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Abstract—This paper considers a distributed storage system,
where multiple storage nodes can be reconstructed simulta-
neously at a centralized location. This centralized multi-node
repair (CMR) model is a generalization of regenerating codes
that allow for bandwidth-efficient repair of a single failed node.
This work focuses on the trade-off between the amount of data
stored and repair bandwidth in this CMR model. In particular,
repair bandwidth bounds are derived for the minimum storage
multi-node repair (MSMR) and the minimum bandwidth multi-
node repair (MBMR) operating points. The tightness of these
bounds are analyzed via code constructions. The MSMR point is
characterized through codes achieving this point under functional
repair for general set of CMR parameters, as well as with codes
enabling exact repair for certain CMR parameters. The MBMR
point, on the other hand, is characterized with exact repair codes
for all CMR parameters for systems that satisfy a certain entropy
accumulation property.

Index Terms—Codes for distributed storage, regenerating
codes, centralized multi-node regeneration.

I. INTRODUCTION

The ability to preserve the stored information and maintain
the seamless operation in the event of permanent failures and
(or) transient unavailability of the storage nodes is one of
the most important issues that need to be addressed while
designing distributed storage systems. This gives rise to the so
called ‘code repair’ or ‘node repair’ problem which requires a
storage system to enable mechanism to regenerate (repair) the
content stored on some (failed/unavailable) storage nodes with
the help of the content stored on the remaining (live/available)
nodes in the system. A simple replication scheme where one
stores multiple copies of each data block on different nodes
clearly enables the node repair as one can regenerate the data
blocks stored on a node by obtaining one of their copies from
the other nodes in the system. However, replication suffers
from the decreasing rate as one increases the replication factor
in order to enhance the resilience of the system. This motives
the use of erasure codes as they efficiently trade-off the storage
space for the ability to tolerate failure/unavailability of storage
nodes. However, the better utilization of the storage space
should also be accompanied by a resource-efficient node repair
process and efficiency of the node repair becomes a yardstick
for implementing one erasure code over another.

Towards this, Dimakis et al. propose repair bandwidth,
the amount of data downloaded from the contacted nodes
during the repair of a single node, as a measure of the
efficiency of the repair process in [1]. Considering n storage
nodes where any set of k nodes are sufficient to reconstruct

the entire information, Dimakis et al. further characterize an
information-theoretic trade-off among the storage space vs.
the repair bandwidth for such codes. The codes which attain
any point on this trade-off are referred to as regenerating
codes. Over the past few years, the problem of designing
regenerating codes has fueled numerous research efforts which
have resulted into the constructions presented in [1]–[5] and
the references therein.

In this paper, we explore the problem of enabling bandwidth
efficient repair of multiple nodes in a centralized manner.
In particular, we consider a setting where one requires the
content of any k out of n nodes in the system to be sufficient
to reconstruct the entire information (as a parameter for the
worst case fault-tolerance of the system). As for the centralized
repair process, we consider a framework where the repair of
t ≥ 1 node failures is performed by contacting any d out
of the n − t remaining storage nodes. We also assume that
β amount of data from each of the d contacted nodes are
downloaded. We aim to characterize the storage vs. repair-
bandwidth trade-off under this centralized multi-node repair
(CMR) framework.

We believe that this framework is more suitable for the
setting of large scale storage systems where there is a need
to perform repairs at a central location. Our CMR model is
perhaps useful for the following scenarios: a) Architectural
and implementational issues: Architectural constraints could
make it more efficient to regenerate the content in a centralized
manner. For instance, in a rack-based node placement archi-
tecture, a top-of-the-rack (TOR) switch failure would imply
failure of nodes in the corresponding rack to be unaccessible,
and regenerating entire content of the failed rack on a per-
node basis, i.e., independently one by one, would be less
efficient as compared to regenerating the content at a central
location, e.g., at a leader node in that rack. b) Threshold-
based data maintenance: These schemes regenerate servers
after a threshold number of them fail. After regenerating the
content stored on the failed nodes, the administrator can recruit
t newcomers as replacements of the failed nodes and re-
distribute the data to the newcomers in order to restore the
state of the system prior to the failures. c) Availability: In
the event of transient unavailability of the t storage nodes,
the centralized repair process allows the user to get access
the content stored on the unavailable nodes in a bandwidth
efficient manner.
Related work: We note that the repair of multiple nodes in



