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Abstract—This paper studies the problem of secure
communication over broadcast channels under the lens
of individual secrecy constraints (i.e., information leak-
age from each message to an eavesdropper is made
vanishing). It is known that, for the communication
over the degraded broadcast channels, the stronger
receiver is able to decode the message of the weaker
receiver. In the individual secrecy setting, the message
for the weaker receiver can be further utilized to secure
the partial message that is intended to the stronger re-
ceiver. With such a coding spirit, it is shown that more
secret bits can be conveyed to the stronger receiver.
In particular, for the corresponding Gaussian model,
a constant gap (i.e., 0.5 bits within the individual se-
crecy capacity region) result is obtained. Overall, when
compared with the joint secrecy constraint, the results
allow for trading-off secrecy level and throughput in the
system.

I. Introduction
The broadcast channel (BC) is a fundamental commu-

nication model that involves transmission of independent
messages to different users. The broadcast nature makes
the communication susceptible to eavesdropping. There-
fore, it is desirable to offer a reliable communication with
a certain level of security guarantee, especially to ensure
that sensitive information is protected from unauthorized
parties.

The model of the discrete memoryless degraded broad-
cast channel (DM-DBC) with or without an external
eavesdropper has been well studied. Both capacity re-
gions have been determined for the cases without secrecy
constraint [1]–[3], or subject to a joint secrecy constraint
(whereby the information leakage from both messages to
the eavesdropper is made vanishing) [4], [5]. Interestingly,
superposition coding is optimal in both settings. Differ-
ently from the previous studies, we focus on the prob-
lem under the individual secrecy constraints, where the
requirement is to minimize the information leakage from
each message to the eavesdropper. Remarkably, these two
secrecy notions are different. The joint secrecy constraint
offers a higher secrecy level from the system design per-
spective but unfortunately not always affordable [6], while
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the individual secrecy constraint provides an acceptable
security strength by keeping each legitimate receiver away
from an invasion of secrecy. In communication networks,
from the end user’s point of view, this is a good option for
trading-off of the throughput and secrecy [7].

II. System model

Consider a discrete memoryless broadcast channel given
by p(y1, y2, z|x) with two legitimate receivers and one pas-
sive eavesdropper. The transmitter aims to send messages
m1,m2 to receiver 1, 2, respectively. Suppose xn is the
channel input, whilst yn1 (at receiver 1), yn2 (at receiver
2) and zn (at eavesdropper), are the channel outputs.
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Fig. 1: DM-BC with an external eavesdropper.

Denote the average probability of decoding error at
receiver i as Pe,i. The rate pair (R1, R2) is said to be
achievable, if for any ε > 0, there exists an encoder-decoder
such that

1
n
H(Mi) ≥Ri − ε (1)

Pe,i ≤ε (2)
1
n
I(Mi;Zn) ≤ε, (3)

for i = 1, 2 and for sufficiently large n. Note that (3)
corresponds to the individual secrecy constraints. If the
coding scheme fulfills a stronger condition that

1
n
I(M1,M2;Zn) ≤ ε, (4)

then it is said to satisfy the joint secrecy constraint.
Clearly, the joint secrecy constraint implies the individual
secrecy constraints.



III. DM-BC with an external eavesdropper

In this section, we are interested in the DM-BC scenario
where the individual secrecy constraint is employed. (The
Gaussian counterpart of the model is the subject of Sec-
tion IV.) Our first observation is that positive rate pairs
are not possible if the eavesdropper’s channel is less noisy
than either receiver’s channel, i.e., I(U ;Z) ≥ I(U ;Yi) for
i ∈ {1, 2} for all p(u) such that U → X → (Y1, Y2, Z).
This is due to the fact that nRi = H(Mi) = I(Mi;Y ni ) +
H(Mi|Y ni ) ≤ I(Mi;Zn) + nO(ε) ≤ nO(ε), where the
first inequality is due to the reliability constraint whilst
the second inequality is due to the individual secrecy
constraint. Therefore, we assume that both Y1, Y2 are less
noisy than Z for the DM-BC under investigation. Utilizing
the superposition coding with secrecy coding [8], we have
the following theorem.

