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Abstract—A general method of source coding is proposed in
this paper, which enables one to reduce the problem of com-
pressing an analog (continuous-valued) source to a set of much
simpler problems, compressing discrete sources. Specifically, the
focus is on lossy compression of exponential and Laplace sources,
which are represented as set of discrete variables through a
finite alphabet expansion. Due to the decomposability property
of such sources, the resulting random variables post expansion
are independent and discrete. Thus, these variables can be
considered as independent discrete source coding problems, and
the original problem is reduced to coding over these sources
with a total distortion constraint. Any feasible solution to this
resulting optimization problem corresponds to an achievable
rate distortion pair of the original continuous-valued source
compression problem. Although finding the optimal solution for
a given distortion is not a tractable task, we show that, via
a heuristic choice, our expansion coding scheme still presents
a good performance in the low distortion regime. Further,
by adopting low-complexity codes designed for discrete source
coding, the total coding complexity can be reduced for practical
implementations.

I. INTRODUCTION

The compression of continuous-valued sources remains one
of the most well-studied (and practically valuable) research
problems in information theory. Given the increased impor-
tance of voice, video and other multimedia, all of which are
typically “analog” in nature, the value associated with low-
complexity algorithms to compress continuous-valued data is
likely to remain significant in the years to come.

For discrete-valued (“finite alphabet”) sources, both the
associated coding theorems and practical coding schemes are
now well known. Trellis based quantizers [1] are the first
to achieve the rate distortion tradeoff, but with encoding
complexity scaling exponentially with the constraint length.
A low density parity check (LDPC) ensemble, under suitable
conditions on the ensemble structure is shown to achieve the
rate distortion bound using an optimal decoder [2]. Recently,
low density generator matrix (LDGM) codes, with suitably
irregular degree distributions, are shown to empirically per-
form close to the Shannon rate-distortion bound with message-
passing algorithms [3]. More recently, polar codes [4][5] are
the first provably rate distortion limit achieving codes with low
encoding and decoding complexity [6].

In the case of analog sources, although both practical coding
schemes as well as theoretical analysis are heavily studied,
very limited literature exists that connects theory with low-

complexity codes in practice. The most relevant literature
in this context is on lattice compression and its low-density
constructions [7], although this literature is somewhat limited
in scope and application. In the domains of image compression
and speech coding, Laplacian and exponential distributions
are widely adopted as natural models of correlation between
pixels and amplitude of voice [8]. Exponential distribution is
also fundamental in characterizing continuous-time Markov
processes [9]. Many schemes have been proposed, such as
entropy constrained scalar quantization (ECSQ) [10], vector
quantization (VQ) [11], Markov chain Monte Carlo (MCMC)
based approach [12], however, they are still suboptimal in rate
with respect to Shannon limit [12]. Our general understanding
of low-complexity coding schemes with good rates, in partic-
ular for the low-distortion regime, remains limited.

In this paper, we present an expansion coding scheme for
both exponential and Laplacian sources. Previously, our work
in [13] considers expansion coding for the dual problem, i.e.
the channel coding case, where coding over exponential noise
channels are converted to coding over a set of parallel (and
independent) discrete channels. For source coding, we utilize a
similar approach: expanding exponential and Laplace sources
into binary sequences, and coding over the resulting set of
parallel discrete sources. We show that the achievable rates
from this scheme approach the rate distortion limit in the low
distortion regime.

The rest of paper is organized as follows. The next section
describes the decomposability of exponential distribution. In
Section III and IV, we present the main results of this pa-
per, expansion coding schemes for exponential and Laplacian
sources, respectively. The paper concludes with a discussion
section. Proofs to the main theorems are given in the appendix.
(Detailed proofs are provided in [14].)

II. DECOMPOSABILITY OF EXPONENTIAL DISTRIBUTION

The intuition underlying expansion coding originates from
the decomposability property of exponential random variables,
which can be expressed as a summation of a set of indepen-
dent discrete-valued random variables. The following lemma
summarizes this phenomenon:

Lemma 1 ([15]). Let Bl’s be independent Bernoulli random
variables, and their distributions are given by parameters bl ,
Pr{Bl = 1}. Then, the random variable B =

∑∞
l=−∞ 2lBl



is exponentially distributed with mean λ−1, if and only if the
choice of bl is given by bl = 1/(1 + eλ2

l

).