a bandwidth-efficient manner has previously been considered
under the cooperative repair model introduced in [6], [7].
There are two major differences between the cooperative and
centralized repair frameworks: a) Under cooperative repair
framework [6], [7], all t newcomer nodes are not constrained
to contact the same set of d out of n− t surviving nodes. The
framework allows each newcomer to contact any d surviving
nodes independent of the nodes contacted by other t − 1
newcomers. b) Under cooperative repair framework, after
downloading data from the surviving nodes, the newcomers
exchange certain amount of data among themselves. On the
other hand, since a centralized entity (e.g., the administrator
or a master server node) has access to all the downloaded
information, such information exchange is not required in
the centralized repair model. Our hope is that removing
the additional restriction imposed by the cooperative repair
framework will enable designing codes for a broader range of
system parameters.

The problem of centralized bandwidth-efficient repair of
multiple node failures in a DSS employing has previously
been considered by Cadambe et al. [8]. However, they restrict
themselves to only MDS codes and they show existence of
such codes only in the asymptotic regime where node size
(amount of data stored on a node) tends to infinity. We also
note that the CMR model proposed here is also equivalent
to the broadcast model [9], where repair transmissions are
overheard by all the nodes under repair.

In addition, locality, the number of nodes contacted during
repair of a single node, is another measure of node repair
efficiency which have been extensively studied in the liter-
ature [10]. Various minimum distance bounds and construc-
tions achieving trade-offs are presented in [10]–[13] and the
references therein. In particular, recent works [14]–[16] have
studied locality problem with multiple node repairs, which is
a model relevant to the framework studied in this paper.
Contributions: In this paper, we develop general repair band-
width bounds for the CMR model at minimum per-node
storage and minimum repair bandwidth regimes. Then, we
investigate tightness of the derived bounds with appropriate
code constructions, and characterize the fundamental limits of
the CMR model.

II. CENTRALIZED MULTI-NODE REPAIR MODEL

We introduce a new model for simultaneous repair of
multiple node failures in a distributed storage system (DSS),
namely centralized multi-node repair (CMR) model. Consider
an (n, k)-DSS, i.e., the system comprises n storage nodes and
the content stored on any k nodes is sufficient to reconstruct
the information stored on the system. For an (n, k)-DSS,
under (d, t)-CMR model, any set of t failed nodes in the
system can be repaired by downloading data from any set of
d out of n − t surviving nodes. Let α denote the size of
each node (over a finite field F) and β denote the amount of
data downloaded from each of the contacted d nodes under
the (d, t)-CMR model. In order to denote all the relevant
system parameters, we also expand the notation for the CMR

model as (n, k, d, t, α, γ)-CMR model or (d, t, α, γ)-CMR
model. After downloading γ = dβ symbols from the contacted
nodes, the content stored on all t failed nodes is recovered
simultaneously in a centralized manner1.

III. A FILE SIZE BOUND FOR THE CMR MODEL

In this section, we initiate the study of the trade-off between
the per-node storage α and repair bandwidth γ for the CMR
model. We first provide a file size bound for the CMR model.

Let the system store a uniformly distributed file f of size
|f| = M (over a finite field F). Consider the case when the
nodes indexed by a set K ⊆ [n] such that |K| = k are used to
reconstruct the file f. Further, assume that this set of nodes are
partitioned into g number of distinct subsets Si with |Si| =

ni ≤ t such that
g∑
i=1

ni = k. We have the following bound.

