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Abstract—We consider a hierarchical DSS where the content
is stored with coding in storage nodes and without coding in a
backup node. We analyze the system where mobile nodes request
the content from the storage nodes. Backup node is assumed to
be accessible by storage nodes only in the case where repairs
are required. Under this scenario, we derive the upper bound
on the file size bound as well as establish critical points on
the trade-off curve known as Minimum Storage Regenerating
(MSR) and Minimum Bandwidth Regenerating (MBR) points.
Next, we propose optimal code constructions by utilizing existing
regenerating codes. Furthermore, we analyze the statistics of
maintenance and data access costs under Poisson model for node
failures and data requests. We derive expressions for expected
values and variances of both such costs. Finally, numerical results
are provided where we show that the most studied points in the
literature (MSR and MBR) are not always optimal with respect
to total cost. We also point out that variance of maintenance cost
may be much important than variance of data access cost.

I. INTRODUCTION

Evergrowing data and recent interest to analyze and store
it brought challenges to how one can maintain data in long
term. In particular, to achieve reliable data storage, classical
schemes like replication are not suitable for today’s big-data
due to their inherent nature of storing the data inefficiently.
Henceforth, coding techniques are proposed in order to build
distributed storage systems (DSS), with improved features,
such as increased storage efficiency. One of the most com-
monly employed method is Maximum Distance Separable
(MDS) codes. In short, the file to be stored is divided into
k fragments and n− k fragments are created from them such
that any k fragments are enough for the recovery of the file.
Instances of such a coding technique are employed in [1], [2].

Although MDS coding outperforms replication in terms of
storage efficiency, recently proposed regenerating codes are
shown to be improve upon classical MDS codes with data
repair efficiencies [3]. Similar to MDS coding, regenerating
codes also allow one to recover the file from any k fragments
(each of size α). In addition, to regenerate a symbol of the
code (i.e., repair a single node), one can download β ≤ α
symbols from any d ≥ k nodes. It’s shown that such a
technique reduces the repair bandwidth compared to classical
MDS codes [3]. Furthermore, the authors show a trade-off
between α and γ = dβ and two ends of the trade-off curve are
referred to as Minimum Storage Regenerating (MSR) (having
minimum α) and Minimum Bandwidth Regenerating (MBR)

(having minimum γ). Explicit constructions for regenerating
codes are further stuided in [4]–[6], and references therein.

In this study, we consider a hierarchical DSS where a
dedicated node (referred to as backup node (BN)) facilitates
the distributed repair process for storage nodes (SN). These
storage nodes, in turn, serve the mobile nodes (MN), which
can be considered as mobile users asking for the stored data.
From MN perspective, there is no BN and BN only plays
a role in repair process of SN, where the system operated
in a hierarchical manner. Toy example of hierarchical DSS
is given in Fig. 1. BN can be useful in scenarios like i)
one additional node may increase reliability of the system in
terms of mean time to data loss due to increased redundancy
in the system which prolongs the time it takes to reach a
system state where the file is no longer recoverable, ii) BN
can be utilized in wireless caching. Given this setup, we have
the following results. We first calculate an upper bound on
the file size that can be stored in this hierarchical system.
Next, we characterize fundamental limits of this model using
this bound and propose optimal code constructions that we
build on existing regenerating codes [4]–[6]. Third, we analyze
DSS with respect to maintenance and data access cost under
Poisson failure and request models and analyze the statistics
of these cost measures. With this analysis, we show the
trade-off between α and γ translates into a trade-off between
maintenance and data access costs. Interestingly, we show that
minimum total cost may not be achieved at end points whereas
a code operating at intermediate points on the α−dβ tradeoff
can be optimal with respect to this total cost measure. Finally,
we show that data access cost may experience very small
variance compared to maintenance cost.

Related Work: In [7], device-to-device (D2D) mobile
caching network is studied where the objective is to minimize
energy consumption of data retrieval by use of replication.
Similar to our work, [8] analyzes a D2D system (with coding)
where some of the mobile users are utilized as storage nodes
and the remaining users may request the file. In addition, the
model includes a base station that stores the whole file. In [8],
storage nodes and mobile nodes are not distinguished in data
retrieval case. That is, eventhough storage nodes are already
equipped with some data, they still contact k nodes to access
the data. Furthermore, in our model, we assume that BN is
always participating in the repair process, whereas in [8], base
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Fig. 1: Hierarchical DSS

station is involved in repairs only when number of storage
nodes goes below d.

