
Repairable Block Failure Resilient Codes

Gokhan Calis and O. Ozan Koyluoglu
Department of Electrical and Computer Engineering

The University of Arizona
Email: {gcalis, ozan}@email.arizona.edu

Abstract—In large scale distributed storage systems (DSS)
deployed in cloud computing, correlated failures resulting in
simultaneous failure (or, unavailability) of blocks of nodes are
common. In such scenarios, the stored data or a content of a
failed node can only be reconstructed from the available live
nodes belonging to available blocks. To analyze the resilience of
the system against such block failures, this work introduces the
framework of Block Failure Resilient (BFR) codes, wherein the
data (e.g., file in DSS) can be decoded by reading out from a
same number of codeword symbols (nodes) from each available
blocks of the underlying codeword. Further, repairable BFR codes
are introduced, wherein any codeword symbol in a failed block
can be repaired by contacting to remaining blocks in the system.
Motivated from regenerating codes, file size bounds for repairable
BFR codes are derived, trade-off between per node storage and
repair bandwidth is analyzed, and BFR-MSR and BFR-MBR
points are derived. Explicit codes achieving these two operating
points for a wide set of parameters are constructed by utilizing
combinatorial designs, wherein the codewords of the underlying
outer codes are distributed to BFR codeword symbols according
to projective planes.

I. INTRODUCTION

Increasing demand for storing and analyzing big-data as
well as several applications of cloud computing systems re-
quire efficient cloud computing infrastructures. One inevitable
nature of the storage systems is node failures. In order to
provide resilience against failures, redundancy is introduced
in the storage. Classical redundancy schemes range from
replication to erasure coding. Erasure coding allows for better
performance in terms of reliability and redundancy compared
to replication, however repair bandwidth in reconstructing a
failed node is higher. Regenerating codes are proposed to
overcome this problem in the seminal work of Dimakis et al.
[1]. In such a model of distributed storage systems (DSS), the
file M is encoded to n nodes such that any k ≤ n nodes
(each with α symbols) allow for reconstructing the file and
any d ≥ k nodes (with β ≤ α symbols from each) reconstruct
a failed node with a repair bandwidth γ = dβ. The trade-
off between per node storage (α) and repair bandwidth (γ)
is characterized and two ends of the trade-off are named as
minimum storage regenerating (MSR) and minimum band-
width regenerating (MBR) points [1]. Several explicit codes
have been proposed to achieve these points recently [2]–[4].
Another metric for an efficient repair is repair degree d, and
regenerating codes necessarily have d ≥ k. Codes with locality
and locally repairable codes with regeneration properties [5]–
[10] allow for a small repair degree, wherein failed nodes are
reconstructed via local connections. Instances of such codes
are recently considered in DSS [11], [12].

In large-scale distributed storage systems (such as GFS
[13]), correlated failures are unavoidable. As analyzed in [14],

these simultaneous failures of multiple nodes affect the per-
formance of computing systems severely. The analysis in [14]
further shows that these correlated failures arise due to failure
domains. For example, nodes connected to the same power
source or nodes belonging to the same rack exhibit these failure
bursts. The unavailability periods are transient, and largest
failure bursts almost always have significant rack-correlation.
In order to overcome from failures having such patterns, a
different approach is needed.