Theorem 1. For DM-BC with an external eavesdropper
such that Y1 is less noisy than Y2, an achievable individual
secrecy rate region is given by the union of non-negative
rate pairs (R1, R2) satisfying

R2 ≤ I(U ;Y2)− I(U ;Z),
R1 ≤ I(V ;Y1|U)− I(V ;Z|U)

+I(U ;Y2)−max{R2, I(U ;Z)}

over all p(u)p(v|u)p(x|v).

Proof. Rate splitting: We split M1 into (M1k,M1s). In
particular, M1k,M1s are of entropy nR1k and nR1s, re-
spectively; and M2 is of entropy nR2. That is,

R1 = R1k +R1s. (5)

Codebook generation: Fix p(u), p(v|u). First,
randomly generate 2n(R2+R1k+R2r) i.i.d. sequences
un(m2,m1k,m2r), with (m2,m1k,m2r) ∈ [1 :
2nR2 ] × [1 : 2nR1k ] × [1 : 2nR2r ], according to
p(u). Secondly, for each un(m2,m1k,m2r), randomly
generate i.i.d. sequences vn(m2,m1k,m2r,m1s,m1r) with
(m1s,m1r) ∈ [1 : 2nR1s ]× [1 : 2nR1r ], according to p(v|u).

Encoding: To send messages (m1,m2) with m1 =
(m1k,m1s), randomly choose m2r ∈ [1 : 2nR2r ] and
find un(m2,m1k,m2r). Given un(m2,m1k,m2r), randomly
choose m1r ∈ [1 : 2nR1r ], further find the correspond-
ing vn(m2,m1k,m2r,m1s,m1r). Generate xn according to
p(x|v), and transmit it to the channel.

Decoding: Receiver 2, upon receiving yn2 , finds
un(m̂2, m̂1k, m̂2r) such that (un(m̂2, m̂1k, m̂2r), yn2 ) is
jointly typical.

Receiver 1, upon receiving yn1 , finds un(m̃2, m̃1k, m̃2r)
such that (un(m̃2, m̃1k, m̃2r), yn1 ) is jointly typical.
Corresponding to un(m̃2, m̃1k, m̃2r), further find
vn(m̃2, m̃1k, m̃2r, m̃1s, m̃1r) which is jointly typical
with yn1 . Finally, decode m̃1 = (m̃1k, m̃1s).

Analysis of the error probability of decoding: Assume that
(M1,M2) = (m1,m2) with m1 = (m1k,m1s) is sent.

First we consider Pe,2 at receiver 2. A decoding error
happens iff one or both of the following events occur:

E21 ={(un(m2,m1k,m2r), yn2 ) /∈ T (n)
ε },

E22 ={(un(m̂2, m̂1k, m̂2r), yn2 ) ∈ T (n)
ε for some m̂2 6= m2}.

Thus, Pe,2 can be upper bounded as

Pe,2 ≤ Pr(E21) + Pr(E22).

By the LLN, Pr(E21) tends to zero as n → ∞.
For Pr(E22), since un(m̂2, m̂1k, m̂2r) is independent of
(un(m2,m1k,m2r), yn2 ) for m̂2 6= m2, by the packing
lemma [9], Pr(E22) tends to zero as n→∞ if

R2 +R1k +R2r < I(U ;Y2)− δ(ε). (6)

At receiver 1, the decoder makes an error iff one or more
of the following events occur:

E11 ={(un(m2,m1k,m2r), yn1 ) /∈ T (n)
ε },

E12 ={(un(m̃2, m̃1k, m̃2r), yn1 ) ∈ T (n)
ε

for some (m̃2, m̃1k, m̃2r) 6= (m2,m1k,m2r)},
E13 ={(vn(m2,m1k,m2r,m1s,m1r), yn1 ) /∈ T (n)

ε },
E14 ={(vn(m2,m1k,m2r, m̃1s, m̃1r), yn1 ) ∈ T (n)

ε

for some m̃1s 6= m1s}.

So Pe,1 can be upper bounded by

Pe,1 ≤ Pr(E11) + Pr(E12) + Pr(E13) + Pr(E14).