II. SYSTEM MODEL

A. Hierarchical DSS
In this work, we assume there is a hierarchical DSS in which

there are three separated set of nodes, a backup node (BN),
storage nodes (SN) and mobile nodes (MN) as shown in Fig. 1.
• BN stores information (of size α′) regarding file f of size
M. We first consider α′ = M for BN and later reduce
this capacity. BN can serve SN such that if failures occur
within SN, they can be repaired with the help of BN
(and other SN). However, MN cannot access to BN. (This
models cellular networks such as femtocells and storage
system with backup.)

• There are n SN where each one of SN stores α amount of
encoded data. Repairing a failed SN requires to download
β amount of data from any d SN as well as downloading
β′ = τβ amount of data from BN.

• MN represents the mobile users who may ask for a file
from DSS. MN asking for a file can contact any k SN and
download α from each in order to access to the original
file f .

In the following section, we analyze (α, γ = dβ + β′, α′)
trade-off when α′ ≤ M, because storing more than the file
size is unnecessary. We characterize the trade-off for (α, γ) for
α′ = M and then show that same trade-off can be achieved
when α′ = β′α

β .

B. User Requests and Node Failures
1) User Requests: MN file requests are modeled as a

Poisson process with independent and identically distributed
(i.i.d.) inter-request time Tr which follows a pdf

fTr (t) = ωe−ωt, ω ≥ 0, t ≥ 0, (1)

where ω is the expected data request rate from MN.
2) Node Failures: Node failures within SN are also mod-

eled as Poisson process with i.i.d. inter-failure time Tf which
follows a pdf

fTf
(t) = µe−µt, µ ≥ 0, t ≥ 0, (2)

where µ is the expected failure rate for one of SN.

C. Communication Cost
We denote the cost for one of the SN to download one

symbol from other SN and BN as ρSN
SN and ρBN

SN respectively.
On the other hand, for MN to download one symbol from SN
is denoted by ρSN

MN. Also, we define ρ , ρBN
SN
ρSN

SN
and it’s assumed

that ρ ≥ 1, that is for SN, the cost of downloading from SN is
at most same as downloading from BN. (Downloading from
BN is more costly.)

D. Data Access and Maintenance
1) Data Access: Consider a code C, which maps M

symbols (over Fq) in f to length n codewords (nodes) c =
(c1, . . . , cn) with ci ∈ Fαq for i = 1, . . . , n. These codewords
are distributed to n SN. We have the following data access
property for MN.

Definition 1 (Data Access Property). The file f , which consist
ofM elements in Fq , is encoded to n codeword symbols (each
in Fαq ) such that f can be decoded by accessing any k of them.

2) Maintenance Process: If one of the SN fails, it’s re-
quired to regenerate the stored data that is lost due to failure
so that the file is maintained with the same tolerance as before.
Throughout this study, scheduled maintenance is assumed,
where the repairs are performed periodically where each repair
epoch is ∆ seconds. In other words, the time between two
consecutive maintenance processes is denoted with ∆ ≥ 0
and ∆ = 0 case is referred to as instantaneous repair, which
is often the case for classical regenerating codes discussed in
the introduction. We have the following maintenance process
definition.

Definition 2 (Maintenance Process). After ∆ amount of time,
any failed node can be reconstructed by downloading β
symbols from any d SN and β′ symbols from BN. If there are
at most d−1 SN available after ∆, then repairs are performed
using BN only and downloading α symbols, if BN stores the
entire file.

As a result of maintenance process described above, each
failed node is reconstructed by using both SN and BN
communication and downloading dβ + β′ amount of data,
only if there are d or more SN are available at the time of
repair. Otherwise, each repair is performed using BN only,
in which a regenerated node downloads α amount of data
directly from BN. Henceforth, cost of repair of a node is either
ρSN

SNdβ+ρBN
SNβ

′ or ρBN
SNα, depending on the number of available

(live) storage nodes in the network at the end of each epoch.

Remark 3. We note that for ∆ 6= 0, there exists a positive
probability that the system will have less than k (or even 0)
number of alive SN at the end of a maintenance epoch (∆
seconds). Therefore, for ∆ 6= 0, DSS may experience data
loss if α′ <M as SN may not be reconstructed from BN and
remaining (live) SN.

