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Abstract—In this paper, we study the problem of secure
communication over the broadcast channel with receiver side
information, under the lens of individual secrecy constraints
(i.e., information leakage from each message to an eavesdropper
is made vanishing). Several coding schemes are proposed by
extending known results in broadcast channels to this secrecy
setting. In particular, individual secrecy provided via one-time
pad signal is utilized in the coding schemes. As a result, we
obtain an achievable rate region together with a characterization
of the capacity region for special cases of either a weak or
strong eavesdropper (compared to both legitimate receivers).
Interestingly, the capacity region for the former corresponds to a
line and the latter corresponds to a square with missing corners; a
phenomenon occurring due to the coupling between user’s rates.
At the expense of having a weaker notion of security, positive
secure transmission rates are always guaranteed, unlike the case
of the joint secrecy constraint.

I. INTRODUCTION

The broadcast channel is a fundamental communication
model that involves transmission of independent messages
to different users. The broadcast nature makes the commu-
nication very susceptible to eavesdropping. Therefore, it is
desirable to offer a reliable communication with a certain level
of security guarantee. In this paper, we consider an extension
of the broadcast channel with an external eavesdropper as
shown in Fig. 1. In this communication model, the transmitter
wants to send two independent messages to two receivers
which have, respectively, the desired message of the other
receiver (already available in their possession due to previous
communications) as side information. This setup is also related
to the two-way relay channel for which partial capacity results
(without an eavesdropper) are derived in [1].

The model of the broadcast channel with receiver side
information (BC-RSI) with an external eavesdropper has been
studied in [2]. The authors proposed achievable rate regions
and outer bounds for a joint secrecy constraint, whereby the
information leakage from both messages to the eavesdropper
is made vanishing. Differently from [2], we focus on the
problem under individual secrecy constraints that aims to
minimize the information leakage from each message to the
eavesdropper. Although individual secrecy constraints are by
definition weaker than the joint one, they nevertheless provide
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an acceptable security strength that keeps each legitimate
receiver away from an invasion of secrecy. In addition, a joint
secrecy constraint can be difficult or even impossible to fulfill
in certain cases (for instance, as the eavesdropper has the same
or better channel observation than at least one of the legitimate
receivers). So, in this paper, our main concern is to characterize
the fundamental limits of secure communications under the
individual secrecy constraints for the BC-RSI model.
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Fig. 1: Wiretap channel with receiver side information.

II. SYSTEM MODEL

Consider a discrete memoryless broadcast channel given by
p(y1, y2, z|x) with two legitimate receivers and one passive
eavesdropper. The transmitter aims to send messages m1,m2

to receiver 1, 2, respectively. Suppose xn is the channel input,
whilst yn1 (at receiver 1), yn2 (at receiver 2) and zn (at
eavesdropper), are the channel outputs. Besides, m2 (available
at receiver 1) and m1 (available at receiver 2), serve also as
side information that may help to decode the desired message.
(Unless otherwise specified, we use capital letters for random
variables and corresponding small cases for their realizations.)

Denote the average probability of decoding error at receiver
i as Pe,i. The rate pair (R1, R2) is said to be achievable, if
for any ε > 0, there exists an encoder-decoder such that

1

n
H(Mi) ≥Ri − ε (1)

Pe,i ≤ε (2)
1

n
I(Mi;Z

n) ≤ε, (3)

for i = 1, 2 and for sufficiently large n. Note that (3)
corresponds to the individual secrecy constraints. If the coding



scheme fulfills a stronger condition that

1

n
I(M1,M2;Z

n) ≤ ε, (4)

then it is said to satisfy the joint secrecy constraint.