By the LLN, Pr(E11) and Pr(E13) tends to zero as n →
∞. For Pr(E12), since un(m̃2, m̃1k, m̃2r) is independent of
(un(m2,m1k,m2r), yn1 ) for (m̃2, m̃1k) 6= (m2,m1k), by the
packing lemma [9], Pr(E12) tends to zero as n→∞ if

R2 +R1k +R2r < I(U ;Y1)− δ(ε). (7)

(Note that (7) holds once (6) is satisfied.) For Pr(E14),
note that if (m̃1s, m̃1r) 6= (m1s,m1r), then for a given
un(m2,m1k,m2r), vn(m2,m1k,m2r, m̃1s, m̃1r) is indepen-
dent of (vn(m2,m1k,m2r,m1s,m1r), yn1 ). By the packing
lemma [9], Pr(E14) tends to zero as n→∞ if

R1s +R1r < I(V ;Y1|U)− δ(ε). (8)

Analysis of individual secrecy: First consider H(M2|Zn).

H(M2|Zn) = H(M2, Z
n)−H(Zn)

=H(Un,M2, Z
n)−H(Un|M2, Z

n)−H(Zn)
=H(Un) +H(Zn|Un)−H(Un|M2, Z

n)−H(Zn)
(a)
≥H(Un) +H(Zn|Un)
− n[R1k +R2r − I(U ;Z)]−H(Zn)− nε1

(b)=n[R2 +R1k +R2r]
− n[R1k +R2r − I(U ;Z)]− I(Un;Zn)− nε1

=nR2 + nI(U ;Z)− I(Un;Zn)− nε1
(c)
≥nR2 − nδ1(ε),



where (a) follows from [10, Lemma 1] that
H(Un|M2, Z

n) ≤ n[R1k +R2r − I(U ;Z)] + nε1, if

R1k +R2r ≥ I(U ;Z) + ε′1; (9)

(b) follows from the codebook construction that H(Un) =
n[R2 +R1k+R2r]; and (c) is by the fact that I(Un;Zn) ≤
nI(U ;Z) + nε2 and by taking δ1(ε) = ε1 + ε2. The proof
of I(Un;Zn) ≤ nI(U ;Z) + nε2 is given as follows.

I(Un;Zn) = H(Zn)−H(Zn|Un)
=H(Zn)−H(Zn|Un, V n)− I(V n;Zn|Un)

(d)=H(Zn)− nH(Z|U, V )−H(V n|Un) +H(V n|Un, Zn)
(e)
≤H(Zn)− nH(Z|U, V )−H(V n|Un)

+ n[R1s +R1r − I(V ;Z|U)] + nε2
(f)
≤nH(Z)− nH(Z|U, V )− n[R1s +R1r]

+ n[R1s +R1r − I(V ;Z|U)] + nε2

=nI(U ;Z) + nε2,

where (d) is due to the discrete memoryless channel; (e)
follows from [10, Lemma 1] that H(V n|Un, Zn) ≤ n[R1s+
R1r − I(V ;Z|U)] + nε2, if

R1s +R1r ≥ I(V ;Z|U) + ε′2; (10)

(Note that (10) holds if (12) holds.) (f) follows from the
fact that H(Zn) =

∑n
i=1 H(Zi|Zi−1) ≤

∑n
i=1 H(Zi) =

nH(Z) and by the codebook construction H(V n|Un) =
n[R1s +R1r].

For H(M1|Zn), we have

H(M1|Zn) = H(M1k,M1s|Zn)
=H(M2,M1k,M2r,M1s|Zn)−H(M2,M2r|M1k,M1s, Z

n)
=H(Un,M1s|Zn)−H(Un|M1k,M1s, Z

n)
(g)
≥H(Un|Zn) +H(M1s|Un, Zn)−H(Un|M1k, Z

n)
=H(Un|Zn) +H(V n|Un, Zn)−H(V n|M1s, U

n, Zn)
−H(Un|M1k, Z

n)
(h)
≥H(Un, V n|Zn)− n[R1r − I(V ;Z|U)]
− n[R2 +R2r − I(U ;Z)]− nδ2(ε)

