node repairs corresponding to &. See [4]
for details. ]

In Theorem 6, dim Z ; _H) can be trivially lower

bounded by 3 to obtain the followmg corollary.

Corollary 7. For a DSS employing an (n,k,d,a,3) MSR
code, we have:

M < (k=L — L) (a = B). 3)

This shows that the secure code construction proposed in
[3] is optimal for ¢35 < 1. Next, we restrict ourselves to
exact-MSR codes with d = n — 1. These codes necessarily
require interference alignment for node repairs [18]. For
(n, k,d = n—1)-DSS, employing systematic exact-MSR code,
it follows from Lemma 7 in [4] that, for such codes, we have
the following result,

o

dim | () rowspace(V; ;) | < CEDE
o

jeA

“4)

where A C [k]\{:} and rowspace(V; ;) denotes row space of
repair matrix V; ;. Noting that rowspace(V; ;) = D; j, we use
(4) to conclude that

a

dim (Din+1 + Din+2) = 26 — (n—k)?

S

Combining (5) with Theorem 6, we get:

Corollary 8. Given an (n,k,d,«,3) exact-MSR code with
d=n—1, for {5 < 2, we have

. =t = L) (a—pB)
M <{w—&—%90w46+mﬁm)

ifly =1,
ifo, =2 ©

B. Construction of secure MSR codes for d =n — 1

In this subsection, we present a construction which is based
on concatenation of Gabidulin codes [9] and zigzag codes [7]
(over F,). For zigzag codes, o = pk, where p = n — k. The
node repair for a systematic node (say j) is performed by
accessing the symbols associated with set Y; = {x € [0, p* —
1] : - e; = 0} from each surviving node [7], where e; is
an element of the standard basis for Z’;, and x is represented
with an element of Z’;. We first state the following relevant
property of zigzag codes.

Lemma 9. For a DSS employing an (n = k + p, k) zigzag
code, an ({1, {3)-eavesdropper with E; C [k] can observe only

kp* — (k — £1 — £o)p* (1 — %) ’ independent symbols.

Proof: Refer to [4]. [ |

We now detail the achievability scheme of this section: Take

a file £° of size (k — £1 — £2)p*(1 — %)52 symbols over Fgm.
Append this file with kp* — (k — 1 — £2)p*(1 — %)22 random
symbols uniformly and independently drawn from Fgm. En-
code these kp* symbols using an [N = kp*, K = kp*, D = 1]



Gabidulin code using a linearized polynomial as specified in
Section II-B. Encode the output of the previous step (codeword
from Gabidulin code) to a codeword of an (n = p + k, k)
zigzag code (over F,) with a = p*.

Note that the ka symbols from any k£ nodes are enough
to reconstruct the original data (see Remark 2). Next, we

establish the secrecy guarantee of the coding scheme.

Theorem 10. The proposed coding scheme, obtained by
Gabidulin precoding of a zigzag code, securely stores a file

of size M® = (k — 1 — {3)pF (1 -3
eavesdropper with €y C [k]'. In addition, when {5 < 2, the
proposed coding scheme attains the upper bound on the secure

file size given in Corollary 8, and therefore characterizes the
secrecy capacity at the MSR point with d =n — 1.

) ’ against an ({1, 0s)-

Proof: The proof of security follows by Lemma 9,
Lemma 4, and the linearized property of Gabidulin codes. Note
that we can invoke linearized property here as the construction
uses zigzag codes over I, with Gabidulin codes over F m.
(A similar proof of security when utilizing polynomials for
encoding is provided in the seminal paper of A. Shamir on
secret sharing [17].) See [4] for a detailed proof.