III. AN ILLUSTRATIVE EXAMPLE

Consider a general model which consists of one trans-
mitter, k legitimate receivers and one passive eavesdrop-
per. The transmitter aims to broadcast k information bits
Uk = (U1, U2, · · · , Uk) to k legitimate receivers with Ui ∼
Bern(1/2); whilst each receiver i holds already one piece
of information Ui as side information. Suppose that the
channels involved are all noiseless and Uk is encoded into
Xn = (X1, X2, · · · , Xn) in the transmission. Then, for the
purpose of broadcasting, each legitimate receiver i (which
holds Ui and receives Xn) shall be able to recover the k − 1
information bits Uk\{Ui}, i.e.,

H(Uk|Xn, Ui) = 0. (5)

Thus, we have

H(Uk|Xn) = H(Uk, Ui|Xn) = H(Ui|Xn) +H(Uk|Xn, Ui)

(6)
= H(Ui|Xn). (6)

Let us now consider the secrecy aspect of broadcasting. We
note that the eavesdropper also receives a perfect copy of Xn.

1) For the joint secrecy constraint, we have that

H(Uk|Xn) = H(Uk). (7)

Recall (6). We obtain

H(Uk|Xn) = H(Ui|Xn) ≤ H(Ui) < H(Uk),

where the last inequality follows since Ui ∼ Bern(1/2). Thus,
equality in (7) is not possible. That is, for this example, no
broadcasting scheme could fulfill the joint secrecy constraint.

2) For the individual secrecy constraints, we have that

H(Ui|Xn) = H(Ui), for 1 ≤ i ≤ k. (8)

Suppose there is a coding scheme that fulfills both purposes
of broadcasting, i.e., (5), and the individual secrecy, i.e., (8).
Then, we have

H(Uk, Xn) = H(Ui, X
n) +H(U i−11 , Uni+1|Ui, Xn)

(a)
= H(Xn) +H(Ui|Xn)

(b)
= H(Xn) +H(Ui), (9)

where (a) is due to (5); and (b) is due to (8). In addition to
the fact that H(Uk, Xn) ≥ H(Uk), we have from (9) that

H(Xn) ≥ H(Uk)−H(Ui) = k − 1.

So to say, the optimal encoding scheme (with respect to the
overall transmission rate k/n) from Uk to Xn is such that
H(Xn) = k − 1. Thus, to obtain the optimal rate, one shall

take n = k−1. This is feasible. In fact, there are many coding
schemes that could achieve this. One of the options is to take

xi = u1 ⊕ ui+1, for 1 ≤ i ≤ k − 1.

The decoding at each receiver i is straightforward. And, the
transmission rate Ri to each receiver i, for 1 ≤ i ≤ k, is equal
to 1, since k− 1 bits are received in n = k− 1 channel uses.
Note that 1 is the capacity for a binary noiseless channel. This
implies that the above scheme actually achieves the individual-
secrecy capacity for all receivers.

We summarize the followings from this specific example:
• joint secrecy might be impossible to achieve;
• individual secrecy could be the highest secrecy level

to offer (as shown in (6) on the equivocation at the
eavesdropper);

• individual secrecy could be achieved without any penalty
on the capacity-approaching rate region!

In fact, joint secrecy is impossible for a more general setup.

Proposition 1. For the communication model as shown in Fig.
1 under the joint secrecy constraint, any rate pair (R1, R2) ∈
R+ is infeasible if the channel to at least one of the receivers
is degraded with respect to the channel to the eavesdropper.

Proof: Assume that receiver 2 receives Y n2 as a degraded
version of Zn, the channel output at the eavesdropper. From
the following analysis, we show that R2 > 0 is not possible.

H(M2) = I(M2;Y
n
2 ,M1) +H(M2|M1, Y

n
2 )

(a)

≤ I(M2;Y
n
2 |M1) + nε′ ≤ I(M1,M2;Y

n
2 ) + nε′

(b)

≤ I(M1,M2;Z
n) + nε′

(c)

≤ n(ε+ ε′),

where (a) is due to Fano’s inequality; (b) is due to the channel
degradedness, i.e., Markov chain (M1,M2)→ Zn → Y n2 ; and
(c) is due to the joint secrecy constraint (4). This implies that
R2 ≤ ε+ ε′, which is arbitrarily small for an arbitrarily small
Pe,2 (i.e., ε′) and an arbitrarily small secrecy level ε.

