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Abstract—This paper studies the problem of secure
communication over a 2-transmitter multiple access
channel (MAC) in the presence of an external eaves-
dropper. Two different secrecy constraints are consid-
ered: 1) individual secrecy (i.e., information leakage
rate from each message to the eavesdropper is made
vanishing) and 2) joint secrecy (i.e., information leak-
age rate from both messages to the eavesdropper is
made vanishing). As a general result, the respective
achievable secrecy rate regions are established. The
single-letter characterizations of both regions involve
three auxiliary random variables, one for time shar-
ing and two for channel prefixing. Numerical results
are presented to demonstrate the impact of differ-
ent secrecy constraints and the advantage of channel
prefixing in enlarging the achievable (individual/joint)
secrecy rate regions.

I. Introduction
Multiple access channel (MAC) is an important branch

in the extensive field of the multiple-user communication.
For MAC with independent sources, Ahlswede [1] first
studied the 2-transmitter and 3-transmitter cases and
determined the respective capacity regions; whilst Liao
[2] considered the general K-transmitter MAC and fully
characterized its capacity region.

Inspired by the pioneering works of Wyner [3] and
Csiszár and Körner [4] that studied the information the-
oretic secrecy for a point-to-point communication in the
presence of an external eavesdropper, MAC with an ex-
ternal eavesdropper was first introduced in [5]. In par-
ticular, [5] focused on a degraded Gaussian MAC with
K-transmitters and established several achievable rate
regions subject to pre-specified secrecy levels; while a
discrete memoryless 2-transmitter MAC with an external
eavesdropper was considered in [6]. Note that the model
in [6] takes into accounts the generalized feedback that
may enable cooperation between transmitters; and, a joint
secrecy constraint (i.e., information leakage rate from
both messages to the eavesdropper is made vanishing) is
imposed at the eavesdropper. Further works include [7],
[8] that focus on the Gaussian scenario, and [9], [10] that
investigate MAC with a stronger secrecy criteria (i.e., the
amount of information leakage from both messages to
the eavesdropper is made vanishing). Nevertheless, for the
general case (e.g., with an eavesdropper not necessarily
degraded), the joint secrecy capacity region still remains
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Fig. 1: DM-MAC with an external eavesdropper.

open in spite of all these efforts. And, a treatment subject
to other secrecy criteria such as individual secrecy con-
straint (i.e., information leakage rate from each message
to the eavesdropper is made vanishing), is missing. Note
that individual secrecy has been well studied for the secure
broadcasting problem [11]–[13].

In this paper, we focus on the problem of secure commu-
nication over a 2-transmitter MAC subject to two different
secrecy constraints: 1) individual secrecy and 2) joint
secrecy. The channel model is shown in Fig. 1. Note that
the joint secrecy constraint offers a higher secrecy level
from the system design perspective, while the individual
secrecy constraint could provide an acceptable security
strength from the end user’s point of view with poten-
tial gains in increasing transmission rates. Therefore, our
study provides insights for trading-off of the throughput
and secrecy level. As a main result of the paper, we provide
the respective achievable secrecy rate regions of the 2-
transmitter MAC with an external eavesdropper subject
to these two different secrecy constraints.

The rest of the paper is organized as follows. Section II
introduces the system model; Section III gives the main
result, i.e., the achievable individual/joint secrecy rate
regions, which proofs are provided in Section IV. Section
V provides some numerical results. Finally, Section VI
concludes the paper. To enhance the flow, some details
are relegated to the appendix.

II. System model
Consider a discrete memoryless MAC (DM-MAC) with

two transmitters, one legitimate receiver, and one passive
eavesdropper, as shown in Fig. 1. The transmitter i, aims
to send message mi to the legitimate receiver, where i =
1, 2. Suppose that xn

i is the channel input at transmitter
i, and the channel outputs at the legitimate receiver and
eavesdropper are yn and zn, respectively. By the discrete



memoryless nature of the channel, we have

p(yn, zn|xn
1 , x

n
2 ) =

n∏
i=1

p(yi, zi|x1,i, x2,i).

A (2nR1 , 2nR2 , n) secrecy code for the DM-MAC consists
of
• Two message sets M1,M2, where mi ∈ Mi = [1 :

2nRi ] for i = 1, 2;
• Two encoders each assigning a codeword xn

i to mes-
sage mi for i = 1, 2; and

• One decoder at the legitimate receiver that declares
an estimate of (m1,m2) say (m̂1, m̂2) or an error to
the received sequence yn.

Assume that the messages are uniformly distributed
over their corresponding message sets. We have

Ri = 1
n
H(Mi), for i = 1, 2. (1)

Denote the average probability of decoding error at the
legitimate receiver as Pn

e = Pr{{M1 6= M̂1} ∪ {M2 6=
M̂2}}. At the eavesdropper, denote RL,i = I(Mi;Zn)/n
to be the (individual) leakage rate of Mi for i = 1, 2, and
RL = I(M1,M2;Zn)/n to be the (joint) leakage rate of
(M1,M2), respectively. The rate pair (R1, R2) is said to
be achievable under individual secrecy constraint, if there
exists a sequence of (2nR1 , 2nR2 , n) codes such that

Pn
e ≤ εn, (2)

RL,i ≤ τn, for i = 1, 2 (3)
lim

n→∞
εn = 0 and lim

n→∞
τn = 0. (4)

Note that, (3) corresponds to the individual secrecy con-
straints. If the coding scheme fulfills (2), (4) and

RL ≤ τn, (5)

then the rate pair (R1, R2) is said to be achievable un-
der joint secrecy constraint. Clearly, the joint secrecy (5)
implies the individual secrecy (3) as I(M1,M2;Zn)/n =
RL ≥ RL,1 + RL,2 = I(M1;Zn)/n + I(M2;Zn)/n.
Therefore, the jointly secret achievable rate pairs are by
definition achievable as individually secret.

