
Individual Secrecy for the Broadcast Channel
Yanling Chen ∗, O. Ozan Koyluoglu †, Aydin Sezgin ‡

∗ Institute of Digital Signal Processing, University of Duisburg-Essen, Germany.
† Department of Electrical and Computer Engineering, The University of Arizona, USA.
‡ Institute of Digital Communication Systems, Ruhr University Bochum, Germany.
Email: yanling.chen@uni-due.de, ozan@email.arizona.edu, aydin.sezgin@rub.de.

Abstract—This paper studies the problem of secure
communication over broadcast channels under the in-
dividual secrecy constraints. That is, the transmitter
wants to send two independent messages to two le-
gitimate receivers in the presence of an eavesdropper,
while keeping the eavesdropper ignorant of each mes-
sage. A general achievable rate region is established
by utilizing Marton’s coding together with techniques
such as rate splitting, Carleial-Hellman’s secrecy cod-
ing, Wyner’s secrecy coding and indirect decoding.
Moreover, the individual secrecy capacity regions for
some special cases are characterized, and an linear de-
terministic instance is exhibited to provide insights into
the capacity regions under different secrecy constraints.

I. Introduction

The broadcast channel (BC) involves the simultaneous
communication of information from one transmitter to
multiple receivers. For the two-receiver BC with two in-
dependent messages, the capacity region is yet unknown.
Nevertheless, if one receiver’s channel is degraded to the
other, then the capacity region is fully characterized and
it is shown that superposition coding is optimal [1]–[3]. In
general, the best known achievable rate region is obtained
by Marton’s coding in [4].
Due to the very broadcast nature of the communi-

cations, adversaries may overhear the transmissions, re-
sulting in data leakage. Secure broadcasting refers to
the situation where one transmitter communicates with
several legitimate receivers in the presence of an adversary
(external eavesdropper). Inspired by the pioneering works
[5]–[7] that studied the point-to-point secure communica-
tion, there has been a growing body of literature that
investigate the problem of secure broadcasting with two
or more receivers [8]–[15]. So far, most works focus on
a joint secrecy constraint (i.e., to the eavesdropper, the
information leakage rate of all the private messages is
made vanishing). Although the work of [13] studies the in-
dividual secrecy (i.e., to the eavesdropper, the information
leakage rate of each private message is made vanishing)
for the broadcast channel, however, it assumes that one
legitimate receiver is less noisy than the other, and a
general treatment is missing.
In this work, we take advantages of the insights gained

from the previous studies. Instead of superposition coding
employed by [13], we utilize the framework of Marton’s
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Fig. 1: DM-BC with an external eavesdropper.

coding for the general setting of BC with an external
eavesdropper. Wyner’s secrecy coding [6] continues to play
an important role here. Besides, we find that Carleial-
Hellman’s secrecy coding [16] is also essential for the
individual secrecy setting, which main idea is to regard one
message as (partial) randomness for ensuring the secrecy
of the others. As a result, we establish a general achievable
individual secrecy rate region with characterization of the
individual secrecy capacity region for some special cases.
It is worth mentioning that a relevant research direction
to our problem is the secure multiplex coding (SMC)
[17], [18], which aims to attain the channel capacity while
keeping each message individually secret (when sending
plural messages over wiretap channels).

The rest of the paper is organized as follows. Section II
introduces the system model; Section III gives the main
result, i.e., the achievable individual secrecy rate region,
which proof is provided in Section IV. Section V looks
into a linear deterministic model, where numerical results
are presented to illustrate the impact of different secrecy
constraints on the respective capacity regions. Finally,
Section VI concludes the paper. To enhance the flow, some
details are relegated to the appendix.

II. System model
Consider a discrete memoryless broadcast channel (DM-

BC) with two legitimate receivers and one passive eaves-
dropper defined by p(y1, y2, z|x). The model is shown in
Fig. 1. The transmitter aims to send messages m1,m2 to
receiver 1, 2, respectively. Suppose that xn is the channel
input, whilst yn

1 , yn
2 and zn, are the channel outputs at

receiver 1, receiver 2 and the eavesdropper, respectively.
By the discrete memoryless nature of the channel, we have

p(yn
1 , y

n
2 , z

n|xn) =
n∏

i=1
p(y1i, y2i, zi|xi).