III. EXPONENTIAL SOURCE CODING

A. Problem Setup

Consider an i.i.d. exponential source sequence X1, . . . , Xn,
i.e., omitting index i, each variable has a pdf given by

fX(x) = λe−λx, x ≥ 0, (1)

where λ−1 is the mean of X . Distortion measure of concern
is the “one-sided error distortion”, i.e.

d(x1:n, x̂1:n) =

 1
n

n∑
i=1

(xi − x̂i), if x1:n < x̂1:n,

∞, otherwise.
(2)

This setup is equivalent to the one in [9], where another
distortion measure is considered. (See [14].)

Lemma 2 ([9]). The rate distortion function for an exponential
source with the one-sided error distortion is given by

R(D) =

{
− log(λD), 0 ≤ D ≤ 1

λ ,
0, D > 1

λ .
(3)

Moreover, the optimal conditional distribution to achieve the
limit is given by

f∗
X|X̂(x|x̂) =

1

D
e−(x−x̂)/D, x ≥ x̂ ≥ 0. (4)

B. Expansion Coding

Using Lemma 1, we reconstruct the exponential distribution
by a set of discrete Bernoulli random variables. In particular,
the expansion of exponential source over levels ranging from
−L1 to L2 can be expressed as

Xi =

L2∑
l=−L1

2lXi,l, i = 1, 2, . . . , n, (5)

where Xi,l are Bernoulli random variables with parameter

pl , Pr{Xi,l = 1} =
1

1 + eλ2l
. (6)

This expansion perfectly approximates exponential source by
letting L1, L2 → ∞. Consider a similar expansion of the
source estimate, i.e.

X̂i =

L2∑
l=−L1

2lX̂i,l, i = 1, 2, . . . , n, (7)

where X̂i,l is the resulting Bernoulli random variable with
parameter p̂l , Pr{X̂i,l = 1}. Utilizing the expansion method,
the original problem of coding for a continuous source can be
translated to a problem of coding for a set of independent
binary sources. This transformation, although seemingly ob-
vious, is valuable as one can utilize powerful coding schemes
over discrete sources to achieve rate distortion limits with
low complexity. In particular, we design two schemes for the
binary source coding problem at each level.

1) Coding with one-sided distortion: We formulate each
level as a binary source coding problem under the binary one-
sided distortion constraint: dO(xl, x̂l) = 1{xl>x̂l}. Denoting
the distortion at level l as dl, an asymmetric test channel (Z-
channel) from X̂l to Xl can be constructed, where

Pr{Xl = 1|X̂l = 0} =
dl

1− pl + dl
.

Based on this, we have pl − p̂l = dl, and the achievable rate
at a single level l is given by

Rl = H(pl)− (1− pl + dl)H

(
dl

1− pl + dl

)
. (8)

Due to the decomposability property as stated previously, the
coding scheme provided is over a set of parallel discrete
levels indexed by l = −L1, . . . , L2. Thus, by adopting rate
distortion limit achieving codes over each level, expansion
coding scheme readily achieves the following result:

Theorem 3. For an exponential source, expansion coding
achieves the rate distortion pair given by

R(1) =

L2∑
l=−L1

Rl, (9)

D(1) =

L2∑
l=−L1

2ldl + 2−L2/λ2 + 2−L1 , (10)

for any L1, L2 > 0, and dl ∈ [0, 0.5] for l ∈ {−L1, · · · , L2},
where pl is given by (6).

Note that, the last two terms in (10) are resulting from the
truncation and vanish in the limit of large number of levels.