III. FILE SIZE BOUNDS

In this section, we perform an analysis to obtain file size
bounds for hierarchical DSS. In order to keep storage system



functional, n SN (each storing α) needs to be maintained. If
a node fails, a newcomer node needs to be regenerated. The
newcomer node downloads β symbols from any d SN as well
as β′ = τβ from BN as mentioned in the previous section.
The resulting repair bandwidth is γ = dβ + β′ (symbols). In
the following, we perform an analysis to find the upper bound
on the file size that can be stored in hierarchical DSS.

Theorem 4. We can bound the file size that can be stored in
hierarchical DSS as

M≤
k−1∑
i=0

min {α, (d− i)β + β′} . (3)

Proof. Consider MN connecting k nodes (denoted by an
ordered set O where O , {1, 2, . . . , k}). Data stored at each
node in O is denoted by Xi and downloaded data to this node
is denoted by Ri. Due to the data reconstruction property, we
have H(f |XO) = 0. Accordingly, we have

M = H(f) = H(f)−H(f |XO) = I(f ;XO) ≤ H(XO).

At this point, we can analyze the bound on the term H(XO)
in order to obtain file size bound on M. Denote by O(i) the
ith node in the ordered. We can calculate the entropy as

H(XO) =

k−1∑
i=0

H(XO(i)|XO(1), . . . ,XO(i−1))

≤
k−1∑
i=0

min {α, (d− i)β + β′} ,

(4)

which concludes the proof.

Corollary 5. Corresponding MSR and MBR bounds can be
found as follows.

αH
MSR =

M
k
, γH

MSR ≥
M(d+ τ)

k(d− k + 1 + τ)
(5)

αH
MBR = γH

MBR ≥
2M(d+ τ)

k(2d− k + 1 + 2τ)
(6)

where superscript H is used to denote the hierarchical DSS.

Proof. For MSR bound, we set α = M
k in (3) and obtain

that (d − i)β + β′ ≥ α,∀i ∈ [0, k − 1]. Next, observing
that β′ = τβ, minimum γ occurs at γH

MSR ≥
M(d+τ)

k(d−k+1+τ)

since β is bounded by M
k(d−k+1+τ) . MBR bound on the other

hand follows M ≤
∑k−1
i=0 (d − i)β + β′ since α = dβ + β′

is the minimum bandwidth. Therefore, β is bounded by
2M

k(2d−k+1+2τ) and γH
MBR = αH

MBR ≥ dβ + β′ = (d+ τ)β.

IV. OPTIMAL CODE CONSTRUCTIONS

We utilize the existing regenerating codes to obtain optimal
codes for hierarchical DSS.

Construction I: Consider a file f of size M.
• Encode f using an [n, k, d̃ = d+ τ ] MSR/MBR regener-

ating code.
• Store n encoded symbols in n of SN, where each SN

gets one of the symbols. Store the whole file in BN.

Call the output of above construction, CH(MSR/MBR).

Corollary 6. Let CH(MSR/MBR) the code obtained from Con-
struction I. CH(MSR/MBR) is optimal with respect to Corollary
5 for α′ =M.

Proof. First, assume [n, k, d̃ = d + τ ] MSR code is used
to encode file f . Then, the resulting α and β for underlying
regenerating code is

(αMSR, βMSR) =
(M
k
,

M
k(d̃− k + 1)

)
.

During the repair process, a newcomer then downloads
Md

k(d̃−k+1)
from SN. Additionally, it downloads τβ = Mτ

k(d̃−k+1)
from BN. Since BN stores the whole file, it can compute
τβ from it’s data. Hence, in total, the repair bandwidth is
dβ + τβ = M(d+τ)

k(d̃−k+1)
= M(d+τ)

k(d−k+1+τ) . Therefore, we can
achieve (αH

MSR, γ
H
MSR) in Corollary 5.

On the other hand, consider [n, k, d̃ = d + τ ] MBR code
is used to encode file f . Then, the resulting α and β for
underlying regenerating code is

(αMBR, βMBR) =
( 2Md̃

k(2d̃− k + 1)
,

2M
k(2d̃− k + 1)

)
.