Substituting ¢5 = 1 (or 2), a = p*, g = % = p*~! and
p = n — k in (6) shows that the proposed code construction
achieves the upper bound on secure file size, specified in
Corollary 8, for & C [k] with £5 < 2. [ ]

IV. SECRECY IN LOCALLY REPAIRABLE DSS

In this section, we address the issue of secrecy in din-
optimal locally repairable DSS under the eavesdropper model
defined in Section II-C. Before describing our results, we
present a short note on the notation, which is specific to
the present section. Let & = UY_ & and & = UL, &
be two sets of indices of the nodes observed by an ({1, /¢s)
eavesdropper. Here, & (|€{| = 1%) and & (|E4| = 14) denote
the sets of indices of storage-eavesdropped and download-
eavesdropped nodes in local group ¢ respectively. Note that
we have Y7 Ii = ¢y, and Y9 |15 = {5. A DC is
associated with the indices of nodes, K = Ulelci with
|| < n — dmin + 1, it contacts to reconstruct the original
file. Here C; denotes the set of indices of nodes that the DC
contacts in local group 1.

We first derive a generic upper bound on the secrecy capac-
ity of an (r,d, ) LRC, which we later specialize for specific
cases of system parameters. While addressing specific cases,
we also present secure code constructions that achieve the
respective upper bound for certain set of system parameters.

Theorem 11. For a DSS employing an (r,d,«) LRC that is
secure against an ({1, ls)-eavesdropper, we have

'A high rate MSR coding schemes has a small number of parity-check
nodes. Therefore the assumption that £ lies in the set of systematic nodes
is not detrimental to our contributions as small number of parity nodes may
have additional mechanisms in place for secure node repairs. Here, we point
out that, for £5 = 1 case, the proposed scheme is optimal even when repair
of a parity node is eavesdropped.

g
M <Y Hsi,lser deg) V ({E1,65,K:3,) € X, (7)
=1

where X denotes the set of tuples ({E},E5,K;}J_,) that are
allowed under our model.

Proof: For a tuple ({&i,&4,K;}7_,), the upper bound
follows by subtracting the leakage associated with the eaves-
dropper (I (S)Ci;s‘gii,dgé’)) from data observed at DC from
local group i (H(sk,)). See [4] for details. [ ]

Next, we consider two cases depending on the number of
local parities per local group: (i) single parity node per local
group (6 = 2) and (ii) multiple parity nodes per local group
(6 > 2). In both cases, vectors I; = (I1,...,1) and 15 =
(13,...,19) denote patterns of eavesdropped nodes. In what

follows, we use 7 and h as short-hand notation for {%J

T

and n —dpin +1—(r+0—1) {%J, respectively.

A. Case 1: Single local parity per local group (§ = 2)

For an LRC with single local parity per group, all the
information stored in a local group is revealed to an eaves-
dropper that observes a node repair in the local group as a
newcomer node downloads all the data stored on other (r)
nodes in the local group it belongs to. Therefore, we have
H(sg,|dgy) = 0 = H(sk,|dg;) = 0, when & # (. We use
this fact to present the following result on secrecy capacity of
an LRC with § = 2.

Theorem 12. Secrecy capacity of an (r,0 = 2,d = r,«) LRC,
against an ({1, {s)-eavesdropper, is

M =[rr+h = (tar + £1)] o ®)

Proof: In order to get the upper bound (stated as RHS
of (8)) on secrecy capacity, consider a DC (K) with Iy =
g17]C2 = g27"'7,CT = gTvlCT-i-Q = ... = ICg = ®7]CT+1 C
Gri1 s.t. [KKr41| = h; and an eavesdropper with eavesdropping
pattern 1o = (1,1,...,1,0,...,0) with ones at first {5 posi-
tions and 1; = (0, ... 7(),lfQJr17...,l-i]) with zeros in first /5
positions. This eavesdropping pattern and DC along with (7)
give the upper bound on M?#, RHS of (8), for an (r,§ = 2, a)
LRC.

Next, we establish Theorem 12 by presenting a secure
coding scheme that shows tightness of the upper bound
stated above. Append (¢or + ¢1)a random symbols (inde-
pendent of file f*) over Fym, r = (71,...,7(tyr44,)a)> With
(tr+h — (bar + 1)) o symbols of file f°. Encode these
M = (rr + h) @ symbols (including both r and f*) using
an [M, M,1] Gabidulin code following encoding process
specified in Section II-B. Encode M symbols of the Gabidulin
codeword with a d,i,-optimal (1,6 = 2, «) LRC, e.g., coding
scheme proposed in [16].

