
Secure Regenerating Codes for Hybrid Cloud
Storage Systems

Islam Samy, Gokhan Calis, and O. Ozan Koyluoglu
Department of Electrical and Computer Engineering, The University of Arizona

Email: {islamsamy, gcalis, ozan}@email.arizona.edu

Abstract—We study the scenario of hybrid cloud storage where
the client utilizes both an off-site and a local storage. The
former is a distributed storage system (DSS) with the presence
of an eavesdropper that has access to the content stored in
and downloaded to some subset of nodes. The latter (local)
storage is utilized to store a secret key to secure the stored file
against the eavesdropper. We introduce two possibilities to utilize
local storage (secret key) in enhancing the DSS. First, the key
can be used to increase the maximum file size stored in the
DSS. We propose an upper bound for this scenario and show
constructions achieving it. Second, the key can be used to decrease
the number of contacted nodes required to reconstruct the file at
the client. We extend the product matrix (PM) framework and
construct codes that enables efficient data access. Our analysis
includes both minimum repair bandwidth regenerating (MBR)
and minimum storage regenerating (MSR) codes.

I. INTRODUCTION

The massive increase in the demand of reliable data storage
mechanisms brings into focus the study of distributed storage
systems (DSS). Recently, Dimakis et al. [1] proposed a new
class of codes called regenerating codes, and derived a bound
on the maximum file size that can be stored in the DSS. The
performance of regenerating codes is evaluated by two metrics,
the storage capacity per node and the total repair bandwidth to
regenerate a failed node. Dimakis et al. [1] further established
a trade-off between these two metrics, introducing two special
cases of regenerating codes: Minimum storage regenerating
(MSR) codes and minimum repair bandwidth regenerating
(MBR) codes. Several explicit codes have been proposed to
achieve these points recently, see, e.g., [2]–[4], and references
therein.

Besides the reliability of DSS, the security of these systems
also arises as an important concern, as the data stored increase
not only in size but also regarding its confidentiality require-
ments. Utilizing an information theoretic security approach,
a bound on the secure file size, in the presence of certain
number of eavesdropped nodes (l), is shown in [5]. Examples
of code constructions that achieve the secrecy requirements
in addition to regenerating code features are introduced in
[6]–[8]. In an extended model, [8] considers the presence of
eavesdropper E of type (l1, l2) that has access to the content
of l1 nodes, while it can observe all stored and downloaded
symbols (during repair) of other l2 nodes. In these works, to
assure that the stored message file (Fs) is totally secure against

This work is supported in part by NSF awards CCF-1563622 and CNS-
1617335.

the eavesdropper, one has to add some randomness (R) in the
encoding of the file before storing in DSS.

We assume a scenario where the client of DSS has a
local storage in addition to an off-site (cloud) storage. This
is a typical scenario in existing cloud deployments, and it is
referred to as the hybrid cloud storage. We consider that the
local storage is secure from the adversary eavesdropping the
cloud storage, and can be used to store data or secret key (K).
In particular, local secret key at the client side can be used in
addition to R to guarantee stored file security. Although this
setup imposes extra storage at the client, one can benefit from
its exclusive availability in two directions. First, one can use
such secret key K to increase the size of stored secured file as
compared to the case with the absence of such a key. Second,
it can be used to decrease the number of nodes required for
data reconstruction (k). We note that the main limiting factor
of the previous formulations is to have k > l, and our model
allows to relax this requirement at the expense of local storage.

The main contributions of this paper are as follows. We
introduce the model of hybrid cloud where a secret key stored
at the client, which plays the role of the traditionally used
randomness to secure the stored file. We derive a bound on
the stored secure file size, in the presence of secret key. Then,
we utilize the product matrix framework introduced in [3], [8],
to achieve the derived bound. We then propose a technique to
decrease the number of required nodes for file reconstruction.
The main advantage of this part is that it enables the DSS
to tolerate a number of eavesdropped nodes (l) that may be
greater than the required number for data reconstruction at
the client. We show that the proposed construction achieves
the same file size as that of the system without local storage,
providing an immediate trade-off between the local storage
capacity and the data access bandwidth, defined as the required
number of downloaded symbols for file reconstruction.