A (2nR1 , 2nR2 , n) secrecy code for the DM-BC
p(y1, y2, z|x) consists of
• Two message sets M1 and M2, where m1 ∈ M1 =

[1 : 2nR1 ] and m2 ∈M2 = [1 : 2nR2 ];
• a (randomized) encoder that assigns a codeword xn

to each message pair (m1,m2); and
• two decoders, where decoder i (at the legitimate

receiver i) assigns an estimate of mi, say m̂i, or an
error to each received sequence yn

i .

Assume that the messages M1,M2 are uniformly dis-
tributed over their corresponding message sets. Therefore,
we have

Ri = 1
n
H(Mi), for i = 1, 2. (1)

Associated with an (2nR1 , 2nR2 , n) secrecy code, the in-
dividual information leakage rates are defined as RL,i =
1
nI(Mi;Zn) for i = 1, 2, while the joint information
leakage rate is defined as RL = 1

nI(M1,M2;Zn). Denote
the average probability of decoding error at receiver i as
Pn

e,i = Pr(Mi 6= M̂i). The rate pair (R1, R2) is said to
be achievable under individual secrecy, if there exists a
sequence of (2nR1 , 2nR2 , n) codes such that

Pn
e,i ≤ εn, for i = 1, 2 (2)

RL,i ≤ τn, for i = 1, 2 (3)
lim

n→∞
εn = 0 and lim

n→∞
τn = 0. (4)

Note that, (3) corresponds to the individual secrecy con-
straints. If the coding schemes fulfill (2), (4) and

RL ≤ τn, (5)

then the rate pair (R1, R2) is said to be achievable under
joint secrecy. Clearly, the joint secrecy constraint (5)
implies the individual secrecy (3).

III. Main Results
The main results of the paper are given as follows.

Theorem 1. For the DM-BC with an external eavesdrop-
per, an achievable individual secrecy rate region is given by
the union of rate pairs (R1, R2) ∈ R2

+ with R1 = R1s +R1k

and R2 = R2s+R2k, where (R1k, R1s, R2k, R2s) ∈ R4
+, that

satisfies

R1s ≤I(V1;Y1|U)− I(V1;Z|U),
R2s ≤I(V2;Y2|U)− I(V2;Z|U),

Rk +R1s ≤I(U, V1;Y1)− I(V1;Z|U),
Rk +R2s ≤I(U, V2;Y2)− I(V2;Z|U),

(6)

with

Rk = max {R1k +R2k,max{R1k, R2k}+ I(U ;Z)} , (7)

over all p(u)p(v1, v2|u)p(x|v1, v2) subject to I(V1;V2|U) +
I(V1, V2;Z|U) ≤ I(V1;Z|U) + I(V2;Z|U).

Proof: See the detailed proof in Section IV.

The coding approach we utilize here is built on the
framework of Marton’s coding with embedded Carleial-
Hellman’s secrecy coding and Wyner’s secrecy coding.
That is, we split Mi into Mi = (Mik,Mis), for i = 1, 2.
In particular, (M1k,M2k) are encoded into the cloud
codeword Un, where individual secrecy is guaranteed by
employing Carleial-Hellman’s secrecy coding; moreover,
additional information M1s,M2s are carried by individual
satellite codewords V n

1 , V
n

2 , respectively, where the secrecy
of Mis for i = 1, 2, is ensured by employing Wyner’s
secrecy coding. Finally, following the spirit of Marton’s
coding, (V n

1 , V
n

2 ) is chosen jointly, and corresponding
codeword Xn is sent to the channel.