=H(Un, V n)− I(Un, V n;Zn) + nI(U, V ;Z)
− n[R1r +R2 +R2r]− nδ2(ε)

(i)
≥nR1 − nδ2(ε),

where (g) is due to the fact that conditioning reduces
entropy; (h) follows from [10, Lemma 1] that by taking

R2 +R2r ≥ I(U ;Z) + ε′3, (11)

we have H(Un|M1k, Z
n) ≤ n[R2 + R2r − I(U ;Z)] + nε3;

and by taking

R1r ≥ I(V ;Z|U) + ε′4, (12)
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Fig. 2: Gaussian BC with an external eavesdropper.

we have H(V n|M1s, U
n, Zn) ≤ n[R1r − I(V ;Z|U)] + nε4;

and taking δ2(ε) = ε3 +ε4; (i) is by the codebook construc-
tion that H(Un, V n) = n[R2 + R1k + R2r + R1s + R1r];
and the fact that I(Un, V n;Zn) ≤ nI(U, V ;Z), the proof
of which is given as follows:

I(Un, V n;Zn) =H(Zn)−H(Zn|Un, V n)
(j)=H(Zn)− nH(Z|U, V )
(k)
≤nH(Z)− nH(Z|U, V )
=nI(U, V ;Z),

where (j) is due to the discrete memoryless of the
channel; and (k) follows from the fact that H(Zn) =∑n
i=1 H(Zi|Zi−1) ≤

∑n
i=1 H(Zi) = nH(Z).

Achievable rate region: Recall the non-negativity for
rates; the rate relations as specified in (5); the conditions
for reliable communication for both legitimate receivers,
i.e., (6), (8), and individual secrecy at the eavesdropper,
i.e., (9), (11), (12). Eliminating R1r, R2r, R1s and R1k by
applying Fourier-Motzkin procedure [9], we get the desired
rate region.

IV. Gaussian BC with an external eavesdropper
The Gaussian broadcast channel with an external eaves-

dropper is shown in Fig. 2. Suppose X is the channel input
with a power constraint P , and the signals received by
both receivers and the eavesdropper are given by

Y1 = X +N1;
Y2 = X +N2;
Z = X +Ne,

where N1, N2 and Ne are additive white Gaussian noise
(AWGN) independent of X, where N1 ∼ N (0, σ2

1), N2 ∼
N (0, σ2

2) and Ne ∼ N (0, σ2
e), respectively.

According to the noise level in the channels to both
receivers and the eavesdropper, the overall channel can
be regarded to be stochastically degraded. For simplicity,
we only consider its corresponding physically degraded
instances. The reason is that the same analysis can be
easily extended to the stochastically degraded case. That
is, the scenario: σ2

e ≥ σ2
2 ≥ σ2

1 , as X → Y1 → Y2 → Z
forms a Markov chain, is of our interest.



A. An outer bound
Proposition 2. An outer bound to the individual secrecy
capacity region for the Gaussian BC when X → Y1 →
Y2 → Z forms a Markov chain is given by the set of the
rate pairs (R1, R2) satisfying

R1 ≤C
(
α(1− γ)P
γαP + σ2

1

)
− C

(
α(1− γ)P
γαP + σ2

e

)
+ min

{
R2, C

(
(1− γα)P
γαP + σ2

e

)}
; (13)

R2 ≤C
(

(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
, (14)

for some α, γ ∈ [0, 1], and C(x) = 0.5 log2(1 + x), i.e., the
Gaussian capacity function.

Proof: First let us consider R2.

nR2 = H(M2) (a)= I(M2;Y n2 ) + nO(ε)
(b)
≤ I(M2;Y n2 )− I(M2;Zn) + nO(ε)
= h(Y n2 )− h(Zn)︸ ︷︷ ︸

nR1
2

−(h(Y n2 |M2)− h(Zn|M2)︸ ︷︷ ︸
nR2

2

) + nO(ε),

where (a) is due to the Fano’s inequality; (b) is due to
adding the non-negative term −I(M2;Zn) + nO(ε) ≥ 0,
which is due to the individual secrecy constraint.
Note that, according to [11, Lemma 10 and equation

(75)], nR1
2 can be bounded by:

nR1
2 = h(Y n2 )− h(Zn) ≤ n

2 log P + σ2
2

P + σ2
e

. (15)

Further, due to the degradedness, we have for nR2
2 :

nR2
2 ≥ h(Y n2 |Xn)− h(Zn|Xn) = n

2 log σ
2
2
σ2
e

;

nR2
2 ≤ h(Y n2 )− h(Zn) ≤ n

2 log P + σ2
2

P + σ2
e

.