II. SYSTEM MODEL

We consider a file Fs of length Fs, which needs to be
stored in a DSS consisting of n storage nodes. Each node
has a capacity of α symbols, and is under the risk of failure.
After each failure, a node called newcomer replaces the failed
one. To regenerate the failed α symbols, the newcomer node
contacts any d live nodes and downloads β symbols from each.
This regeneration process requires a total repair bandwidth
of dβ. The client or data collector (DC) can reconstruct all
file symbols by contacting any k nodes from the available

n nodes. We define η = kα as the data access bandwidth,
represented by the number of symbols required for file recon-
struction. We represent such a system as (n, k, d, α, β) DSS.
We consider a secret key K, stored locally at the client and
used to encode/encrypt the file to guarantee security against
the eavesdropper. Note that H(K) is the local storage capacity.

For any node i, we denote its content and the symbols
downloaded to repair it as Si and Di, respectively. We use
the same notation for any set of nodes A, as SA and DA.
We use C to represent the set of all nodes contacted by the
client, such that |C| = k. In the presence of an eavesdropper
of type (l1, l2), we use E1 and E2 to denote the set of nodes
observed by the adversary, where E1 is the set of nodes that
leak stored content only, whereas E2 is the set of nodes that
leak both content stored and downloaded. The system, to be
secure, has to satisfy the following requirements:
• Secrecy property: Fs is independent of all symbols ac-

cessed by the eavesdropper, SE1 and DE2 , i.e., H(Fs) =
H(Fs|SE1 , DE2).

• Reconstruction property: The client should be able to
reconstruct all file symbols from the content of any
k nodes, with the availability of the secret key, i.e.,
H(Fs|SC ,K) = 0.

• Regeneration property: The regenerated content of any
failed node is a function of the downloaded repair sym-
bols, i.e., H(Si|Di) = 0.

III. INCREASING THE SECURE FILE SIZE

In this section, we show how to utilize the presence of
the secret key to increase the size of stored file. We consider
storing a coded version of the file and the secret key in DSS.
The presence of the key in the system fulfills the security
requirements, while it does not represent any additional ran-
domness or increased entropy for the client. Assume we have
a secure DSS with parameters (n, k, d, α, β, F̃s). Using the
secret key K, we can have another (n, k, d, α, β,Fs,K) DSS,
with Fs ≥ F̃s. The increase in the secured file size depends
on the local storage capacity, where the secret key is stored.
For the MBR case, the amount of information each newcomer
node downloads during repair is the same as per-node storage
(dβ = α), which implies that all eavesdropped nodes can be
considered of type l1 and l2 = 0 can be assumed.

Theorem 1. The upper bound on the file size with using secret
key K for MBR case is

Fs ≤ H(K) +

k∑
i=l1+1

min{α, (d− i+ 1)β}. (1)

Proof. Consider C = E1 ∪ G, with some set of |G| = k −
l1 nodes, i.e., eavesdropped nodes are subset of the nodes
observed by DC.

Fs = H(Fs)
(a)
= H(Fs|SE1)

(b)
= H(Fs|SE1)−H(Fs|SG , SE1 ,K)

= I(Fs;SG ,K|SE1)

= H(SG ,K|SE1)−H(SG ,K|SE1 ,Fs)
≤ H(SG ,K|SE1)

= H(SG |SE1) +H(K|SG , SE1)

≤ H(SG |SE1) +H(K)

(c)

≤
k∑

i=l1+1

min{α, (d− i+ 1)β}+H(K),

(2)

where (a) comes from the secrecy property, (b) follows from
the reconstruction property, and (c) is from the classical secure
DSS bound as derived in [5].

Remark 2. A code that can achieve this bound can be
constructed by replacing the randomness in the PM framework
used in [8] with a summation of data symbols and secret key.
Due to space limitation, we omit the details.

Remark 3. Separation approach: Instead of secret keys, one
can use the local storage directly to store secret data, separate
from the data encoded with randomness and stored DSS. The
derived bound can be achieved here as well. However, this
separation approach has an asymmetric data access for the
symbols stored in DSS, whereas the secret key based approach
allows uniformity in access and security guarantees for the
stored symbols.