As reflected in the obtained region in (6), Rk (as defined
in (7)) is contributed by Carleial-Hellman’s secrecy coding
in the cloud layer on (M1k,M2k) to obtain their individual
secrecy; the first two inequalities are contributed by em-
ploying Wyner’s secrecy coding in the individual satellite
layer to ensure the secrecy of the extra message Mis to
each legitimate receiver i. The last two inequalities in (6)
come from the fact that receiver i, i = 1, 2, uses indirect
decoding to decode mi = (mik,mis) and there is a rate
loss of I(Vi;Z|U) (as randomness added in Wyner’s secrecy
coding) for the sake of the secrecy individually.

Letting V2 = U (i.e., R2s = 0), for the case that Y1 is
less noisy than Y2, the region reduces to the one in [14,
Theorem 1] by the superposition approach. Remarkably,
Theorem 1 provides a general individual secrecy achievable
region without imposing any degradedness/less noisiness
order among the legitmate receiver and the eavesdropper.

Theorem 2. For the DM-BC with an external eaves-
dropper such that Y2 is a deterministic function of X, in
addition, Y1 is more capable than Y2 and Z is a degraded
version of Y2, then the individual secrecy capacity region is
given by the union of rate pairs (R1, R2) ∈ R2

+ satisfying

R2 ≤ H(Y2|Z),
R1 ≤ I(X;Y1)− I(X;Z),

R1 +R2 ≤ I(X;Y1),
(8)

over all p(x).

Proof: The achievability follows from Theorem 1 by
taking V2 = U = Y2 (thus R2s = 0) and V1 = X, replacing
R1k by R1−R1s, R2k by R2 and then eliminating R1s. Note
that in case that Y2 is a deterministic function of X and
Z is a degraded version of Y2, we have I(X;Z|Y2) = 0,
H(Y2) = I(X;Y2) and I(Y2;Z) = I(X;Z). For the
converse, the first two inequalities for R1, R2, respectively,
follow directly from the classical results of wiretap channel
by simply ignoring the other legitimate receiver [7]. And,
the last inequality follows directly from the upper bound
on the sum rate for the relaxed setting without any secrecy
constraints.

IV. Achievability Proof of Theorem 1
Rate splitting: Represent M1,M2 by M1 = (M1k,M1s)



and M2 = (M2k,M2s) with M1k,M2k of rate nR1k, nR2k,
respectively; while M1s,M2s of rate nR1s, nR2s, respec-
tively. Therefore, we have

R1 = R1k +R1s, R2 = R2k +R2s. (9)

Codebook generation: Fix p(u), p(v1, v2|u).
First, randomly generate 2n[R1k+R2k+Rr] i.i.d. sequences

un(m2k,m1k,mr), with (m2k,m1k,mr) ∈ [1 : 2nR2k ]× [1 :
2nR1k ]× [1 : 2nRr ], according to p(u).
For each fixed un(m2k,m1k,mr), randomly gen-

erate 2n[R1s+R1r+R1c] sequences vn
1 (m2k,m1k,mr,m1s,

m1r,m1c) with (m1s,m1r,m1c) ∈ [1 : 2nR1s ] ×
[1 : 2nR1r ] × [1 : 2nR1c ], according to p(v1|u); and
similarly, randomly generate 2n[R2s+R2r+R2c] sequences
vn

2 (m2k,m1k,mr,m2s,m2r,m2c) with (m2s,m2r,m2c) ∈
[1 : 2nR2s ]× [1 : 2nR2r ]× [1 : 2nR2c ], according to p(v2|u).
Encoding: To send messages (m1,m2), with m1 =

(m1k,m1s), m2 = (m2k,m2s), randomly choose mr ∈ [1 :
2nRr ] and find un(m2k,m1k,mr).
Given un(m2k,m1k,mr), randomly choose

(m1r,m2r) ∈ [1 : 2nR1r ] × [1 : 2nR2r ], and pick
(m1c,m2c) such that vn

1 (m2k,m1k,mr,m1s,m1r,m1c) and
vn

1 (m2k,m1k,mr,m2s,m2r,m2c) are jointly typical. (If
there is more than one such jointly typical pair, choose
one of them uniformly at random.) This is possible with
high probability, if