Hence, there exists α ∈ [0, 1] such that

nR2
2 = h(Y n2 |M2)− h(Zn|M2) = n

2 log αP + σ2
2

αP + σ2
e

. (16)

Combining (15) and (16), we have

nR2 = nR1
2 − nR2

2 ≤
n

2 log P + σ2
2

P + σ2
e

− n

2 log αP + σ2
2

αP + σ2
e

= n

2 log (P + σ2
2)(αP + σ2

e)
(αP + σ2

2)(P + σ2
e) .

Thus, we obtain (14).
Now we proceed to bound R1.

nR1 = H(M1) = H(M1|M2)=I(M1;Y n1 |M2) + nO(ε)
=I(M1;Y n1 |M2)− I(M1;Zn|M2) + I(M1;Zn|M2) + nO(ε)
=h(Y n1 |M2)− h(Zn|M2)︸ ︷︷ ︸

nR1
1

+ I(M1;Zn|M2)︸ ︷︷ ︸
nR3

1

− (h(Y n1 |M1,M2)− h(Zn|M1,M2)︸ ︷︷ ︸
nR2

1

) + nO(ε). (17)

Applying Costa’s entropy-power inequality [12, Theorem
1] and using (16), we obtain

nR1
1 = h(Y n1 |M2)− h(Zn|M2) ≤ n

2 log αP + σ2
1

αP + σ2
e

; (18)

For nR2
1, due to the degradedness, we have

nR2
1 ≥ h(Y n1 |Xn)− h(Zn|Xn) = n

2 log σ
2
1
σ2
e

;

nR2
1 ≤ h(Y n1 |M2)− h(Zn|M2) ≤ n

2 log αP + σ2
1

αP + σ2
e

.

Hence, there exists a γ ∈ [0, 1] such that

nR2
1 = h(Y n1 |M1,M2)− h(Zn|M1,M2) = n

2 log γαP + σ2
1

γαP + σ2
e

.

Further, applying the entropy power inequality (EPI) [13],
we can bound h(Zn|M1,M2) by

h(Zn|M1,M2) ≥ n

2 log 2πe(γαP + σ2
e). (19)

For nR3
1, we observe that

nR3
1 = I(M1;Zn|M2) = I(M1,M2;Zn)− I(M2;Zn)

= I(M2;Zn|M1) + I(M1;Zn)− I(M2;Zn)
≤ nR2 + nO(ε).

Moreover, we can bound nR3
1 as follows

nR3
1 = I(M1;Zn|M2) = h(Zn|M2)− h(Zn|M1,M2)
≤ h(Zn)− h(Zn|M1,M2)

≤ n

2 log P + σ2
e

γαP + σ2
e

.

Therefore, we have so far

nR1 = nR1
1 − nR2

1 + nR3
1 + nO(ε)

≤ n

2 log αP + σ2
1

αP + σ2
e

− n

2 log γαP + σ2
1

γαP + σ2
e

+ min
{
nR2,

n

2 log P + σ2
e

γαP + σ2
e

}
+ nO(ε).

Letting ε→ 0, we obtain (13) that concludes our proof.
From Proposition 2, we obtain a looser outer bound as

described in the following corollary.

Corollary 3. An outer bound to the individual secrecy
capacity region for the Gaussian BC when X → Y1 →
Y2 → Z forms a Markov chain is given by the set of the
rate pairs (R1, R2) satisfying

R1 ≤ C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
;

R2 ≤ C
(

(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
; (20)

R1 +R2 ≤ C
(
αP

σ2
1

)
+ C

(
(1− α)P
αP + σ2

2

)
,

for some α ∈ [0, 1].