Lemma 1. The system parameters necessarily satisfy

M ≤
g∑
i=1

min
{
niα,

(
d−

i−1∑
j=1

nj
)
β
}
. (1)

Proof. Denoting the symbols stored on the nodes indexed by
the set S by xS, we have

M = H(f)
(a)
= H(f) −H(f|xK) = I(xK; f) ≤ H(xK) (2)

(b)
=

g∑
i=1

H(xSi
|xS1:Si−1

) (3)

(c)

≤
g∑
i=1

min
{
H(xSi

),
(
d−

i−1∑
j=1

nj
)
β
}

(4)

(d)

≤
g∑
i=1

min
{
niα,

(
d−

i−1∑
j=1

nj
)
β
}
, (5)

where (a) is due to recoverability constraint H(f|xK) = 0 as
|K| = k, (b) is due to K = ∪gi=1Si, (c) & (d) are due to the
following bounds for each term in the sum: H(xSi

|xS1:Si−1
) ≤

H(xSi
) ≤ niα, and

H(xSi
|xS1:Si−1

)
(e)
= H(xSi

|xS1:Si−1
)

−H(xSi
|xS1:Si−1

,dHi−S1:Si−1
)

≤ H(dHi−S1:Si−1
) ≤

(
d−

i−1∑
j=1

nj

)
β

where set of helper nodes to regenerate symbols in Si is
denoted as Hi, this set of d nodes is constructed by using the
sets S1 · · · Si−1 and additional nodes not belonging to these
sets (this is possible as

∑g
i=1 ni = k ≤ d), downloaded sym-

bols from these additional nodes are denoted as dHi−S1:Si−1

with |Hi − S1 : Si−1| = d −
∑i−1
j nj, and (e) follows as

H(xSi
|xS1:Si−1

,dHi−S1:i−1
) = 0 as H(xS|dH)=0 for any S

such that |S| ≤ t and any H such that |H| = d.

1The CMR model also allow for the distributed/parallel repair of all the t
failed nodes by t newcomers independently. However, it is assumed that each
of the t newcomers have an access to all the γ downloaded symbols.



Given the bound in Proposition 1, we differentiate between
two operating regimes of the system: Minimum storage multi-
node regeneration (MSMR) and minimum bandwidth multi-
node regeneration (MBMR). The MSMR point corresponds
to having an MDS code which requires that α = M/k.
Codes that attain minimum possible repair bandwidth under
this constraint, i.e., α = M/k, are referred to as MSMR
codes. On the other hand, the MBMR point restricts that
H(xS) = γ = dβ for every S ⊆ [n] such that |S| = t, i.e., the
amount of data downloaded during the centralized repair of t
node failures is equal to the amount of information stored on
the lost t nodes. MBMR codes achieve the minimum possible
repair bandwidth under this restriction, i.e., H(xS) = γ = dβ.
In the following, we focus on the problem of characterizing
these two operating points of the CMR model.

IV. MSMR CODES

We first utilize Lemma 1 to obtain a bound on the repair
bandwidth at the MSMR point, and then focus on achievability.

A. Repair bandwidth bound

Proposition 1. Consider an (n, k)-DSS that stores a file
of size M and enables repair of t failed nodes under a
(d, t, αMSMR = M

k
, γ)-CMR model. Then, we have

γMSMR ≥
Mdt

k(d− k+ t)
. (6)

Proof. Let a = bk/tc and b = k − at. We set n1 = b and
ni = t for i = 2, · · · , g = a+ 1. From (1), we obtain

M ≤ min {bα, dβ}+
a∑
i=1

min {tα, [d− (i− 1)t− b]β} . (7)

Note that we have α = M
k

which implies that dβ ≥ bα and

[d− (i− 1)t− b]β ≥ tα, ∀i = 1, · · · , a,

From this, we obtain β ≥ bα
d

and [d− (a− 1)t− b]β ≥ tα,
i.e., β ≥ tα

[d−at−b+t] =
tα

[d−k+t] . This along with the fact that
we have b < t ≤ k establish (6).

Remark 1. Note that the same bound is also obtained by
Cadambe et al. in [8] where the authors consider repair of
multiple failures in an MDS code.
Remark 2. A code that allows for repair of t failed nodes
with the parameters

(
d, t, α = M

k
, γ = Mdt

k(d−k+t)

)
-CMR is

an MSMR code.

B. Constructions and the characterization of the MSMR point

1) Constructions from existing MSCR codes: Minimum
storage cooperative regenerating (MSCR) codes allow for
simultaneous repair of t storage nodes with the following
scheme: Each newcomer node contacts to d nodes and down-
loads β symbols from each. (Different nodes can contact to
different live nodes.) Then, each newcomer node sends β ′

symbols to each other. Under this setup, the repair bandwidth
per failed node is dβ + (t − 1)β ′. MSCR codes operate at
αMSCR = M/k and βMSCR = β ′

MSCR = M
k(d−k+t) .