R1c +R2c > I(V1;V2|U) (10)

(refer to [19] for the proof).
Finally, for the chosen jointly typical pair (vn

1 , v
n
2 ),

generate a codeword xn at random according to p(x|v1, v2)
and transmit it.
Decoding: Receiver 1, upon receiving yn

1 , finds a
unique tuple (m̂2k, m̂1k, m̂r, m̂1s, m̂1r) such that (un(m̂2k,
m̂1k, m̂r), vn

1 (m̂2k, m̂1k, m̂r, m̂1s, m̂1r, m̂1c)) is jointly typ-
ical with yn

1 for some m̂1c. And, receiver 2, upon receiving
yn

2 , finds a unique tuple (m̃2k, m̃1k, m̃r, m̃2s, m̃2r) such
that (un(m̃2k, m̃1k, m̃r), vn

2 (m̃2k, m̃1k, m̃r, m̃2s, m̃2r, m̃2c))
is jointly typical with yn

2 for some m̃2c.
Analysis of the error probability of decoding: Assume that

m1 = (m1k,m1s), m2 = (m2k,m2s) is sent.
For Pe,1, a decoding error happens if receiver 1’s

estimate is (un(m̂2k, m̂1k, m̂r), vn
1 (m̂2k, m̂1k, m̂r, m̂1s, m̂1r,

m̂1c)) with (m̂2k, m̂1k, m̂r, m̂1s, m̂1r) 6= (m2k,m1k,mr,
m1s,m1r). In more details, the error event can be par-
titioned into the followings:
1) Error event corresponds to (m̂2k, m̂1k, m̂r) 6=

(m2k,m1k,mr). Note that this event occurs with arbitrar-
ily small probability (e.g.: εn/2) if

R1k +R2k +Rr +R1s +R1r +R1c ≤ I(U, V1;Y1)− δn(εn).
(11)

2) Error event corresponds to (m̂2k, m̂1k, m̂r) =
(m2k,m1k,mr) but (m̂1s, m̂1r) 6= (m1s,m1r). This event
occurs with arbitrarily small probability (e.g.: εn/2) if

R1s +R1r +R1c ≤ I(V1;Y1|U)− δn(εn). (12)

Similar analysis can be done at the receiver 2, from
which the decoding error probability Pe,2 can be made
arbitrarily small (e.g.: εn) if

R1k +R2k +Rr +R2s +R2r +R2c ≤ I(U, V2;Y2)− δn(εn),
(13)

R2s +R2r +R2c ≤ I(V2;Y2|U)− δn(εn).
(14)

Analysis of individual secrecy: For the individual secrecy
(3), i.e., RL,i ≤ τn, for i = 1, 2, it suffices to show that
H(M1|Zn)+H(M2|Zn) ≥ H(M1)+H(M2)−nτn = n[R1+
R2]− nτn.
First consider H(M1|Zn). We have

H(M1|Zn) = H(M1k,M1s|Zn)
=H(M1k,M2k,Mr, U

n,M1s|Zn)
−H(M2k,Mr, U

n|M1k,M1s, Z
n)

(a)
≥H(Un|Zn) +H(M1s|Un, Zn)−H(Un|M1k, Z

n)− nτn/9
(b)
≥H(Un|Zn) +H(M1s|Un, Zn)− nτn/9
− n[R2k +Rr − I(U ;Z)]− nτn/9

=H(Un|Zn) +H(V n
1 ,M1s|Un, Zn)−H(V n

1 |M1s, U
n, Zn)

− n[R2k +Rr − I(U ;Z)]− 2nτn/9
(c)
≥H(Un|Zn) +H(V n

1 |Un, Zn)− n[R1r +R1c − I(V1;Z|U)]
− n[R2k +Rr − I(U ;Z)]− nτn/3

=H(Un, V n
1 |Zn)− n[R1r +R1c − I(V1;Z|U)]

− n[R2k +Rr − I(U ;Z)]− nτn/3, (15)

where (a) follows from the fact that conditioning reduces
entropy and H(M2k,Mr|M1k,M1s, U

n, Zn) ≤ nτn/9 by
data processing inequality (due to the Markov chain
(M1k,M2k,Mr) → Un → Y n