A newcomer downloads 2Md
k(2d̃−k+1)

from the SN as well as

it downloads τβ = 2Mτ
k(2d̃−k+1)

from BN. BN can compute
τβ since it stores the whole file. Therefore, total repair
bandwidth is dβ + τβ = 2M(d+τ)

k(2d̃−k+1)
= 2M(d+τ)

k(2d−k+1+2τ) . Hence,
(αH

MBR, γ
H
MBR) that is computed in Corollary 5 can be achieved

using regular MBR codes.

Remark 7. If τ < k, instead of storing whole file of size M
in BN, we can improve the rate of the code by storing only
τα amount of data in BN. Formally, instead of encoding f
with [n, k, d̃ = d + τ ] regenerating code, we can use [ñ =
n+ τ, k, d̃ = d+ τ ] regenerating code. Here, any n out of ñ
encoded symbols are distributed to n SN and the remaining τ
symbols are stored as a super-node in BN. The resulting code
is still optimal and achieves MSR and MBR bounds that are
found in Corollary 5. For the same k and d̃, both codes have
the same α and the first construction stores total of M+ nα
amount of data whereas the modified construction stores ñα =
(n+ τ)α. Since τ < k, τα <M and rate is improved.

Proof. Proof is similar to proof of Corollary 6. Instead of
computing τβ from the whole file, BN sends β amount of
data from each of τ nodes it stores.

Remark 8. In terms of error correction capabilities, if τ ≥ k,
the system is able to recover from any number of node failures
within MN since the BN stores the whole file. However, for the
case of τ < k, since BN stores the data which corresponds to
τ nodes of regenerating codes, the error correction capability
of the system is same as [ñ = n+τ, k, d̃ = d+τ ] regenerating
code, that is up to any n− d node failures within MN can be
tolerated.



V. MAINTENANCE AND DATA ACCESS COSTS

As discussed earlier, costs of downloading from BN, SN and
MN may differ. In this section, maintenance and data access
costs are discussed under the Poisson models introduced
earlier for scheduled maintenance ∆ and α′ =M. We denote
by b(n,p)i PMF of binomial distribution with parameters n and
p,

b
(n,p)
i ,

(
n

i

)
pi(1− p)n−i. (7)

A. Maintenance Cost

Under maintenance process discussed earlier, repairs are
performed using either both SN and BN (when there are
at least d nodes remain in the network) or BN (number of
surviving nodes is less than d) only. Accordingly, we can
denote the number of nodes that are repaired using BN only
and both SN and BN as mBN

r and mSN
r respectively. Denoting

the random variable for normalized repair cost per time by
Cr, we have the following,

E[Cr] =
ρBN

SNγBNm
BN
r + ρSN

SNγSNm
SN
r + ρBN

SNγ
SN
BNm

SN
r

M∆
,

where we denote the amount of downloads during a node
repair from BN only as γBN (when there are at most d−1 sur-
viving nodes), from SN as γSN and from BN γSN

BN respectively
(when there are at least d surviving nodes).

Theorem 9. For a DSS considered in previous section with
departure rate µ and repair interval ∆, the average repair
cost is given by,

E[Cr] =
ρSN

SN

M∆

(
ρα

d−1∑
i=0

(n−i)b(n,p)i +β(d+ρτ)

n∑
i=d

(n−i)b(n,p)i

)
(8)

Proof. Probability that a node has not failed the network
during ∆ is p = Pr(Tf > ∆) = e−µ∆. Hence, probability
that i storage nodes are available for repair is b(n,p)i . For any
i, n− i nodes need to be repaired using both SN and BN or
BN only. To do BN only repairs, there should be less than d
nodes, hence mBN

r =
∑d−1
i=0 (n − i)b(n,p)i . Similarly, we have

mSN
r =

∑n
i=d(n− i)b

(n,p)
i since SN repairs requires at least d

live nodes.

B. Data Access Cost

Denote by pSN the probability that a request for a file is
served utilizing SN (in which kα is downloaded from k live
nodes). Then, we have Cd as the random variable for data
access cost (normalized with file size) and its expected value
as

E[Cd] =
ω

M
ρSN

MNkαpSN.

Theorem 10. For a DSS considered in previous section with
failure rate µ, request rate ω and repair interval ∆, pSN is
given by,

pSN =
1

∆

n∑
i=k

1− pi
µi

n∏
j=k
j 6=i

j

j − i
, (9)

where µi = iµ and pi = e−µi∆.

Proof. See the proof of Theorem 2 in [8].