In this paper, we develop a framework to analyze resilience
against block failures in DSS with node repair efficiencies.
We consider a DSS with a single failure domain, where nodes
belonging to the same failure group constitute a block of the
codeword. We introduce block failure resilient (BFR) codes,
which allow for data collection from any bc = b − ρ blocks,
where b is the number of blocks, and ρ is the resilience
parameter of the code. Considering a load-balancing among
blocks, a same number of nodes are contacted within these bc
blocks. (A total of k = kcbc nodes and downloading α - i.e., all
- symbols from each.) This constitutes data collection property
of BFR codes. (ρ = 0 case can be considered as a special
case of batch codes introduced in [15].) Then, we introduce
repairability in BFR codes, where any node of a failed block
can be reconstructed from any dr of any remaining br ≤ b−1
blocks. (A total of d = drbr nodes and downloading β symbols
from each.) As introduced in [1], we utilize graph expansion
of DSS employing these repairable codes, and derive file size
bounds and characterize BFR-MBR and BFR-MSR points.
(We note that the blocks in our model can be used to model
racks in DSS. Such a model is related to the work [16] which
differentiates between within-rack communication and cross-
rack communication. Our focus here would correspond to the
case where within rack communication is much higher than the
cross-rack communication, as no nodes from the failed rack
can be contacted to regenerate a node.) We construct explicit
codes achieving these points for a wide set of parameters. For
a system with b = 2 blocks case, we show that achieving both
MSR and MBR properties simultaneously is asymptotically
possible. (This is somewhat similar to the property of Twin
codes [17], but here the data collection property is different.)
Then, for a system with b ≥ 3 blocks case, we consider
utilizing multiple codewords, which are placed into DSS via
a combinatorial design based codeword placement algorithm.
We show this technique establishes optimal codes for a wide
set of parameter ranges.

The paper is organized as follows. Section II introduces
model and preliminaries. Section III is devoted to the analysis
of file size bounds. Code constructions are provided in Section
IV. Section V includes extensions and concluding remarks.

II. BACKGROUND AND PRELIMINARIES

A. Block failure resilient codes and repairability

Consider a code C which maps M symbols (over Fq) in
f (file) to length n codewords (nodes) c = (c1, · · · , cn) with
ci ∈ Fαq for i = 1, · · · , n. These codewords are distributed
into b blocks each with block capacity c = b

n nodes per block.
We have the following definition.

Definition 1 (Block Failure Resilient (BFR) Codes). An
(n, b,M, k, ρ, α) block failure resilient (BFR) code encodes
M elements in Fq (f) to n codeword symbols (each in Fαq)
that are grouped into b blocks such that f can be decoded by
accessing to any k

b−ρ nodes of from each of the b− ρ blocks.

We remark that, in the above, ρ represents the resilience
parameter of the BFR code, i.e., the code can tolerate ρ block
erasures. Due to this data collection (file decoding) property of
the code, we denote the number of blocks accessed as bc = b−
ρ and number of nodes accessed per block as kc = k

bc
. Noting

that kc ≤ c should be satisfied, we differentiate between partial
block access, kc < c, and full block access kc = c. Throughout
the paper, we assume n|b. i.e., c is integer, and (b− ρ)|k, i.e.,
kc is integer.

Remarkably, any MDS array code [19] can be utilized as
BFR codes for the full access case. In fact, such an approach
will be optimal in terms of minimum distance, and therefore
for resilience ρ. However, for kc < c, MDS array codes may
not result in an optimal code. Constructing optimal BFR codes
in terms of the trade-off between resilience ρ and code rate Mnα
will be studied elsewhere. In this work, we focus on repairable
BFR codes, as defined in the following.

Definition 2 (Block Failure Resilient Regenerating Codes
(BFR-RC)). An (n, b,M, k, ρ, α, d, σ, β) block failure resilient
regenerating code (BFR-RC) is an (n, b,M, k, ρ, α) BFR code
(data collection property) with the following repair property:
Any node of a failed block can be reconstructed by accessing to
any dr = d

b−σ nodes of any br = b−σ blocks and downloading
β symbols from each of these d = brdr nodes.

We assume (b−ρ)|d, i.e., dr is integer. (Note that dr should
necessarily satisfy d

b−σ = dr ≤ c = n
b in our model.) We

consider the trade-off between the repair bandwidth γ = dβ
and per node storage α similar to the seminal work [1]. In
particular, we define αBFR-MSR = M

k as the minimum per node
storage and γBFR-MBR = α as the minimum repair bandwidth
for an (n, b,M, k, ρ, α, d, σ, β) BFR-RC. When deriving this
trade-off, we focus on systems having dr = d

b−σ ≥ kc = k
b−ρ ,

i.e., data collection process contacts to less number of nodes
per block as compared to symbol regeneration. (We note that,
similar to regenerating codes, without loss of generality, one
should only consider systems that satisfy d ≥ k, i.e., dr(b −
σ) ≥ kc(b − ρ). Therefore, our dr ≥ kc assumption can be
made without loss of generality for systems having ρ ≤ σ.)