Theorem 4. The upper bound on the file size with using secret
key K for MSR case is

Fs ≤
k∑

i=l1+l2+1

min{α, (d− i+ 1)β}

−H(DE2 |SE1 , SE2) +H(K).

(3)

The proof is omitted due to space limitation.

IV. LOWERING ACCESS BANDWIDTH: MBR CASE

Consider storing a coded version of a file and the secret
key. As the client already knows the secret key, we can utilize
this to decrease the required number of nodes to be contacted
for data reconstruction. We consider a DSS with parameters
(n, k, d, α, β,Fs). In the presence of the secret key K, we can
have another DSS denoted as (n, k, k′, d, α, β,Fs,K) (which
has two additional parameters compared to previous DSS),
where k′ is the required number of nodes for file reconstruction
with the availability of K, and k is the required number
of nodes in case that the secret key is not available. We
remark that the key-based system can be used to increase l,
the tolerable number of eavesdropped nodes, where we can
tolerate l = l1 + l2 < k, and at the same time we can
reconstruct the file from k′ < k nodes.

In this section, we extend the product matrix (PM) frame-
work, building on the one provided in [8] and [3], which is
shown to be optimal for the MBR case. We omit discussing
the regeneration property and the security of our construction
against the eavesdropper as these properties follow from the
analysis given in [8]. Instead, we detail the analysis of the
reconstruction property. Note that, in the MBR case, all nodes
accessed by the eavesdropper are of type l1, and l2 = 0.
Therefore, we have l = l1.

A. Secure PM-MBR construction [8]

For any (n, k, d, α, β = 1, l) DSS, let C = ΨM be an
n× α code matrix where each α symbols in row i represent
the content of node i. Ψ represents the n× d fixed encoding
matrix used to encode the symmetric d × α matrix M that
includes all file symbols. To guarantee the regenerating and
reconstruction properties, M and Ψ are constructed as follows

M =

 S
k×k

T
k×(d−k)

T t
(d−k)×k

0
(d−k)×(d−k)

 ,
Ψ = [Φ

n×k
∆

n×(d−k)
],

(4)

where matrix S has to be symmetric, and Ψ should have the
following properties: i) Any d rows of Ψ are independent, ii)
any k rows of Φ are independent, iii) restricted to the first
l columns, any l rows are linearly independent. Any Vander-
monde matrix (ΨV) can be used to satisfy these properties.
To make this construction secure, the random symbols should
be stored in the first l rows (and columns due to symmetry)
of M .

B. Decreasing the number of required nodes for file recon-
struction utilizing K

We consider enhancing the reliability of DSS by making
it possible to reconstruct the file from k′ nodes instead of k
nodes (k′ < k). Note that, if we want to decrease k to k′, we
should have the message matrix M ′ (in case of contacting k′

nodes) as

M ′ =

 S
k′×k′

T
k′×(d−k′)

T t
(d−k′)×k′

0
(d−k′)×(d−k′)

 . (5)

For this construction, we must have an encoding matrix Ψ
that fulfills the requirements mentioned above. We remark that
Vandermonde matrix and all of its permuted column versions
represent a valid choice for Ψ. Accordingly, we take Ψ =
ΨV P, where P is any permutation matrix, with the identity
matrix I being a special case of it.
Construction I: Consider

(
n, k, d, α, β = 1, l, Fs,K = ld −(

l
2

))
DSS, where Fs is at least the same maximum secure

file size, see, e.g., [8]. In the PM-MBR-based construction
[8], the authors replace the first l rows (and columns) with
randomness. Instead of that, in our construction, we consider
replacing the data symbols in certain positions in these rows
and columns. More specifically, we modify M as follows:

mij = mji = 0

∀i ≤ k − k′, ∀j ≤ k − k′ and ∀j > k.
(6)

Also, we introduce the symmetric d× d matrix Aκ, where the
secret key K is stored in its first l rows (and columns).