Proposition 2. A code C that operates as an MSCR code is
also an MSMR code for the CMR model.

Proof. Consider that each failed node contact to the same
set of d nodes in the MSCR code C. Then, each failed
node downloads βMSCR symbols from these d helper nodes,
resulting in a total of at most γ = tdβMSCR = Mdt

k(d−k+t)
symbols. These symbols can recover each failed node, hence
regenerates t failed nodes in the CMR model. Therefore, code
C is an MSMR code with α = M

k
and γ = Mdt

k(d−k+t) .

We remark that random linear network coding attains MSCR
point [6], hence it provides an MSMR code with functional
repair. Explicit code constructions for the MSCR setup while
ensuring exact-repair, on the other hand, are known for a small
set of parameters. The only such constructions that we are
aware of are provided in [17] for k = t = 2, in [18] for t = 2
(for parameters (n, k, d) at which (n, k, d + 1) MSR codes
exist), and in [6] for d = k. We believe that moving from the
cooperative repair model [6], [7] to the CMR model would
allow us to construct MDS codes (MSMR codes) that enable
repair-bandwidth efficient repair of t nodes for an expanded set
of system parameters. We exhibit this by designing a scheme
to perform centralized repair of multiple nodes in a distributed
storage system employing a zigzag code [3].

2) Centralized repair of multiple node failures in a zigzag
code [3]: The zigzag codes, as introduced in [3], are MDS
codes that allow for repair of a single node failure among
systematic nodes by contacting d = n−1 (all of the) remaining
nodes. The zigzag codes are associated with the MSR point [1]
(or MSMR point with t = 1 (cf. (6))) as each of the contacted
d = n − 1 nodes contributes β = α

d−k+1 = α
n−k symbols

during the repair of a single failed node. This amounts to the
repair bandwidth of γ = dβ = n−1

n−kα. Here, we show that
the framework of zigzag codes also enable repair of multiple
nodes in the CMR model.

Given the space limitation we just state the achievable
parameters in the following result. We then illustrate the pro-
posed centralized repair scheme with the help an example of
an (n = 6, k = 3)-zigzag code where we can simultaneously
repair any 2 systematic nodes. We refer the reader to a longer
version of this paper for details [19].

Theorem 1. For an (n = k+ r, k) zigzag code with r = n−
k ≥ 2, it is possible to repair any 1 ≤ t ≤ 3 systematic nodes
in a centralized manner with the optimal repair-bandwidth
(cf. 6) by contacting d = n− t helper nodes.

Example 1 (Repairing t = 2 systematic nodes in a
(6, 3)-zigzag code). Let’s consider a zigzag code with the
parameters n = 6, k = 3 and α = 9 from [3]. This code
is illustrated in Table 1 where each column (indexed from
1 to 6) represents a storage node. Recall that, in the event
of a single node failure, this code allows for the repair of
any systematic node failure by contacting d̂ = 5 remaining
nodes and downloading β = α

n−k = 3 symbols from each
of these nodes. We now show that we can use this same
construction (with required modifications of the non-zero