B. Information flow graph

The operation of a DSS employing such codes can be
modeled by a multicasting scenario over an information flow
graph [1], which has three types of nodes: 1) Source node (S):
Contains original file f . 2) Storage nodes, each represented

as xi with two sub-nodes((xini , x
out
i)), where xin is the sub-

node having the connections from the live nodes, and xout is
the storage sub-node, which stores the data and is contacted
for node repair or data collection (edges between each xini
and xouti) has α-link capacity). 3) Data collector (DC) which
contacts xout sub-nodes of k live nodes (with edges each
having ∞-link capacity). (As described above, for BFR codes
these k nodes can be any k

b−ρ nodes from each of the b − ρ
blocks.) Then, for a given graph G and DCs DCi, the file
size can be bounded using the max flow-min cut theorem for
multicasting utilized in network coding [1], [20].

Lemma 3 (Max flow-min cut theorem for multicasting).

M≤ min
G

min
DCi

maxflow(S→ DCi,G),

where flow(S → DCi,G) represents the flow from the source
node S to DCi over the graph G.

Therefore, M symbol long file can be delivered to a DC,
only if the min cut is at least M. In the next section, similar
to Dimakis et al., [1], we consider k successive node failures
and evaluate the min-cut over possible graphs, and obtain a
file size bound for a DSS operating with BFR-RC.

C. Block designs and projective planes

We first provide the definition of balanced incomplete block
designs (BIBDs) [21].

Definition 4 (Balanced incomplete block design). A (v, κ, λ)-
BIBD has v points distributed into blocks of size κ such that
any pair of points are contained in λ blocks.

Corollary 5. For a (v, κ, λ)-BIBD,

• Every point occurs in r = λ(v−1)
κ−1 blocks.

• The design has exactly b = vr
κ = λ(v2−v)

κ2−κ blocks.

In the achievable schemes of this work, we utilize a special
class of block designs that are called projective planes.

Definition 6. A (v = p2 +p+ 1, κ = p+ 1, λ = 1)-BIBD with
p ≥ 2 is called a projective plane of order p.

Projective planes have the property that every pair of blocks
intersect at a unique point (as λ = 1). In addition, due to
Corollary 5, in projective planes, every point occurs in r =
p+ 1 blocks, and there are b = v = p2 + p+ 1 blocks.

III. FILE SIZE BOUND FOR REPAIRABLE BFR CODES

Information flow graph analysis, similar to that of con-
sidered in [1], can be performed to obtain file size bounds
for repairable BFR codes. In this paper, we focus on the
case σ = 1, i.e., regeneration of a node in a failed block
is performed by contacting to all remaining live blocks. In
the following, we first analyze ρ = 0 case, i.e., data collector
connects all the blocks to reconstruct the data.

n1,n2

n1,2

n1,1

n2,n2

n2,2

n2,1

n1,i1
n2,j1

n1,i2
n2,j2

n1,ik/2
n2,jk/2

dβ

(d− 1)β

(d− 2)β

(d− 1)β

(d− k
2 + 1)β

(d− k
2)β

Fig. 1. Repair process for b = 2 (two blocks) case.

A. ρ = 0, b = 2 case

Consider b = 2-block case as in Fig. 1 and assume 2|k.
From Lemma 3, the file size M can be upper bounded with
the repair procedure shown in Fig. 1, which displays one of the
“minimum-cut” scenarios, wherein any two consecutive node
failures belong to different blocks. Assuming k is even and
d ≥ k

2 ,

M≤
k
2−1∑
i=0

min(α, (d− i)β) +

k
2∑
i=1

min(α, (d− i)β). (1)

Achieving this upper bound (1) with equality would yield
maximum possible file size. One particular instance is shown
in Fig. 1, and we note that the order of failed nodes does not
matter as the sum of the cut would be the same with different
order of failures as long as we consider connection from data
collector to k

2 repaired nodes from each block.