For the BC-RSI under joint secrecy constraint, an achievable
rate region was established in [2]. In the following sections,
we will focus on deriving the achievable individual-secrecy
rate regions for the BC-RSI model.

IV. INDIVIDUAL-SECRECY RATE REGION

A. Secret key approach

Consider the symmetric secret rate region where R1 =
R2 = R, i.e., M1 and M2 are of the same entropy. One can
apply a one-time pad approach as proposed in [2]. With this
scheme, the following rate region is achievable.

Proposition 2. Any (R1, R2) ∈ R+ satisfying

R1 = R2 ≤ min{I(X;Y1), I(X;Y2)}, (10)

for any p(x) is achievable.

Proof: Randomly generate 2nR codewords xn according
to p(x). Given (m1,m2), send xn(mk) with mk = m1 ⊕m2



to the channel. Both receivers can decode reliably by utilizing
their side information to extract intended messages if R1 =
R2 ≤ min{I(X;Y1), I(X;Y2)}.

For the secrecy of Mi, i = 1, 2 we have

I(Mi;Z
n) ≤ I(Mi;Z

n,Mk) = I(Mi;Mk) = 0, (11)

where the 1st equality is due to Markov chain Mi → Mk →
Zn by the coding scheme; and the 2nd follows as Mi is
secured with a one-time pad Mj (j 6= i) in Mk.

Note that the above achievable region is limited by the
capacity of the worse channel of the legitimate receivers. Nev-
ertheless, it serves as the individual-secrecy capacity region in
case that the eavesdropper has an advantage on the channel
over both legitimate receivers.

Proposition 3. If both channels to the legitimate receivers are
degraded with respect to the channel to the eavesdropper, then
the individual-secrecy capacity region is given by the union of
(R1, R2) ∈ R+ pairs satisfying

R1 = R2 ≤ min{I(X;Y1), I(X;Y2)}, (12)

where the union is taken over p(x). See Fig. 2.

Proof: The achievablity follows from the proof of Propo-
sition 2. Here, we detail the converse.

nR1 = H(M1) = I(M1;Y
n
1 ,M2) +H(M1|M2, Y

n
1 )

(a)

≤ I(M1;Y
n
1 |M2) + nε′ ≤ I(M1,M2;Y

n
1 ) + nε′;

(b)

≤ I(Xn;Y n1 ) + nε′
(c)
=

n∑
i=1

I(Xi;Y1,i) + nε′

(d)
= nI(XQ;Y1,Q|Q) + nε′

(e)

≤ nI(X;Y1) + nε′;

Moreover, we have

nR1 = H(M1) ≤ I(M1,M2;Y
n
1 ) + nε′

(f)

≤ I(M1,M2;Z
n) + nε′

(g)

≤ I(M2;Z
n|M1) + n(ε′ + ε)

≤ H(M2) + n(ε′ + ε)
(h)
= nR2 + n(ε′ + ε)

(i)

≤ nI(X;Y2) + n(ε′ + ε)

where (a) is due to Fano’s inequality; (b) is due to Markov
chain (M1,M2) → Xn → Y n1 ; (c) is since the channel
is memoryless; (d) is by introducing a time-sharing random
variable Q which is uniform over 1, 2, . . . , n; (e) is by taking
X = XQ, Y1 = Y1,Q; (f) is due to the channel degradedness,
i.e., Markov chain (M1,M2) → Zn → Y n1 ; (g) is by the
individual secrecy constraint (3); (h) is due to H(M2) = nR2

and (i) is derived by applying a proof similar to H(M1) ≤
nI(X;Y1) + nε′ and by taking Y2 = Y2,Q. As a conclusion,
we have by (h) R1 ≤ R2; and

R1 ≤ min{I(X;Y1), I(X;Y2)}.