1 2 3 4 5 6

x0,0 x0,1 x0,2 x0,0 + x0,1 + x0,2 x0,0 + x6,1 + x2,2 x0,0 + x3,1 + x1,2

x1,0 x1,1 x1,2 x1,0 + x1,1 + x1,2 x1,0 + x7,1 + x0,2 x1,0 + x4,1 + x2,2

x2,0 x2,1 x2,2 x2,0 + x2,1 + x2,2 x2,0 + x8,1 + x1,2 x2,0 + x5,1 + x0,2

x3,0 x3,1 x3,2 x3,0 + x3,1 + x3,2 x3,0 + x0,1 + x5,2 x3,0 + x6,1 + x4,2

x4,0 x4,1 x4,2 x4,0 + x4,1 + x4,2 x4,0 + x1,1 + x3,2 x4,0 + x7,1 + x5,2

x5,0 x5,1 x5,2 x5,0 + x5,1 + x5,2 x5,0 + x2,1 + x4,2 x5,0 + x8,1 + x3,2

x6,0 x6,1 x6,2 x6,0 + x6,1 + x6,2 x6,0 + x3,1 + x8,2 x6,0 + x0,1 + x7,2

x7,0 x7,1 x7,2 x7,0 + x7,1 + x7,2 x7,0 + x4,1 + x6,2 x7,0 + x1,1 + x8,2

x8,0 x8,1 x8,2 x8,0 + x8,1 + x8,2 x8,0 + x5,1 + x7,2 x8,0 + x2,1 + x6,2

Fig. 1: Repair of the first two systematic nodes in a (6, 3)-zigzag code. (Coding coefficients of the parity symbols are not
specified.) Blue (red) colored symbols contribute in the repair of only node 1 (respectively, 2) in the case of single node failure.
Green colored symbols contribute in the repair of both node 1 and node 2 in the case of single node failure. Magenta colored
symbols denote the additional symbols that need to be downloaded to enable the centralized repair of both the nodes.

coefficients in coded symbols) to repair 2 systematic node
failures by contacting d = n − 2 = 4 remaining nodes. We
download t α

d̂−k+2
= 2 α

n−k = 6 symbols from each of the
d = 4 contacted nodes.

Assume that node 1 and 2 are in failure. We download
the colored symbols from node 3 to node 6 in Figure 1
to repair these two nodes. Using the downloaded symbols,
we get the following 18 combinations in the 18 unknown
information symbols. (We suppress the coefficients of the
linear combinations here.)

x0,0 + x6,1, x1,0 + x4,1, x2,0 + x2,1, x3,0 + x0,1,

x4,0 + x7,1, x5,0 + x5,1, x6,0 + x0,1, x7,0 + x7,1,

x8,0 + x5,1, x2,0 + x8,1, x1,0 + x7,1, x6,0 + x6,1,

x2,0 + x5,1, x7,0 + x4,1, x0,0 + x3,1, x8,0 + x2,1,

x1,0 + x1,1, x0,0 + x0,1. (8)

Now, we need to show that it is possible to choose the
coding coefficients in such a manner that these 18 equations
allow us to recover the desired 18 symbols. Assuming that A
denotes the 18× 18 coefficient matrix of the aforementioned
18 combinations, it is a necessary and sufficient (with large
enough field size) condition for the matrix A to be full rank
that the natural bipartite graph associated with the matrix A
contains a perfect matching2 [20], [21]. We illustrate one such
perfect matching in (8), where the colored unknown symbol
in a combination represents the unknown symbol matched by
that combination. The similar argument can be performed for
the remaining combinations of 2 failed systematic nodes.

3) MSMR point: The achievability results above together
with the repair bandwidth bound reported in the previous sec-
tion, see Remark 2, results in the following characterization.

Theorem 2. The MSMR point for the (n, k, d, t, α, γ)-CMR
model is given by αMSMR = M

k
and γMSMR = Mdt

k(d−k+t) .

2The left and the right nodes in the bipartite graph correspond to the
combinations and the unknowns, respectively.

V. MBMR CODES

In this section, we focus on the other extremal point of
the storage vs. repair-bandwidth trade-off, namely the MBMR
point.

A. Repair bandwidth bound

For the MBMR point, depending on whether t|k or t - k,
we state the following two results.

Proposition 3. Assume that t|k. Consider an (n, k)-DSS that
stores a file of size M and enables repair of t failed nodes
under a (d, t, αMBMR, γMBMR)-CMR model. Then, denoting
the entropy of t nodes as Ht, we have

tαMBMR ≥ Ht = γMBMR, (9)

γMBMR ≥
M2dt

k(2d− k+ t)
. (10)

Proof. Note that the MBMR point has H(xS) = γMBMR for
every S ⊆ [n] such that |S| = t. Therefore, we have

γMBMR = H(xS) ≤
∑
i∈S

H(xi) ≤ tαMBMR.