2) Successive encoding and decoding: Note that it is not
necessary to make sure Xl ≥ X̂l for every l to guarantee
X ≥ X̂ . To this end, we introduce successive coding scheme,
where encoding and decoding start from the highest level
L2 to the lowest. At a certain level, if all higher levels are
encoded as equal to the source, then we must model this
level as binary source coding with the one-sided distortion.
Otherwise, we formulate this level as binary source coding
with the symmetric distortion. In particular for the latter
case, the distortion of concern is Hamming distortion, i.e.
dH(xl, x̂l) = 1{xl 6=x̂l}. Denoting the equivalent distortion at
level l as dl, i.e. E[Xl − X̂l] = dl, then the symmetric test
channel from X̂l to Xl is modeled as

Pr{Xl = 1|X̂l = 0} = Pr{Xl = 0|X̂l = 1} =
dl

1− 2pl + 2dl
.

Hence, the achievable rate at level l is given by

R̄l = H(pl)−H
(

dl
1− 2pl + 2dl

)
. (11)

Based on these, we have the following achievable result:



Theorem 4. For an exponential source, applying successive
coding, expansion coding achieves the rate distortion pairs

R(2) =

L2∑
l=−L1

[
qlRl + (1− ql) R̄l

]
, (12)

D(2) =

L2∑
l=−L1

2ldl + 2−L2/λ2 + 2−L1 , (13)

for any L1, L2 > 0, and dl ∈ [0, 0.5] for l ∈ {−L1, · · · , L2}.
Here, pl is given by (6), qL2

= 1, and ql =
∏L2

k=l+1(1 − dk)
for l ≤ L2 − 1.

In this sense, the achievable pairs in both theorems are
given by optimization problems over a set of parameters
{d−L1 , . . . , dL2}. However, the problems are not convex, so an
effective theoretical analysis may not be performed here for the
optimal solution. But, by a heuristic choice of dl, we can still
get a good performance. Inspired by the fact that the optimal
scheme models noise as exponential with parameter 1/D in
the test channel, we design dl as the expansion parameter from
this distribution, i.e.

dl =
1

1 + e2l/D
. (14)

We note that higher levels get higher priority and lower dis-
tortion with this choice, which is consistent with the intuition.
This choice of dl may not guarantee any optimality, although
simulation results imply that it can be a local optimum. In
the following, we show that the proposed expansion coding
scheme achieves within a constant gap to the rate distortion
function (at each distortion value).

Theorem 5. For any D ∈ [0, 1/λ], there exists a constant
c > 0, such that for L1, L2 > − log(λD), the achievable rate
pairs obtained from expansion coding schemes are both within
c bit gap to Shannon rate distortion function, i.e.

R(1) −R(D(1)) ≤ c, R(2) −R(D(2)) ≤ c,

where D(1) and D(2) are given by (10) and (13) respectively,
with a choice of dl as in (14).

Proof: See Appendix A, and for a detailed proof please
refer to [14].

C. Numerical Results

Numerical results showing achievable rates along with the
rate distortion limit are plotted in Fig. 1. It is evident that both
forms of expansion coding perform within a constant gap of
the limit. Theorem 5 showcases that this gap is bounded by
a constant. Here, numerical results show that the gap is not
necessarily as wide as predicted by the analysis. In fact, the
gap is numerically found to correspond to 0.43 bits and 0.24
bits for each coding scheme respectively.
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Fig. 1: Achievable rate distortion pairs using expansion
coding for exponential source with the one-sided error
distortion. We set λ = 1, and L1 = L2 = − logD+ 5. R(D)
(red-solid) is the rate distortion limit; R(1) (purple-dotted) is
the achievable rates curve given by Theorem 3; R(2) (blue-
dashed) is the achievable rates curve given by Theorem 4.

IV. LAPLACIAN SOURCE CODING

A. Problem Setup
In this section, we focus on Laplacian source coding.

Consider an i.i.d. Laplacian source sequence X1, . . . , Xn, i.e.,
omitting index i, each variable has a pdf given by

fX(x) =
λ

2
e−λ|x|, x ∈ R, (15)

where 2/λ2 is the variance of X . Distortion measure here is
the absolute value error distortion, i.e.

d(x1:n, x̂1:n) =
1

n

n∑
i=1

|xi − x̂i|. (16)

Lemma 6 ([16]). The rate distortion function for a Laplacian
source with the absolute error distortion is given by