For MSR point, α = αBFR-MSR = M
k . In the bound (1), we

then have αBFR-MSR ≤ (d − k
2)βBFR-MSR. Achieving equality

would give the minimum repair bandwidth for the MSR case.
Hence, BFR-MSR point is given by

(αBFR-MSR, γBFR-MSR) = (
M
k
,

2Md

2kd− k2). (2)

BFR-MBR codes, on the other hand, have the property
that dβ = α with minimum possible dβ while achieving the
equality in (1). Inserting dβ = α in (1), we obtain that

(αBFR-MBR, γBFR-MBR) = (
4Md

4dk − k2 ,
4Md

4dk − k2). (3)

Same analysis can be done for odd values of k as well,

(αBFR-MSR, γBFR-MSR) =

{
(Mk ,

2Md
2kd−k2−k), if k is odd

(Mk ,
2Md

2kd−k2), o.w.
(4)

(αBFR-MBR, γBFR-MBR) =

{
(4Md
4dk−k2+1 ,

4Md
4dk−k2+1), if k is odd

(4Md
4dk−k2 ,

4Md
4dk−k2), o.w.

(5)
Here, we compare γBFR-MSR and γMBR. We have γk-odd

BFR-MSR ≥
γk-even

BFR-MSR ≥ γMBR = 2Md
k(2d−k+1) , and, if we have 2d − k � 1,

then γk-odd
BFR-MSR ≈ γk-even

BFR-MSR ≈ γMBR. This implies that BFR-
MSR codes with b = 2 achieves repair bandwidth of MBR and
per-node storage of MSR codes simultaneously for systems
with d� 1. We provide the generalization of these bounds to
b ≥ 2 case in the following.

B. ρ = 0, b ≥ 2 case

The same steps described above can be used to derive the
file size bound for b-blocks.

Lemma 7. The optimal file size is given by

M =

k
b−1∑
i=0

min(α, (d− (b− 1)i)β)

+

k
b−1∑
i=0

min(α, (d− 1− (b− 1)i)β) + . . .

+

k
b−1∑
i=0

min(α, (d− (b− 1)− (b− 1)i)β).

(6)

Proposition 8. BFR-MSR and BFR-MBR points are as follows,

(αBFR-MSR, γBFR-MSR) =

(
M
k
,

Md

kd− k2(b−1)
b

)
(7)

(αBFR-MBR, γBFR-MBR) =

(
Md

kd− k2(b−1)
2b

,
Md

kd− k2(b−1)
2b

)
(8)

We observe that γBFR-MSR ≤ γMSR = Md
k(d−k+1) for b ≤ k,

which is the case here as b | k. Also, we have γBFR-MSR
γMBR

=
d− k−1

2

d−k b−1
b

≥ 1 when b ≥ 2k
k+1 which is always true. Hence,

γBFR-MSR is between γMSR and γMBR.

C. ρ > 0 case

If we restrict data collector to connect bc < b blocks (i.e.,
ρ > 0), but keep the repair process same as before, the above
analysis follows and corresponding MSR and MBR points are
given by replacing b in (7) and (8) with bc = b−ρ - for systems
satisfying dr ≥ kc. (This follows as the repair from these ρ
blocks will not contribute to the cut between the source S and
DC.)

IV. BFR-MSR AND BFR-MBR CODE CONSTRUCTIONS

A. Transpose code for b=2 case

One instance of BFR codes is given in the Fig. 2. We
set α = d = n

2 , and store the transpose of the first block’s
symbols in the second block. The repair of a failed node i in
the first block can be performed by connecting all the nodes in
the second block and downloading only 1 symbol from each
node. That is, dβ = α. Further, we set M = kd − (k2)2, and
use an [N = α2,K = M] MDS code to encode file f into
symbols denoted with xi,j , i, j = 1, ..., α. BFR data collection
property allows for reconstructing the file, as connecting any
k
2 nodes from each block assures at least K distinct symbols.
This code is a BFR-MBR code for β = 1 (scalar code), as
the optimal file size in (3), i.e., M = kd− (k2)2, is achieved
with dβ = α. A similar code to this construction is Twin codes
introduced in [17], where the nodes are split into two types and
a failed node of a a given type is regenerated by connecting to
nodes only in the other type. However, Twin codes, as opposed
to our model, do not have balanced node connection for data

xn
2 ,1
, ..., xn

2 ,α
...x2,1, ..., x2,αx1,1, ..., x1,α

c1 c2 cn
2

x1,α, ..., xn
2 ,α

...x1,2, ..., xn
2 ,2

x1,1, ..., xn
2 ,1

cn
2+1

cn
2+2 cn

Block 1

Block 2

Fig. 2. Transpose code is a two-block BFR-MBR code.

collection. In particular, DC connects to only (a subset of k
nodes from) a single type. On the other hand, BFR codes, for
b = 2 case, connects to k

2 nodes from each block.