0 I(X;Y2) I(X;Y1)

I(X;Y2)

R1

R
2

R1 = R2

R1 = R2 = min{I(X;Y1), I(X;Y2)}

Fig. 2: Individual-secrecy capacity region in case of a strong
eavesdropper.

By symmetry, we have R2 ≤ R1 and R2 ≤
min{I(X;Y1), I(X;Y2)}. Thus, we establish that R1 = R2 ≤
min{I(X;Y1), I(X;Y2)}, i.e., the converse.

B. Secrecy coding approach

Consider channel inputs p(x) such that I(X;Z) ≤
min{I(X;Y1), I(X;Y2)}. Assume wlog that I(X;Y2) ≤
I(X;Y1). For such cases, we can split M1 into two parts:
one of entropy n(I(X;Y1) − I(X;Y2)) which is secured by
using secrecy coding for classical wiretap channels; and the
other of entropy nI(X;Y2) which is secured by capsuling with
M2 as a one-time pad (thus M2 is also secured as in Section
IV-A). In general, we have the following.

Proposition 4. Any (R1, R2) ∈ R+ satisfying

I(X;Z) ≤ Rt ≤ I(X;Yt), for t ∈ {1, 2}, (13)

for p(x) such that I(X;Z) ≤ min{I(X;Y1), I(X;Y2)} is
achievable.

Proof: Assume that R2 ≤ R1. We split M1 into two parts,
i.e., M1 = (M1k,M1s) with M1k of entropy nR2, the same
as M2; whilst M1s of entropy n(R1 −R2).

Randomly generate 2nR1 codewords xn according to p(x).
Throw them into 2n(R1−R2) bins [3] and index xn(ik, i1s)
with (ik, i1s) ∈ [1 : 2nR2 ]× [1 : 2n(R1−R2)].

To send messages (m1,m2), choose xn(mk,m1s) with
mk = m1k ⊕ m2 and transmit it to the channel. Receiver
2 can decode mk reliably using typical set decoding if R2 <
I(X;Y2) with the knowledge of m1, and thus extract m2.
Receiver 1 can decode both mk and m1s if R1 < I(X;Y1),
and extract m1k from the former with the knowledge of m2.

At the eavesdropper, the secrecy of M2 follows by

I(M2;Z
n) ≤ I(M2;Z

n,Mk,M1s) = I(M2;Mk,M1s) = 0.

Further, the secrecy of M1 is shown as follows. Since R2 ≥
I(X;Z), for a fixed i1s, one can further bin the codewords
xn and index them as xn(ikx, iks, i1s) with ik = (ikx, iks) ∈
[1 : 2n(I(X;Z)−ε)] × [1 : 2n(R2−I(X;Z)+ε)]. Correspondingly,
split Mk = (Mkx,Mks). We have
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Fig. 3: Individual-secrecy capacity region in case of a weak
eavesdropper.

H(M1s,Mks|Zn)

=H(M1s,Mks, X
n|Zn)−H(Xn|M1s,Mks, Z

n)

(a)

≥H(M1s,Mks, X
n, Zn)−H(Zn)− nε1

=H(Xn) +H(Zn|Xn)−H(Zn)− nε1
(b)

≥nR1 + nH(Z|X)− nH(Z)− nε1
(c)

≥H(M1s,Mks)− nδ(ε),

where (a) follows as H(Xn|M1s,Mks, Z
n) ≤ nε1 due

to Fano’s inequality and that the eavesdropper can decode
Xn reliably, given (Mks,M1s, Z

n); (b) is due to the fact
that H(Xn) = nR1; H(Zn|Xn) = nH(Z|X) since the
channel is memoryless; and H(Zn) =

∑n
i=1H(Zi|Zi−11 ) ≤∑n

i=1H(Zi) = nH(Z); (c) follows that H(M1s,Mks) =
n(R1 −R2) + n(R2 − I(X;Z) + ε) and δ(ε) = ε1 + ε.