B. An inner bound
Proposition 4. An inner bound of the individual secrecy
capacity region for the Gaussian BC when X → Y1 →
Y2 → Z forms a Markov chain is given by the set of the
rate pairs (R1, R2) satisfying

R1 ≤C
(
αP

σ2
1

)
− C

(
αP

σ2
e

)
+ C

(
(1− α)P
αP + σ2

2

)
−max

{
R2, C

(
(1− α)P
αP + σ2

e

)}
;

R2 ≤C
(

(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
,

(21)

where α ∈ [0, 1].

Proof: The region is obtained from Theorem 1 by
using jointly Gaussian (U, V ) with U ∼ N (0, (1 − α)P ),
V ∼ N (0, αP ), X = U + V , where U and V are
independent and α ∈ [0, 1].

C. A constant gap within 0.5 bits
Proposition 5. The achievable individual secrecy rate
region given in Proposition 4, i.e., the set of (R1, R2) sat-
isfying (21) for some α ∈ [0, 1], approaches the individual
secrecy capacity region of the Gaussian BC within 0.5 bits.

Proof: Consider the gap between the inner and outer
bounds as specified in (21) and (20), respectively. Taking
the same choice of α in both bounds, the gap may occur
only in the R1 + R2 term. More specifically, we consider
their subregions in the following two cases for comparison.
Case 1: R2 ≤ C

(
(1−α)P
αP+σ2

e

)
. In this case, the corresponding

subregions of (R1, R2) in the inner and outer bound are
the same.
Case 2: C

(
(1−α)P
αP+σ2

e

)
< R2 ≤ C

(
(1−α)P
αP+σ2

2

)
− C

(
(1−α)P
αP+σ2

e

)
.

Note that this case is possible only if

C

(
(1− α)P
αP + σ2

e

)
< C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

e

)
.

The above inequality holds for

0 ≤ α < 1 as σ2
e ≥ P + 2σ2

2 ;
or 0 ≤ α < (σ2

e−σ
2
2)2

P (P+σ2
2) −

σ2
2
P as σ2

e ≤ P + 2σ2
2 and

σ2
e > σ2

2 +
√
σ2

2(P + σ2
2).

The gap between the subregions of (R1, R2) the inner and
upper bound, occurs only in the R1+R2 term that is upper
bounded by C

(
αP
σ2

e

)
. We note that

• If σ2
e ≥ P + 2σ2

2 , we have for 0 ≤ α < 1,

C

(
αP

σ2
e

)
(a)
< C

(
P

σ2
e

)
(b)
≤ C

(
P

P + 2σ2
2

)
≤ C(1) = 0.5

where (a) is by the fact that C(x) is an increasing function
with respect to x and α is upper bounded by 1; (b) is due
to the fact that σ2

e ≥ P + 2σ2
2 .

• If σ2
e ≤ P + 2σ2

2 and σ2
e > σ2

2 +
√
σ2

2(P + σ2
2), we have

for 0 ≤ α < (σ2
e−σ

2
2)2

P (P+σ2
2) −

σ2
2
P ,

C

(
αP

σ2
e

)
(c)
< C

(
σ2
e − σ2

2
P + σ2

2
− σ2

2(P + σ2
e)

σ2
e(P + σ2

2)

)
(d)
≤ C(1) = 0.5

where (c) is due to the fact that C(x) is an increasing
function with respect to x and α is upper bounded by
(σ2

e−σ
2
2)2

P (P+σ2
2) −

σ2
2
P ; (d) is due to the fact that (σ2

e − σ2
2)/(P +

σ2
2) ≤ 1 since σ2

e ≤ P + 2σ2
2 .

V. Conclusion
In this paper, we studied the problem of secure com-

munication over broadcast channels under the individual
secrecy constraint. Especially, we utilized the message
for the weaker receiver to secure partial message to the
stronger receiver, which improves the transmission effi-
ciency while guaranteeing an acceptable secrecy level from
the end user’s perspective. As a general result, we pro-
posed an achievable rate region for the discrete memoryless
broadcast channel under this notion of secrecy. We also
looked into the corresponding Gaussian scenario. Both
inner bound and upper bounds are derived, and a constant
gap result (i.e., 0.5 bits within the individual secrecy
capacity region) is obtained.
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