B. Block design based regenerating code symbol placement

Consider that the file F of sizeM contains 3 sub-files F1,
F2 and F3 each of size M̃. We encode these sub-files with
[ñ = 10, k̃ = 4, d̃ = 5, α̃, β̃] regenerating code C̃, represent the
resulting symbols with P1 = p1,1:ñ for F1, P2 = p2,1:ñ for
F2, and P3 = p3,1:ñ for F3. These symbols are grouped in a
specific way placed into nodes within blocks as represented in
Fig. 3, where each node contains two symbols each coming
from two of the different sets P1,P2,P3. We set the sub-code
C̃ parameters as [M = 3M̃, k = 3

2 k̃, d = 2d̃, α = 2α̃, β = β̃].

Assume Block 1 is unavailable and its first node, which
contains codeword c1, has to be reconstructed. Due to un-
derlying regenerating code, contacting 5 nodes of Block 2
and accessing to p1,6:10 repairs p1,1. Similarly, p2,1 can be
reconstructed from Block 3. Any node failures can be handled
similarly, by connecting to remaining 2 blocks and repairing
each symbol of lost node by connecting d̃ nodes in a block. As
we have k = 6, DC, connecting to 2 nodes from each block,
obtains 12 symbols which has 4 different symbols from each
of P1, P2 and P3. As the embedded regenerating code has
k̃ = 4, all 3 sub-files can be recovered.

We generalize the BFR-RC construction above utilizing
projective planes. First, the file f of sizeM is partitioned into
v parts, M1, M2,...,Mv . Each part, of size M̃, then encoded
using [ñ, k̃, d̃, α̃, β̃] regenerating code C̃. We represent the
resulting symbols with Pi = pi,1:ñ for i = 1, · · · , v. We then
consider index of each part as a point in a (v = p2+p+1, κ =
p+1, λ = 1) projective plane. (Indices of symbol sets PJ and
points J of projective plane are used interchangeably in the
following.) We perform the placement of each point in the sys-
tem using this projective plane mapping. (The setup in Fig. 3
can be considered as a toy model. Although the combinatorial
design with blocks given by {p1, p2}, {p1, p3}, {p2, p3} has
projective plane properties, it is not considered as an instance
of a projective plane.) In this placement, total of ñ nodes from
each partition Pi are distributed to r blocks evenly, each block
contains ñ

r nodes where each node stores α = κα̃ symbols.
Note that blocks of projective plane give the indices of parts
Pi stored in the nodes of the corresponding block in DSS. That
is, all nodes in a block stores symbols from unique subset of
P = {P1, · · · ,Pv} of size κ. Overall, the system can store a
file of size M = vM̃ with b = v blocks. We set the sub-code
C̃ parameters as

M = vM̃, k =
b

r
k̃, d = κd̃, α = κα̃, β = β̃ (9)

where we choose parameters to satisfy r − 1 | d̃, r | ñ and
r | k̃.

p1,1 p1,2 p1,3 p1,4 p1,5

p1,6 p1,7 p1,8 p1,9 p1,10

p2,1 p2,2 p2,3 p2,4 p2,5

p2,6 p2,7 p2,8 p2,9 p2,10

p3,1 p3,2 p3,3 p3,4 p3,5

p3,6 p3,7 p3,8 p3,9 p3,10

Block 1

Block 2

Block 3

c1 c2 c3 c4

c15

c6 c7 c8 c9 c10

c11 c12 c13 c14

c5

Fig. 3. Three-block BFR-RC via projective plane symbol placement.