R(D) =

{
− log(λD), 0 ≤ D ≤ 1

λ ,
0, D > 1

λ .
(17)

Moreover, the optimal conditional distribution is

f∗
X|X̂(x|x̂) =

1

2D
e−|x−x̂|/D, x, x̂ ∈ R. (18)

B. Expansion Coding
By noting that Laplacian is two-sided exponential, the

expansion of source and estimate over levels ranging from
−L1 to L2 can be expressed as

Xi = Xsign
i

L2∑
l=−L1

2lXi,l, i = 1, 2, . . . , n, (19)

X̂i = X̂sign
i

L2∑
l=−L1

2lX̂i,l, i = 1, 2, . . . , n, (20)



where Xsign
i and X̂sign

i represent the sign of Xi and X̂i

correspondingly, both uniformly distributed from {−1,+1}.
By performing expansion, we reduce the original problem

to coding for a set of independent binary sources. However,
particularly for Laplacian case, we let Xsign = X̂sign, i.e.,
using 1 bit to perfectly recover the sign bit, and then for
other levels, we formulate each as a binary source coding
problem with Hamming distortion. In particular, for level l,
we design a symmetric test channel from X̂l to Xl, where the
cross probability is given by dl = (pl− p̂l)/(1− 2p̂l). Hence,
the achievable rate at level l is given by

Rl = H(pl)−H(dl). (21)

To this end, we have the following result:

Theorem 7. For Laplacian source X , expansion coding,
where the estimate X̂ is constructed as in (20), achieves the
rate distortion pair (R,D) with

R = 1 +

L2∑
l=−L1

[H(pl)−H(dl)] , (22)

for any L1, L2 > 0 and dl such that E[|X − X̂|] ≤ D.

The absolute value error distortion E[|X − X̂|] cannot
be written as a simple weighted sum of Hamming distor-
tions from each level. In fact, we have to use an induc-
tion method to characterize the complicated relation. Denote
Dk , E

[∣∣∣∑k
l=−L1

2l(Xl − X̂l)
∣∣∣] for any −L1 ≤ k ≤ L2,

which represents the accumulative absolute value distortion
up to level k.
• Initialization: at level −L1, D−L1

= 2−L1d−L1
.

• Induction: for levels −L1 + 1 ≤ k ≤ L2,

Dk = Dk−1(1− dk) + 2kdk

+
dk(1− 2pk)

1− 2dk

k−1∑
l=−L1

2ldl(1− 2pl)

1− 2dl
. (23)

To this end, the expansion based coding scheme can be
clearly expressed as an optimization problem over variables
{d−L1

, . . . , dL2
}, but not convex. Here, we step back to

heuristically choose the values of dls. More precisely, for an
aiming distortion D, dl is chosen as

dl =
1

1 + e2l/D
. (24)

Then, by Theorem 7 and the iterative algorithm to calculate
the real distortion DL2

, the rate distortion pair (R(1), D(1)) is
achievable, where

R(1) = 1 +

L2∑
l=−L1

[H(pl)−H(dl)] , D(1) = DL2 .

Evidently, this coding scheme may not behave well at
high distortion regime, since R(1) is at least 1 bit. For high
distortion, precisely compressing the sign bit seems inefficient.
To this end, a time sharing scheme is utilized to reduce the
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Fig. 2: Achievable rate distortion pairs using expansion
coding for Laplacian source with the absolute value error
distortion. We set λ = 1, and L1 = L2 = − logD+ 5. R(D)
(red-solid) is the rate distortion limit; R(1) (purple-dotted) is
the achievable rates curve using expansion coding: and R(2)

(blue-dashed) is the achievable rates curve using expansion
coding and time sharing.

coding rate. More precisely, for any α ∈ [0, 1], we compress
α fraction of source sequences into codeword 0, then the
following rate distortion pair is found to be achievable:

R(2) = (1− α)R(1), D(2) = (1− α)D(1) + α/λ.

Here, we provide an upper bound on rate distortion gap of
expansion coding scheme for Laplacian source.