Above inequality implies I(M1s;Z
n) ≤ nδ(ε). In addition,

we can bound I(M1k;Z
n|M1s) ≤ I(M1k;Z

n,M1s,Mk) =
I(M1k;Mk,M1s) = 0 due to Markov chain M1k →
(Mk,M1s)→ Zn. Therefore, we obtain

I(M1;Z
n) = I(M1s;Z

n) + I(M1k;Z
n|M1s) ≤ nδ(ε).

This concludes the proof of the individual secrecy.

Proposition 5. If the channel to the eavesdropper is degraded
with respect to the channels to both legitimate receivers, then
the individual-secrecy capacity region is given by the union of
(R1, R2) ∈ R+ pairs satisfying

R1 ≤ min{I(X;Y1)− I(X;Z) +R2, I(X;Y1)};
R2 ≤ min{I(X;Y2)− I(X;Z) +R1, I(X;Y2)},

where the union is taken over p(x).

Proof: Under the degradedness condition, we have that
I(X;Z) ≤ min{I(X;Y1), I(X;Y2)} holds for any p(x).
Utilizing the scheme in Proposition 4, the region I in Fig.3 is
achievable. To show region II is achievable, one can employ
Wyner’s secrecy coding to achieve rate pairs (R1, R2) such
that R1 = 0 and R2 ≤ I(X;Y2) − I(X;Z). Then, applying
time sharing with the west boundary rate pairs of region I,

one obtains the achievablity of other rate pairs in region II. A
similar proof applies to the achievability of region III.

The converse follows from the fact that the achievable
region is equal to the intersection of upper bounds given
in [1, Theorem 1], which is the capacity region of the BC-
RSI without an eavesdropper, and the upper bound given in
Proposition 7, which is a partial upper bound by applying
the results for wiretap channel with shared key for one
receiver while ignoring the requirement of reliable and secure
communication for the other.

As shown in Fig. 3, the individual-secrecy capacity region
for a weak eavesdropper is a rectangle with missing corners. In
particular, for this scenario, one may not claim that if (R1, R2)
is achievable, then (R1 − c1, R2 − c2) is achievable for any
c1 ≤ R1, c2 ≤ R2. This follows as the individual-secrecy rates
are coupled in the BC-RSI setting.

C. Superposition coding

Consider a degraded broadcast channel where X → Y1 →
Y2 forms a Markov chain. Then, one can utilize superposition
coding to transmit a cloud center to the weak receiver and
both the cloud center and satellite codewords to the strong
receiver [3]. By utilizing the one-time pad message as the
cloud center, one can readily achieve the following region.

Proposition 6. The individual-secrecy rate region for BC-RSI
is achievable for the set of the rate pairs (R1, R2) such that

R2 ≤ I(U ;Y2), (14)
R1 ≤ I(V ;Y1|U)− I(V ;Z|U) +R2, (15)

over all p(u)p(v|u)p(x|v).
Proof: Assume that R2 ≤ R1 ( since V can be always

chosen such that I(V ;Y1|U) − I(V ;Z|U) is non-negative).
Represent M1 by (M1k,M1s), with M1k of entropy nR2, the
same as that of M2 and M1s of entropy n(R1 −R2).

Codebook generation: Fix p(u), p(v|u). First, randomly
generate 2nR2 i.i.d sequences un(k), k ∈ [1 : 2nR2 ],
according to p(u). Secondly, for each un(k), according to
p(v|u), randomly generate i.i.d sequences vn(k, s, r) with
(s, r) ∈ [1 : 2n(R1−R2)]× [1 : 2n(I(V ;Z|U)−ε)].