To prove secrecy of the proposed scheme against an (¢1, {5)-
eavesdropper, we use Lemma 4. In particular, the coding
scheme meets two sufficient conditions (i) H(e) < H(r)
(eavesdropper observes at most ({57 + ¢1)c independent sym-
bols) and (ii) H(r|f*,e) = 0, the eavesdropper can decode r



given its observed data and f° (using Remark 1 and 2). See
[4] for a detailed proof. [ |

Theorem 12 shows that the performance of an LRC with
0 = 2 degrade substantially in the presence of an eavesdropper
that can observe node repairs, i.e., £5 > 0.

B. Case 2: Multiple local parities per local group (§ > 2)

For LRCs with § > 2 that allow only naive node repair,
i.e., a newcomer downloads all the information from 7 out
of 7 4+ § — 2 surviving nodes, the characterization of secrecy
capacity is similar to the previous case and therefore omitted
due to lack of space. The main aim in the present section
is to show that using regenerating codes within local groups
(when ¢ > 2) can improve the secrecy capacity of DSS against
(€1, ¢5)-eavesdropper. Here, we focus only on those LRCs that,
when restricted to a local group, give an MSR code. (The
analysis for MBR codes is similar and will be presented in a
future work.)

In the following, we assume that node repairs are performed
with a newcomer downloading 81°¢, symbols from each of d

msr
surviving node of its own local group.

Theorem 13. For an (r,6 > 2,a) LRC with MSR codes
as local codes, secrecy capacity against ({1, {s)-eavesdropper
satisfies

ME < Z(r — (It +s5+1)) (a —0(a, iﬁ;,s + 1))
i=1

+ Z (T - (li + S)) (a - 9(0‘7 rlg;:r’s))
i=p+1
+ (min{r, h} — (I} +v)) (o — 0(ev, B, v)) . (9)

where s, p, and v are positive integers such that 0 < p+v < s,
v < h, and by = sT + p+ v. Here 0(a, BS.,t) denotes the
amount of information that an eavesdropper receives from one
intact node (a node not eavesdropped) during the repair of
|EL| = t nodes in the ith local group.

Moreover, the above bound is tight and characterizes se-
crecy capacity for the LRC, when d = r + § — 2 and

ly <2 {%J + min{2, h}.

Proof: For an LRC with local MSR codes, we apply
Theorem 6 to obtain

min(|K;|,r)—1*
H(sk, S£{7d€§) < Z (a —0(a, ﬁllq(q)scra 122))7 (10)
=1
where I* = 4 + 1. Next, we consider the DC associated

with the pattern (KC1,...,/Kgy) used in Section IV-A, and the
eavesdropping pattern 1 such that I3 = ... = 1§ = s+ 1,
O = = =s 032 = ... =19 =0,and IJ* = v.
Given this particular choice of a DC and an eavesdropper,
using Theorem 11 and (10), we get the upper bound in (9).

Now, we restrict ourselves to LRCs with d = r 4 — 2. For
such codes, it follows from Lemma 7 in [4] (similar to
Corollary 8) that, for l% <2,

loc if 1 =1

CHEEY z{ o gloc an

msr

Next, we sketch a secure coding scheme against an eaves-
dropper when fo < 27 +min{2, h} and I} < 2. Take a file f*
of size M?* (over Fm) equal to the RHS of (9) and append
this to M — M*® = 7ra + min{h,r}a — M? ii.d. uniform
random symbols (independent of £*) from F,~. Encode these
M symbols (secure data symbols and random symbols) using
two stage encoding scheme for vector LRCs presented in [4]:
(i) Encode M symbols to a gra-long Gabidulin codeword over
Fgm. (ii) Partition gra symbols of the Gabidulin codeword
into g disjoint groups of size ra each. Then, apply an
(r+6¢ —1,r,a) zigzag code (over Fy) to each group of ro
symbols. Note that g(r + 6 — 1) = n. The proof of secrecy
of the proposed scheme is similar to that in Theorem 12. See
[4] for a detailed proof. [ |
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