We construct the symmetric permutation matrix P as fol-
lows:

Pij =

1, ∀i ≤ k − k′ or ∀k′ + 1 ≤ i ≤ k,
and j = k + 1− i,

1, ∀k − k′ < i ≤ k′ or ∀i > k,

and j = i,

0, otherwise,

(7)

such that it enables us to guarantee that the received content
at the client can be later transformed to ΨVM

′. Define MS =
M +Aκ, then code matrix C can be written as

C = ΨMS = ΨV PM
S = ΨV P (M +Aκ). (8)

Reconstruction: From any k′ nodes, the DC can access the
symbols X ′DC such that,

X ′DC = Ψ′VDC
PMS = Ψ′VDC

P (M +Aκ)

= Ψ′VDC
PM + Ψ′VDC

PAκ,
(9)

where Ψ′VDC
is the submatrix related to the contacted k′ nodes.

Since the secret key is known at the DC, the second part of
the summation in (9) can be subtracted from X ′DC , then

X ′DC
(1)

= X ′DC −Ψ′VDC
PAκ = Ψ′VDC

PM. (10)

By multiplying the same P matrix from the right, we have

X ′DC
(2)

= X ′DC
(1)
P = Ψ′VDC

PMP = Ψ′VDC
MP , (11)

where MP = PMP. Now, we are able to write MP as

MP =

 S
k′×k′

T
k′×(d−k′)

T t
(d−k′)×k′

0
(d−k′)×(d−k′)

 . (12)

As any k rows of ΨV are independent, then we are certain
that any k′ are also independent. The remaining part Ψ′VDC

MP

enables us to reconstruct MP the same way as in the PM-MBR
code construction, and finally we can get M by M = PMPP.

Remark 5. This approach allows us to decrease the data
access bandwidth η, for the same file size reconstruction, from
kα to k′α with an enhancement depending on the ratio of
k′/k.

Remark 6. k − k′ ≤ l : We cannot decrease k by more than
l, as this construction depends on increasing the dimension
of the low right corner zero submatrix of message matrix M
using permutation matrix. Also, we are only able to replace
the data symbols in the first l rows (and columns) with zeros,
thus we cannot increase the dimension of the corresponding
zero submatrix by more than l.

Example 7. For (n = 6, k = 4, d = 5, α = 5, β = 1, l =
2,K = 9), in order to reduce k to k′ = 2, from (6) and (7),
we can construct M and P as follows

M =

0 0 u3 u4 0
0 0 u7 u8 0
u3 u7 u10 u11 u12
u4 u8 u11 u13 u14
0 0 u12 u14 0

 . (13)

P =

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

 , (14)

and Aκ will be

Aκ =

κ1 κ2 κ3 κ4 κ5
κ2 κ6 κ7 κ8 κ9
κ3 κ7 0 0 0
κ4 κ8 0 0 0
κ5 κ9 0 0 0

 . (15)

From (13) and (15), MS can be written as

MS = M +Aκ

=

κ1 κ2 u3 + κ3 u4 + κ4 κ5
κ2 κ6 u7 + κ7 u8 + κ8 κ9

u3 + κ3 u7 + κ7 u10 u11 u12
u4 + κ4 u8 + κ8 u11 u13 u14
κ5 κ9 u12 u14 0

 . (16)

At the DC, we can access X ′DC , and we subtract Ψ′VDC
PAκ

from it, then multiply it by P .

X ′DC
(2)

= Ψ′VDC

u13 u11 u8 u4 u14
u11 u10 u7 u3 u12
u8 u7 0 0 0
u4 u3 0 0 0
u14 u12 0 0 0

 . (17)

Then, we can recover MP using any 2 nodes, and M equals

M = PMPP. (18)

V. LOWERING ACCESS BANDWIDTH: MSR CASE

In this section, we revisit the secure construction of MSR
codes using the product matrix form in [8], for the case d =
2k−2. In [9], it is mentioned that this construction is optimal
for n = d+ 1 and any (l1, l2) eavesdropper. Hence, we study
any DSS with (n = 2k− 1, k, d = 2k− 2, α = k− 1, β = 1).