Encoding: To send messages (m1,m2), choose un(k),
where k = mk , m1k ⊕m2. Given un(k), randomly choose
r ∈ [1 : 2n(I(V ;Z|U)−ε)] and find vn(k,m1s, r). Generate xn

according to p(x|v), and transmit it to the channel.
Decoding: Receiver 2, upon receiving yn2 , finds un(k̂) such

that (un(k̂), yn2 ) is jointly typical. (It is necessary that R2 <
I(U ;Y2).) With the knowledge of m1, decode m̂2 = m1k⊕ k̂.

Receiver 1, upon receiving yn1 , finds un(k̂) such that
(un(k̂), yn1 ) is jointly typical. (This is possible since R2 <
I(U ;Y2) ≤ I(U ;Y1).) Corresponding to un(k̂), further find
vn(k̂, m̂1s, r̂) which is jointly typical with yn1 . With the
knowledge of m2, decode m̂1 = (m2 ⊕ k̂, m̂1s).

Analysis of the probability error: Assume that (M1,M2) =
(m1,m2) is sent. First consider Pe,2 at receiver 2. A decoding
error happens iff one or both of the following events occur:



E21 ={(un(m2 ⊕m1k), y
n
2 ) /∈ T (n)

ε },
E22 ={(un(m′2 ⊕m1k), y

n
2 ) ∈ T (n)

ε for some m′2 6= m2}.
Thus Pe,2 can be upper bounded as

Pe,2 ≤ Pr(E21) + Pr(E22).
By the LLN, Pr(E21) tends to zero as n →∞. For Pr(E22),
since un(m′2 ⊕m1k) is independent of (un(m2 ⊕m1k), y

n
2 )

for m′2 6= m2, by the packing lemma, Pr(E22) tends to zero
as n→∞ if R2 < I(U ;Y2)− δ(ε).

At receiver 1, the decoder makes an error iff one or more
of the following events occur:
E11 ={(un(m2 ⊕m1k, y

n
1 ) /∈ T (n)

ε },
E12 ={(vn(k,m1s, r), y

n
1 ) /∈ T (n)

ε },
E13 ={(vn(k,m′1s, r′), yn1 ) ∈ T (n)

ε , (m′1s, r
′) 6= (m1s, r)}.

So Pe,1 can be upper bounded by
Pe,1 ≤ Pr(E11) + Pr(E12|Ec11) + Pr(E13|Ec11).

By the LLN, Pr(E11) and Pr(E12|Ec11) tends to zero as
n → ∞. For Pr(E13|Ec11), note that if (m′1s, r

′) 6=
(m1s, r), then given un(k), vn(k,m′1s, r

′) is independent of
(vn(k,m1s, r), y

n
1 ). By the packing lemma, it tends to zero as

n→∞ if R1 < I(V ;Y1|U)− I(V ;Z|U) +R2 − δ(ε).
Analysis of individual secrecy: For the secrecy of M2, due

to the Markov chain M2 → (Mk,M1s)→ Zn, we have
I(M2;Z

n) ≤ I(M2;Z
n,Mk,M1s) = I(M2;Mk,M1s) = 0,

where the last equality is due to the fact that Mk =M2⊕M1k,
is independent of M2 as its one-time pad encryption.

For the secrecy of M1, we have
I(M1;Z

n) =I(M1k,M1s;Z
n)

=I(M1k;Z
n) + I(M1s;Z

n|M1k)

(a)
= I(M1s;Z

n|M1k)

≤I(M1s;Z
n,M1k,Mk)

=I(M1s;Z
n,Mk) + I(M1s;M1k|Zn,Mk)

(b)
=I(M1s;Z

n,Mk)

=H(M1s)−H(M1s|Mk, Z
n)

=n(R1 −R2)−H(M1s|Mk, Z
n),

where (a) is due to the fact that I(M1k;Z
n) = 0 by

following a similar proof of I(M2;Z
n) = 0; (b) follows that

I(M1s;M1k|Zn,Mk) ≥ 0 and that H(M1k|Zn,Mk,M1s) =
H(M1k|Mk,M1s) = H(M1k) ≥ H(M1k|Zn,Mk).