In order to establish the lower bound on γMBMR in (10), we
use ni = t, ∀i ∈ [a] in the bound (1), we obtain

M ≤
k/t∑
i=1

(
d− (i− 1)t

)
β =

k

t

(
2d− k+ t

2

)
β. (11)

This implies that γMBMR = dβ ≥ M2dt
k(2d−k+t) .

Proposition 4. Consider an (n, k)-DSS that stores a file
of size M and enables repair of t failed nodes under a
(d, t, αMBMR, γMBMR)-CMR model. Then, the bounds given
in (9) and (10) hold for the case of t - k, if Hb ≥(
β
t

) [
b
(
2d+t−1

2

)
−
(
b
2

)]
, where b = k (mod t), and Hb

denotes entropy of b nodes in the system.

Proof. The bound in (9) follows from the similar analysis as
presented in the proof of Proposition 4. In order to establish



(10), we select g = bk/tc + 1 = a + 1 disjoint sets of nodes
indexed by the sets S1, S2, . . . , Sg such that n1 = |S1| = b
and ni = |Si| = t for i ∈ {2, 3, · · · , g = a + 1}. Note that
we have

∑
i ni = k. Utilizing this particular sequence of sets

in (4) along with the fact that we have H(xSi
) = dβ for

2 ≤ i ≤ g, we obtain

M ≤ H(xS1
) +

a∑
i=1

(
d− (i− 1)t− b

)
β. (12)

Note that the choice of the set S1 is arbitrary and all the
nodes in the system are equivalent in terms of their information
content. Therefore, Hb = H(S1) (the amount of information
stored on b nodes indexed by the set S1) only depends on b.
It follows from (12) that

M ≤ Hb +
(
2d− k+ (t− b)

2

)
aβ (13)

In order to have the bound in (10) we need the RHS of (13)
to be at least the RHS of (11), i.e.,

Hb +

(
2d− k+ (t− b)

2

)
aβ ≥ k

t

(
2d− k+ t

2

)
β.

This implies that

Hb =

(
β

t

)[
b

(
2d+ t− 1

2

)
−

(
b

2

)]
. (14)

Remark 3. A code that allows for repair of t failed nodes with
Ht = γ = M2dt

k(2d−k+t) is an MBMR code for the case of t|k
and t - k, if for the latter case the system also operates at
Hb ≥

(
β
t

) [
b
(
2d+t−1
2

)
−
(
b
2

)]
.

B. Constructions and the characterization of the MBMR point

1) Constructions from existing MBCR codes: MBCR codes
have αMBCR = M

k
2d+t−1
2d+t−k , βMBCR = M

k
2

2d+t−k , and
β ′
MBCR = M

k
1

2d+t−k . A construction of MBCR codes
for all parameters is provided in [22], where the entropy
accumulation for MBCR codes is also characterized. In
particular, entropy of b ≤ k nodes is given by Hb =(
b
(
2d+t−1
2

)
−
(
b
2

))
β.

Proposition 5. A code C that operates as an MBCR code
is also an MBMR code for the CMR model that operates at
α = M(2d+t−1)

k(2d+t−k) and Hb ≥
(
β
t

) [
b
(
2d+t−1

2

)
−
(
b
2

)]
.

Proof. Consider that each failed node contact to the same
set of d nodes in the MBCR code C. This results in a
repair bandwidth of at most γ = tdβMBCR = M2dt

k(2d+t−k) .
Entropy of t nodes in this code is given by Ht =(
t
(
2d+t−1
2

)
−
(
t
2

))
M
k

2
2d+t−k = M2dt

k(2d+t−k) = γ. These and
also the entropy of b nodes meet the conditions stated in
Remark 3, establishing the claimed result.

Remark 4. In general, for MBMR codes, we have the condition
that tα ≥ Ht = γMBMR. It is not clear if α can be further
reduced than that in Proposition 5, e.g., when b = 0.

2) MBMR point: The achievability results above together
with the repair bandwidth bound reported in the previous
section results in the following characterization.

Theorem 3. Let k (mod t) = b. Then, for the CMR models
satisfying Hb ≥

(
β
t

) [
b
(
2d+t−1
2

)
−
(
b
2

)]
, the MBMR point

is given by Ht = γMBMR = M2dt
k(2d+t−k) .
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