A. Secure PM-MSR construction [8]

In this construction, we have an n×α code matrix C, such
that C = ΨM, where Ψ is the n× d encoding matrix, which
can be represented by a Vandermonde matrix. On the other
hand, M is the d× α message matrix, written in the form

M =

[
S1

S2

]
, (19)

where S1 and S2 are two (α×α) symmetric matrices. All file
symbols are stored in the upper triangles of both S1 and S2.
Regeneration and reconstruction properties of this construction
are shown in [3]. This construction is shown to be secure
against (l1, l2) eavesdropper. In this case, the secure file size
is Fs = (k − l1 − l2)(α − l2). In order to secure the file, we
need to add R random symbols, such that R = (l1 + l2)α +
(k− l1 − l2)l2. These R symbols are stored in M as follows:
i) (l1 + l2)α−

(
l1+l2

2

)
symbols in the first l1 + l2 rows of S1,

ii)
(
l1+l2

2

)
symbols in the intersection of the first l1 + l2 − 1

rows and columns of S2, iii) the remaining (k − l1 − l2)l2
symbols in the remaining elements of the first l2 rows of S2.

B. Decreasing the number of required nodes for file recon-
struction utilizing K

We utilize the secret key K in place of randomness in order
to decrease k. Unlike the MBR case, k here affects our PM
construction, as it affects both d and α directly. Therefore, we
need to take that into consideration when we reconstruct the
message matrix using k′ nodes instead of k nodes.

First, suppose we have an (n′, k′, d′ = 2k′ − 2, α′ =
k′ − 1, β′ = 1) PM-MSR code, with encoding matrix Ψ′.
We know that we can reconstruct the message matrix from
X ′′DC = Ψ′k′×d′Md′×α′ , where X ′′DC is the content of any
k′ nodes in such a coded system. While for an (n, k, d =
2k − 2, α = k − 1, β = 1) PM-MSR code, we need to
reconstruct the file from X ′DC , since DC only contacts k′

nodes. In our construction, we will be able to reconstruct M
from X ′DC = Ψk′×dMd×α. In order to guarantee that, we need
to get X ′′DC from X ′DC , then we get M from X ′′DC . Note that
Ψ′ is different from Ψ, but both of them are represented by
Vandermonde matrix. That is, e.g., Ψ = [Φ

n×α
Λ

(n×n)
Φ

(n×α)
],

which must have the following properties: i) Any d rows of Ψ
are independent, ii) any k rows of Φ are independent, iii) the
elements of Λ are distinct. The first property is to guarantee the
regeneration property, while the other two properties are for
data reconstruction. Thus, we use Φ as a Vandermonde matrix,
whose ith row is [1, i, i2 . . .]. As we do not modify the stored
code matrix, the construction readily satisfies the regeneration
property, and we here focus on the other two properties when
we reconstruct the file from k′ nodes instead of k.
Construction II: Consider

(
n, k, d, α, β = 1, l1, l2, Fs,K =

(l1 + l2)α + (k − l1 − l2)l2

)
DSS, where Fs is at least the

same maximum secure file size, using traditional randomness,
achieved in [8]. First, we construct matrix M , such that we
replace the first k − k′ rows (and columns) of S1 and S2 by
zeros, those are already included in the rows that are replaced
with randomness in the secure PM-MSR in [8]. Then, M can
be written as

M
d×α

=

0 . . . 0
... S′1

α′×α′

0 . . . 0
... S′2

α′×α′

 , (20)

where α′ = α−(k−k′) = k′−1. We can construct the matrix
Aκ as

Aκ =

[
Aκ1
Aκ2

]
, (21)

where Aκ1 and Aκ2 are two symmetric matrices, such that
the secret key K is stored in all places that originally have
randomness in the scheme of [8]. That is, we have that the
first k − k′ rows (columns) of Aκ1 and Aκ2 must be filled by

K. Then, we have MS = M + Aκ, and the code matrix C
can be written as

C = ΨMS = Ψ(M +Aκ). (22)

Reconstruction: Let Ψ′DC be the submatrix of Ψ, which
represents the k′ nodes connected to the DC. Thus, the DC
can access X ′DC symbols, such that

X ′DC = Ψ′DCM
S = Ψ′DC(M +Aκ)

= Ψ′DCM + Ψ′DCA
κ.