Node Repair: Consider that one of the nodes in a block is
to be repaired. Note that the failed node contains κ symbols,
each coming from a distinct subfile’s regenerating codeword.
Using projective planes’ property that any 2 blocks has only
1 point in common, any remaining block can help for in the
regeneration of 1 symbol of the failed node. Furthermore, as
any point has a repetition degree of r, one can connect to r−1

blocks, d̃
r−1 nodes per block, to repair one symbol of a failed

node. Combining these two, node regeneration is performed
by connecting (r − 1)κ blocks. Substituting κ = p + 1 and
r = p + 1, connecting to p2 + p = b − 1 blocks allows for
reconstructing any node of a failed block.

Data Collection: DC, connects k̃
r nodes per block from all

bc = b blocks, i.e., a total of k = b
r k̃ nodes each having

encoded symbols of κ subfiles. These total of vk̃ symbols
include k̃ symbols from each subfile, from which all subfiles,
hence the file f , can be decoded.

1) BFR-MSR: To construct a BFR-MSR code, we set each
subcode C̃ as an MSR code, which has

α̃ =
M̃
k̃
, d̃β̃ =

M̃d̃

k̃(d̃− k̃ + 1)
. (10)

This, together with (9), results in the following parameters
of our BFR-MSR construction

α = α̃κ =
M
k
, dβ = κd̃β̃ =

Md

k(d− k(p+1)2

p2+p+1 + p+ 1)
. (11)

We remark that if we utilize ZigZag codes [2] as the sub-
code C̃ above, we have [ñ, k̃, d̃ = ñ − 1, α̃ = r̃k̃−1, β̃ =

r̃k̃−2, r̃ = ñ− k̃], and having d̃ = ñ−1 requires connecting to
1 node per block for repairs in our block model. On the other
hand, product matrix MSR codes [3] can be used as the sub-
code C̃ for any d̃ ≥ 2k̃ − 2, for which we do not necessarily
have d̃

r−1 = 1. We observe from (7) and (11) that MSR point
is achieved for k̃ = p+ 1, meaning k = b.

2) BFR-MBR: To construct a BFR-MBR code, we set each
subcode C̃ as a product matrix MBR code [3], which has

α̃ = d̃β̃ =
2M̃d̃

k̃(2d̃− k̃ + 1)
. (12)

This, together with (9), results in the following parameters
of our BFR-MSR construction

α = dβ =
2Md

k(2d− k(p+1)2

p2+p+1 + p+ 1)
. (13)

From (8) and (13), MBR point is achieved for k̃ = p+ 1.

V. EXTENSIONS AND CONCLUDING REMARKS

A. ρ > 0 case

In the above, we considered the cases where DC connects
all b blocks in file reconstruction. In order to support bc < b,
we consider employing Gabidulin codes [18] as an outer code
similar to the constructions provided in [8], [10]. We briefly
discuss our approach here. Detailed results will be provided
elsewhere. [N,K,D = N −K + 1]qm Gabidulin code CGab,
m ≥ N , has a codeword (f(g1), f(g2), ..., f(gN)) ∈ FNqm ,
where f(x) is a linearized polynomial over Fqm of q-degree
K − 1 with K message symbols as its coefficients and
g1, g2, ..., gN ∈ Fqm are linearly independent over Fq [18].

Remark 9. Given evaluations of f(·) at any K linearly
independent (over Fq) points in Fqm , one can reconstruct the
message vector.

Here, before partitioning the message into v parts, we
encode the file with a Gabidulin code first, then partition
the resulting codeword into v parts and follow remaining
steps as before. With this approach, decoding the message at
DC follows by obtaining at least K independent evaluations
from k nodes, kc = k

bc
nodes per block from a total of

bc = b − ρ blocks. As considered in [8], [10], the number of
such evaluations can be derived from the rank accumulation
profile of the inherent MSR/MBR codes C̃ as in the following

ãj =

α̃, if C̃ is MSR and 1 ≤ j ≤ k̃
α̃− (j − 1)β̃, if C̃ is MBR and 1 ≤ j ≤ k̃
0, if C̃ is MSR/MBR and k̃ + 1 ≤ j ≤ ñ