To complete the proof that I(M1;Z
n) ≤ nδ(ε), we show

in the following that H(M1s|Mk, Z
n) ≥ n(R1−R2)−nδ(ε).

H(M1s|Mk, Z
n)

(c)
=H(M1s|Un, Zn)
=H(M1s, Z

n|Un)−H(Zn|Un)
=H(M1s, Z

n, V n|Un)
−H(V n|Un,M1s, Z

n)−H(Zn|Un)
=H(V n|Un) +H(Zn|Un, V n)
−H(V n|Un,M1s, Z

n)−H(Zn|Un)
(d)

≥n(R1 −R2)− nδ(ε),

where (c) is due to the fact that Un is uniquely deter-
mined by Mk; (d) follows as H(V n|Un) = n(R1 −
R2) + n(I(V ;Z|U) − ε) by codebook construction;
H(Zn|Un, V n) =

∑n
i=1H(Zi|Ui, Vi) = nH(Z|U, V ) since

the channel is discrete memoryless; H(V n|Un,M1s, Z
n) ≤

nε due to Fano’s inequality and that the eavesdropper can
decode V n reliably, given (Un,M1s, Z

n); and H(Zn|Un) =∑n
i=1H(Zi|Zi−1, Un) ≤

∑n
i=1H(Zi|Ui) = nH(Z|U).

D. Upper bounds

An upper bound on the individual-secrecy capacity region is
the capacity region of the BC-RSI without an eavesdropper as
given in [1, Theorem 1]. Another upper bound follows directly
the work of wiretap channel with shared key [5], as provided
below.

Proposition 7. For any R2 in the achievable region, R1 is
upper bounded by

max
U→V→X→(Y1,Z)

min{I(V ;Y1|U)−I(V ;Z|U)+R2, I(V ;Y1)}.

If the channel is degraded such that X → Y1 → Z, then for
any R2 in the achievable region, R1 is upper bounded by

max
X→Y1→Z

min{I(X;Y1)− I(X;Z) +R2, I(X;Y1)}.

Similar results hold for interchanging 1 and 2 above.

V. CONCLUSION

In this paper, we studied the problem of secure communi-
cation over BC-RSI under the individual secrecy constraints.
Compared to the joint secrecy constraint, this relaxed setting
allows for higher secure communication rates at the expense
of having a weaker notion of security. We characterized the
individual-secrecy capacity region: 1) in case of a strong
eavesdropper, to be a line on (R1, R2) plane; and 2) in case of
a weak eavesdropper, to be a rectangle with missing corners.
This result is due to the very nature of the problem where
the communication rates are coupled. Therefore, one can not
arbitrarily decrease one user’s rate without sacrificing the rate
of the other. We presented several achievable strategies by
employing superposition coding, Wyner’s secrecy coding and
one-time pad, however, the characterization of the capacity
region for the general case still remains as an open problem.

REFERENCES

[1] G. Kramer and S. Shamai, “Capacity for classes of broadcast channels
with receiver side information,” in Proc. 2007 IEEE Information Theory
Workshop (ITW 2007), pp. 313–318, Sep. 2007.

[2] R. F. Wyrembelski, A. Sezgin and H. Boche, “Secrecy in broadcast chan-
nels with receiver side information,” in Proc. 45th Asilomar Conference
on Signals, Systems and Computers (ASILOMAR), pp. 290–294, Nov.
2011.

[3] A. El Gamal and Y.-H. Kim, Network Information Theory, Cambridge
University Press, 2011.

[4] I. Csiszár and J. Körner, “Broadcast channels with confidential messages,”
IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May 1978.

[5] W. Kang and N. Liu, “Wiretap channel with shared key,” in Proc. 2010
IEEE Information Theory Workshop (ITW 2010), pp. 1–5, Sep. 2010.