(23)

As the secret key is already stored at the DC, then it can
construct Aκ. Then, it can subtract Ψ′DCA

κ to get

X ′DC
(1)

= X ′DC −Ψ′DCA
κ = Ψ′DCM. (24)

Now, let φi be the ith column in matrix Φ′, then we can write
X ′DC

(1) as in (24),

X ′DC
(1)

=
[
[φ1 φ2 . . . φα] Λ [φ1 φ2 . . . φα]

]

0 . . . 0
... S′1
α′×α′

0 . . . 0
... S′2
α′×α′

=
[
[φk−k′+1 . . . φα] Λ [φk−k′+1 . . . φα]

] 0 S′1
α′×α′

... S′2
α′×α′

 .
(25)

As, we use Φ as a Vandermonde matrix, whose ith row is
[1, i, i2 . . .], we can use the fact that

φi =

1

2
. . .

k′

φi−1 =

1

2i−1

. . .
(k′)

i−1

φ1 ∀i > 1.

(26)
Now, we can write (25) as

X ′DC
(1)

=

1

2k−k
′

. . .

(k′)
k−k′

[[φ1 . . . φα− (k − k′)︸ ︷︷ ︸
α′

] . . .

. . .Λ [φ1 . . . φα− (k − k′)︸ ︷︷ ︸
α′

]
]0 S′1

α′×α′

... S′2
α′×α′

 ,
(27)

For simplicity, we suppose that DC is connected to the first k′

nodes. We can see that the first diagonal matrix is invertible,
so by multiplying by its inverse from the left we get

X ′DC
(2)

=
[
[φ1 . . . φα′] Λ [φ1 . . . φα′]

] 0 S′1
α′×α′

... S′2
α′×α′

=
[

0
k′×(k−k′)

X ′′DC
k′×α′

]
,

(28)

where

X ′′DC =
[
[φ1 . . . φα′] Λ [φ1 . . . φα′]

] S′1
α′×α′

S′2
α′×α′

=
[

Φ′
k′×α′

Λ
(k′×k′)

Φ′
(k′×α′)

] S′1
α′×α′

S′2
α′×α′

 .
(29)

Now, we satisfy the two required properties for data recon-
struction (any α′ rows of Φ′ are independent, and the diagonal
elements of Λ are distinct). Hence, we can consider X ′′DC as
the content of any k′ nodes of an (n, k′, d′ = 2k′ − 2, α′ =
k′ − 1) PM-MSR code. Finally, we can restore the non-zero
elements of M from X ′′DC as the same as in PM-MSR codes.

VI. CONCLUSION

In this work, we studied the hybrid cloud storage systems,
where the client has a local storage in addition to off-site
DSS. Although the local storage can be used for storing data,
separate from that in DSS, we introduced the idea of utilizing
this storage as secret key. The main idea underlying our
approach is to replace the randomness used to secure the stored
file against eavesdropper, with a linear combination of the file
and secret key. Furthermore, we proposed two approaches on
how to utilize the secret key. First, we used the secret key to
increase the secure file size stored in DSS, and we derived an
upper bound on the file size. We also used the secret key to
decrease the required number of contacted nodes to reconstruct
the stored file at the client. Our constructions are based on
extending the PM framework [3] utilized in [8]. An avenue
for future work is to characterize the trade-offs between access
bandwidth, local storage and file size.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[2] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with
optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1597–
1616, Mar. 2013.

[3] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction,” IEEE Trans. Inf. Theory, vol. 57, p. 5227, 2011.

[4] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proc. IEEE, vol. 99, no. 3, pp.
476–489, Mar. 2011.

[5] S. Pawar, S. El Rouayheb, and K. Ramchandran, “On secure distributed
data storage under repair dynamics,” in Proc. 2010 IEEE International
Symposium on Information Theory (ISIT 2010), Austin, TX, Jun. 2010.

[6] S. Goparaju, S. El Rouayheb, R. Calderbank, and H. Poor, “Data secrecy
in distributed storage systems under exact repair,” in Proc. International
Symposium on Network Coding (NetCod), Calgary, AB, CA, June 2013.

[7] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal locally repairable and secure codes for distributed storage
systems,” IEEE Trans. Inf. Theory, vol. 60, no. 1, Jan. 2014.

[8] N. Shah, K. Rashmi, and P. Kumar, “Information-theoretically secure
regenerating codes for distributed storage,” in Proc. 2011 IEEE Global
Communications Conference, Houston, TX, Dec 2011.

[9] K. Huang, U. Parampalli, and M. Xian, “On secrecy capacity of minimum
storage regenerating codes,” CoRR, vol. abs/1505.01986, May 2015.