(14)
Note that because of projective plane property, connecting b−1
blocks would result in getting kcr evaluations for v−κ points
and kc(r− 1) evaluations for κ points. Hence DC can decode
the message by using an outer Gabidulin code if

v−κ∑
t=1

kcr∑
j=1

ãj +

κ∑
t=1

kc(r−1)∑
j=1

ãj ≥ K. (15)

Similarly, for bc = b− 2, decoding at DC is possible if

v−(2κ−1)∑
t=1

kcr∑
j=1

ãj +

2κ−2∑
t=1

kc(r−1)∑
j=1

ãj +

kc(r−2)∑
j=1

ãj ≥ K. (16)

With such an approach, for bc ≤ b − 3 there are multiple
collection possibilities for DC. For example, by connecting
b − 3 blocks DC can observe either a) kcr evaluations for
v − (3κ − 2), kc(r − 1) evaluations for 3(κ − 1) points and
kc(r − 3) evaluations for 1 point, or b) kcr evaluations for
v − (3κ − 3), kc(r − 1) evaluations for 3(κ − 2) points and
kc(r−2) evaluations for 3 points. Therefore, we need to ensure
that minimum rank accumulations of all cases is at least K.

B. Concluding remarks

We introduced the framework of block failure resilient
(BFR) codes that can recover data stored in the system from
a subset of available blocks with a load balancing property.
Repairability is studied, file size bounds are derived, BFR-
MSR and BFR-MBR points are characterized, explicit code
constructions for a wide set of parameters are provided.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[2] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with
optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1597–
1616, Mar. 2013.

[3] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–
5239, Aug. 2011.

[4] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proc. IEEE, vol. 99, no. 3, pp.
476–489, Mar. 2011.

[5] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp.
6925–6934, Nov. 2012.

[6] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
in Proc. 2012 IEEE International Symposium on Information Theory
(ISIT 2012), Boston, MA, Jul. 2012.

[7] F. Oggier and A. Datta, “Self-repairing homomorphic codes for dis-
tributed storage systems,” in Proc. 2011 IEEE INFOCOM, Shanghai,
China, Apr. 2011.

[8] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal locally repairable and secure codes for distributed storage
systems,” IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, Jan.
2014.

[9] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with
local regeneration,” CoRR, vol. abs/1211.1932, Nov. 2012.

[10] G. M. Kamath, N. Silberstein, N. Prakash, A. S. Rawat, V. Lalitha,
O. O. Koyluoglu, P. V. Kumar, and S. Vishwanath, “Explicit MBR all-
symbol locality codes,” in Proc. 2013 IEEE International Symposium
on Information Theory (ISIT 2013), Istanbul, Turkey, Jul. 2013.

[11] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: Novel
erasure codes for big data,” Proc. VLDB Endow., vol. 6, no. 5, pp.
325–336, Mar. 2013.

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in Windows azure storage,” in Proc.
USENIX Annual Technical Conference, Boston, MA, Jun. 2012.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. Nineteenth ACM Symposium on Operating Systems Principles,
Bolton Landing, NY, Oct. 2003.

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems,” in Proc. 9th USENIX Symposium on Operating Systems
Design and Implementation, Vancouver, BC, Oct. 2010.

[15] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” in Proc. Thirty-sixth Annual ACM Symposium on
Theory of Computing, Chicago, IL, Jun. 2004.

[16] B. Gaston, J. Pujol, and M. Villanueva, “A realistic distributed storage
system: The rack model,” CoRR, vol. abs/1302.5657, Feb. 2013.

[17] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Enabling node repair
in any erasure code for distributed storage,” in Proc. 2011 IEEE
International Symposium on Information Theory (ISIT 2011), Saint
Petersburg, Russia, Jul. 2011.

[18] E. M. Gabidulin, “Theory of codes with maximum rank distance,”
Problemy Peredachi Informatsii, vol. 21, no. 1, pp. 3–16, 1985.

[19] F. J. McWilliams and N. J. A. Sloane, The theory for error-correcting
codes. North-Holland, 1977.

[20] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[21] D. R. Stinson, Combinatorial designs: construction and analysis.
Springer, 2004.