Theorem 8. For any D ∈ [0, 1/λ], with a choice of dl in (24)
and L1, L2 > − log(λD), the achievable rate distortion pairs
(R(1), D(1)) and (R(2), D(2)) are within a constant (c bits)
gap to Shannon rate distortion function, i.e.

R(1) −R(D(1)) ≤ c, R(2) −R(D(2)) ≤ c.

Proof: See [14].

C. Numerical Results

Since the calculation of D(1) from dls is non-trivial, it is
hard to characterize the extent to which the overall distortion
is overestimated by the bound. Using numerical analyses, we
find this gap to be 0.52 bits in the low distortion regime (shown
in Fig. 2).

V. DISCUSSION

Expansion coding enables the construction of “good” lossy
compression codes for exponential and Laplacian sources us-
ing parallel discrete-valued source codes. Theoretical analyses
and numerical results illustrate that expansion coding performs
within a constant gap to the rate distortion limit, and therefore,
approaches the limit in ratio, in the low distortion regime.



One significant benefit from expansion coding is the coding
complexity. As indicated in the theoretical analysis and simu-
lation results, approximately −2 log(λD) number of levels are
sufficient for the coding scheme. Thus, by choosing “good”
low complexity codes within each level (such as source coding
with polar codes [4], [6]), the overall complexity of the
proposed coding scheme can be easily characterized, resulting
in a low-complexity code for the original continuous-valued
source coding problem.

Although the paper focuses primarily on binary expansion
case, our results can be generalized to q-ary expansion case,
with similar performance guarantees. Moreover, we focus on
exponential and Laplacian sources due to their decomposable
property. As we can imagine, all decomposable distributions
can be treated in a similar way. Even for indecompos-
able distributions, such as Gaussian, the expansion coding
scheme presents a means of developing low-complexity cod-
ing schemes, although with a larger gap due to dependence
between levels. The study on applications of expansion coding
for general sources will be reported elsewhere.
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APPENDIX A
PROOF TO THEOREM 5

Without loss of generality, we assume λ = 1 for simplicity
in the proof. By noting that dl is also the parameter of ex-
panded exponential distribution at level l, but with a different
mean, we have

dl =
1

1 + e2l/D
=

1

1 + e2l+γ
= pl+γ , (25)

where γ , − logD. This result shows values of dl are right-
shifted version of pl by γ positions. Using this fact, we have

L2∑
l=−L1

[H(pl)−H(dl)] =

L2∑
l=−L1

H(pl)−
L2+γ∑

l=−L1+γ

H(pl)

≤
L1+γ−1∑
l=−L1

H(pl) ≤ γ = − logD. (26)

Moreover, it could be proved that [14], for l ≤ −γ,

H(dl)− (1− pl + dl)H

(
dl

1− pl + dl

)
≤ log e · 2l+γ ,

and for l ≤ −γ,

H(dl)− (1− pl + dl)H

(
dl

1− pl + dl

)
≤ log e · 2−l−γ+1.

Hence, combining these with (26), we have

R(1) =

L2∑
l=−L1

[
H(pl)− (1− pl + dl)H

(
dl

1− pl + dl

)]

≤
L2∑

l=−L1

[H(pl)−H(dl)]

+

−γ∑
l=−L1

log e · 2l+γ +

L2∑
−γ+1

log e · 2−l−γ+1

≤ − logD + 4 log e. (27)

Finally, using (10) and the convexity of log function, we obtain

R(D) ≤ R(D(1))+log e·(2−L2+2−L1)/D ≤ R(D(1))+2 log e,

where theorem assumptions L1, L2 > − logD are utilized in
the last inequality. Relating this to (27), we have

R(1) ≤ R(D) + 4 log e ≤ R(D(1)) + 6 log e.

For the other part of the theorem, observe that

H

(
dl

1− 2pl + 2dl

)
≥ (1− pl + dl)H

(
dl

1− pl + dl

)
.

Hence, for any −L1 ≤ l ≤ L1, we have R̄l ≤ Rl. Thus, by
noting R(2) is a convex combination of R̄l and Rl at each
level, we have R(2) ≤ R(1). Combing with the observation
that D(1) = D(2), we have R(2) ≤ R(D(2)) + 6 log e.