1 ) and Fano’s inequality (if
(11) is fulfilled):

H(M2k,Mr|M1k,M1s, U
n, Zn) ≤H(M1k,M2k,Mr|Un)

≤H(M1k,M2k,Mr|Y n
1 )

≤nτn/9;

(b) and (c) follow from [11, Lemma 1] that
• H(Un|M1k, Z

n) ≤ n[R2k + Rr − I(U ;Z)] + nτn/9 if
taking

R2k +Rr ≥ I(U ;Z) + δn(τn); (16)

• H(V n
1 |M1s, U

n, Zn) ≤ n[R1r + R1c − I(V1;Z|U)] +
nτn/9 if taking

R1r +R1c ≥ I(V1;Z|U) + δn(τn). (17)

Similarly, we could show that

H(M2|Zn) ≥H(Un, V n
2 |Zn)− n[R2r +R2c − I(V2;Z|U)]

− n[R1k +Rr − I(U ;Z)]− nτn/3 (18)

if taking

R1k +Rr ≥ I(U ;Z) + δn(τn), (19)
R2r +R2c ≥ I(V2;Z|U) + δn(τn). (20)



Note that

H(Un, V n
1 |Zn) +H(Un, V n

2 |Zn)
=2H(Un|Zn) +H(V n

1 |Un, Zn) +H(V n
2 |Un, Zn)

≥2H(Un)− 2I(Un;Zn)
+H(V n

1 , V
n

2 |Un)− I(V n
1 , V

n
2 ;Zn|Un)

(d)
≥H(Un) +H(Un, V n

1 , V
n

2 )− 2nI(U ;Z)
− nI(V1, V2;Z|U)− nτn/6

(e)
≥2n[R2k +R1k +Rr] + n[R1s +R1r +R2s +R2r]
− 2nI(U ;Z)− nI(V1, V2;Z|U)− nτn/3, (21)

where (d) follows from the fact that I(Un;Zn) ≤
nI(U ;Z) + nτn/18 and I(V n

1 , V
n

2 ;Zn|Un) ≤
nI(V1, V2;Z|U) + nτn/18, the proofs of which follow
similarly to the proof of [20, Lemma 3]; (e) follows by
data processing inequality and Fano’s inequality that
• H(Un) ≥ n[R2k + R1k + Rr] − nτn/12 (if (11) is

fulfilled):

H(Un) ≥ I(Un;Y n
1 ) ≥I(M1k,M2k,Mr;Y n

1 )
≥n[R2k +R1k +Rr]− nτn/12;

• H(Un, V n
1 , V

n
2 ) ≥ n[R2k+R1k+Rr+R1s+R1r+R2s+

R2r]− nτn/12 (if (11), (12), (13), (14) are fulfilled):

H(Un, V n
1 , V

n
2 ) ≥ I(Un, V n

1 , V
n

2 ;Y n
1 , Y

n
2 )

≥I(M1k,M2k,Mr,M1s,M1r,M2s,M2r;Y n
1 , Y

n
2 )

≥n[R1k +R2k +Rr +R1s +R1r +R2s +R2r]− nτn/12.

Combining (15) and (18), we obtain

H(M1|Zn) +H(M2|Zn)
(f)
≥H(Un, V n

1 |Zn)− n[R1r +R1c − I(V1;Z|U)]
− n[R2k +Rr − I(U ;Z)]− nτn/3
+H(Un, V n

2 |Zn)− n[R2r +R2c − I(V2;Z|U)]
− n[R1k +Rr − I(U ;Z)]− nτn/3

(g)
≥n[R1 +R2]− nτn − n[R1c +R2c]

+ n[I(V1;Z|U) + I(V2;Z|U)− I(V1, V2;Z|U)]
(h)
≥n[R1 +R2]− nτn,

where (f) is due to (15) and (18); (g) is according to (21)
and the fact that R1 = R1k +R1s and R2 = R2k +R2s as
defined in (9); and (h) is by taking