Remark 11. If there are less than k SN available at the time
of file request, DSS would not be able to serve the MN, which
happens with probability 1−pSN. Since MN access is assumed
to be restricted to SN, the only solution is to wait for repairs
of SN to be over.

C. Variance Analysis of Costs

In addition to the expected values of costs, second order
statistics can also play a major role in practice.

Theorem 12. Variance of maintenance cost is given by

Var(Cr) =
1

M2∆2

(
(ρBN

SN )2γ2
BNΣ0,d−1 + (ρSN

SNγSN + ρBN
SNγ

SN
BN)2Σd,n

− 2ρBN
SNγBN(ρSN

SNγSN + ρBN
SNγ

SN
BN)Σd,n0,d−1

)
(10)

where Σk,j =
∑j
i=k(n− i)2b

(n,p)
i − (

∑j
i=k(n− i)b(n,p)i )2 and

Σu,vk,j =
∑j
i=k(n− i)b(n,p)i

∑v
i=u(n− i)b(n,p)i .

Proof. Due to space limitations, the proof is provided in our
technical report [9].

Theorem 13. Variance of data access cost is given by

Var(Cd) =
ω2(ρSN

MN)2k2α2(pSN − p2
SN)

M2
. (11)

Proof. Due to space limitations, the proof is provided in our
technical report [9].

VI. NUMERICAL RESULTS

In Fig. 2, we analyze our findings under a scenario where
ρSN

SN = ρSN
MN and ρBN

SN = 5. First, in Fig. 2(a), we show the
trade-off between α and γ (trade-off for the per-node storage
(bytes) and repair bandwidth (bytes)) as τ changes, where two
ends of the trade-off curves are respective MSR and MBR
points. As it can be observed, as τ increases, γ reduces for a
constant α. The trade-off between α and γ results in a trade-
off between Cd and Cr, which is depicted on Fig. 2(b). Since
downloading from BN costs much more than SN, increasing
τ has a negative impact on Cr.

Interestingly, for the total cost, which is defined as C =
Cr + Cd, we show that neither end-points of the trade-off
curves of Fig. 2(a) are optimal, instead one can achieve a lower
C with intermediate points as shown in Fig. 2(c). Lastly, we
show how impactful variance is in Fig. 2(b) by analyzing the
variances on the trade-off curve. In this set-up, variance of Cd
is very small compared to that of Cr, this is because pSN is
very close to 1.

We also plot the our findings by changing the value of k in
Fig. 2. For k = 6, we show the trade-off between α and γ in
Fig. 2(d). In Fig. 2(e), it can be observed that increasing k also
increased the variance of Cd as the error bars are longer in
this case as opposed to error bars on Cd in Fig. 2(b). Finally,
we show the trade-off between total cost C and Cd in Fig. 2(f)
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Fig. 2: (a) and (d) Trade-off between α and γ, (b) and (e) trade-off between Cd and Cr and variance of Cr and Cd added as
error bars on the curve, (c) and (f) trade-off between Cd and C = Cd + Cr

and in this case, the curves are not nicely separated (as they
did in Fig. 2(c)). Also, we do not have a specific τ value
performing better at all times as different τ values yields better
performance for different Cd values.

VII. CONCLUSION AND FUTURE WORK

In this work, we studied a hierarchical DSS where BN, SN
and MN are separated. Although BN can be accessed by SN,
MN can only contact SN. During the repairs of SN, BN can be
utilized. It’s shown that trade-off between per node storage α
and repair bandwidth γ can be obtained for hierarchical DSS.
Accordingly, MSR and MBR bounds are established, optimal
code constructions (using regenerating codes) achieving those
bounds are proposed. In addition, maintenance and data access
costs are analyzed using a Poisson model for node failures
within SN and file requests of MN. Both expected values
and variances are considered in the analysis. Lastly, numerical
results on the trade-off curves are provided. Trade-off between
maintenance and data access costs is given and it’s shown that
to achieve better performance in terms of total costs, one may
want to operate at intermediate points as well. According to
the studied case, it’s shown that variance of data access cost
may be negligible compared to variance of maintenance cost.

In this study, we analyzed the trade-off for the case when
α′ = M. In addition, we showed that same trade-off can be
achieved for α′ = τβ and it requires only a slight modification
to the code construction proposed. The trade-off when α′ <
τβ remains open for now. Furthermore, we discussed the case

(α′ <M) when DSS may experience data loss. Mean time to
data loss can be analyzed using Markov chain models.
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