R1c+R2c ≤ I(V1;Z|U)+I(V2;Z|U)−I(V1, V2;Z|U). (22)

Achievable rate region: We summarize the rate require-
ments in order to guarantee a reliable communication
to both legitimate receivers and to satisfy the individual
secrecy constraints at the eavesdropper as follows:
• the non-negativity for rates;
• the rate relations imposed by rate splitting, i.e., (9);
• the conditions for a reliable communication to both

legitimate receivers, i.e., (10), (11), (12), (13), (14);

• the conditions for individual secrecy of the messages
at the eavesdropper, i.e., (16), (17), (19), (20), (22).

Eliminating Rr, R1r, R2r, R1c, R2c by applying Fourier-
Motzkin procedure [21], we obtain the region of (R1, R2) =
(R1k + R1s, R2k + R2s) in terms of (R1k, R1s, R2k, R2s)
as given in (6) in Theorem 1. Note that a sketch of this
Fourier-Motzkin procedure is provided in [22].

V. Numerical results
Consider a linear deterministic broadcast channel that

is inspired by [23], in which the received signals at the
legitimate receivers and the eavesdropper are given by

Y1 = Dq−n1X, (23)
Y2 = Dq−n2X, (24)
Z = Dq−neX, (25)

where X is the binary input vector of length q =
max{n1, n2, ne}; D is the q × q down-shift matrix; n1, n2
and ne are the integer channel gains of the channels
from the transmitter to receiver 1, receiver 2, and the
eavesdropper, respectively. Without loss of generality, we
assume that n1 ≥ n2. Under this assumption, Y2 is a
degraded version of Y1 according to the channel definition.
In this case, we have the following theorem:

Theorem 3. For the linear deterministic broadcast chan-
nel with an external eavesdropper, its capacity region is the
set of the rate pairs (R1, R2) ∈ R2

+ defined by
• without secrecy constraint:

R2 ≤ n2, R1 +R2 ≤ n1; (26)

• under joint secrecy constraint:

R2 ≤ [n2 − ne]+, R1 +R2 ≤ [n1 − ne]+; (27)

• under individual secrecy constraint:
R1 ≤ [n1 − ne]+, R2 ≤ [n2 − ne]+ and
R1 +R2 ≤ n1,

(28)

where [a]+ = max{0, a}.
Proof: (26) follows from [2], [3], [21]; (27) follows from

[8, Corollary 2] or [15, Theorem 4]; and (28) follows from
Theorem 2.

Non-degenerate individual/joint secrecy rate regions are
possible only for the case as n1 ≥ n2 ≥ ne. Its capacity
regions under different secrecy constraints are depicted in
Fig. 2. Note that the individual secrecy capacity region is
a rectangle in case of 0 ≤ n2 − ne ≤ ne, as shown in Fig.
2a; but a rectangle with one missing corner in case of n2−
ne > ne, as shown in Fig. 2b. Compared to the capacity
region without any secrecy constraints, there is ne bits loss
for the maximal transmission rates R1, R2, respectively,
due to the individual secrecy constraint. However, for the
case under the joint secrecy constraint, compared to the
capacity region with no secrecy constraint, there is not
only a loss of ne bits for the maximal transmission rates
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Fig. 2: Capacity regions of deterministic BC.

R1, R2, respectively, but also ne bits loss for the sum rate
R1 + R2. This additional loss on the sum rate R1 + R2
illustrates the fundamental difference between the joint
secrecy (3) and the individual secrecy (5) constraints.

VI. Conclusion
In this paper, we studied the problem of secure commu-

nication over the broadcast channel under the individual
secrecy constraint. As a general result, we derived an
achievable rate region and characterized the individual se-
crecy capacity region for some special case. Unlike previous
studies, our treatment is general by not requiring any less
noisiness/degradedness order among receivers, and with a
focus on the key scenario for secure broadcasting in the
sense that two confidential messages are dedicated to two
legitimate receivers, respectively.
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