III. Main result
In this section, we present the main results of the paper.

Theorem 1. An achievable individual secrecy rate region
of the 2-transmitter DM-MAC with an external eavesdrop-
per is given by the union of non-negative rate pairs (R1, R2)
satisfying

R1 ≤ I(V1;Y |V2, Q)− I(V1;Z|Q),
R2 ≤ I(V2;Y |V1, Q)− I(V2;Z|Q),

max{R1, R2} ≤ I(V1, V2;Y |Q)− I(V1, V2;Z|Q),
R1 +R2 ≤ I(V1, V2;Y |Q)− I(V1;Z|Q)− I(V2;Z|Q),

where the union is over all input probability distributions
of the form p(q)p(v1|q)p(v2|q)p(x1|v1)p(x2|v2).

Proof: See the achivability proof in Section IV-A.

Theorem 2. An achievable joint secrecy rate region of
the 2-transmitter DM-MAC with an external eavesdropper
is given by the union of non-negative rate pairs (R1, R2)
satisfying

R1 ≤ I(V1;Y |V2, Q)− I(V1;Z|Q),
R2 ≤ I(V2;Y |V1, Q)− I(V2;Z|Q),

R1 +R2 ≤ I(V1, V2;Y |Q)− I(V1, V2;Z|Q),

where the union is over all input probability distributions
of the form p(q)p(v1|q)p(v2|q)p(x1|v1)p(x2|v2).

Proof: See the achivability proof in Section IV-B.
Remark: Taking V1 = X1, V2 = X2, Theorem 2 recovers

the achievable joint secrecy rate region given in [6, (8)],
which does not involve the channel prefixing parameters
(V1, V2); While, Theorem 2 (with channel prefixing) in-
deed improves [6, (8)] (without channel prefixing), as we
demonstrate by the numerical results in Section V.

IV. Achievability proof

A. Achievability proof of Theorem 1
Fix p(q), p(v1|q), p(v2|q), p(x1|v1), p(x2|v2). Generate a

random sequence qn, where p(qn) =
∏n

t=1 p(q(t)) with
each entry chosen as i.i.d. p(q). The sequence qn is given
to every node in the system.

Codebook generation: To construct codebook i for
i = 1, 2, randomly generate 2n(Ri+Ri,r) sequences
vn

i (mi,mi,r), with (mi,mi,r) ∈ [1 : 2nRi ] × [1 : 2nRi,r ],
each with probability p(vn

i |qn) =
∏n

t=1 p(vi(t)|q(t)), where
p(vi(t)|q(t)) = p(v1|q) for each t. Every node in the
network knows these codebooks.

Encoding: Transmitter i for i = 1, 2, to send message
mi, randomly chooses mi,r ∈ [1 : 2nRi,r ] and finds
vn

i (mi,mi,r). Then, it generates xn
i randomly according

to p(xi|vi) using the codeword vn
i (mi,mi,r), and transmits

this sequence to the channel.
Decoding: The legitimate receiver, upon receiving

yn, finds vn
1 (m̂1, m̂1,r) and vn

2 (m̂2, m̂2,r) such that
(vn

1 (m̂1, m̂1,r), vn
2 (m̂2, m̂2,r), yn) is jointly typical.

Analysis of the error probability of decoding: From the
decoding analysis for the multiple access channel, see, e.g.,
[14], Pe can be made approximately zero as n→∞ if

R1 +R1,r ≤ I(V1;Y |V2, Q),
R2 +R2,r ≤ I(V2;Y |V1, Q),

R1 +R1,r +R2 +R2,r ≤ I(V1, V2;Y |Q).
(6)

Analysis of individual secrecy: For the individual secrecy
(3), i.e., RL,i ≤ τn, for i = 1, 2, we show in the following
its equivalent form that H(Mi|Zn, Qn) ≥ nRi − nτn, as
this implies nRL,i = I(Mi;Zn) ≤ I(Mi;Zn, Qn) ≤ nτn.
The following lemma is used for the secrecy analysis.



Lemma 3. H(V n
1 , V

n
2 |M1, Z

n, Qn) ≤ n[R1,r +R2 +R2,r−
I(V1, V2;Z|Q)] + nεn if

R1,r ≥ I(V1;Z|Q), (7)
R2 +R2,r ≥ I(V2;Z|Q), (8)

R1,r +R2 +R2,r ≥ I(V1, V2;Z|Q). (9)

Proof: See a detailed proof in Appendix A.
First, we consider H(M1|Zn, Qn).

H(M1|Zn, Qn) = H(M1, Z
n|Qn)−H(Zn|Qn)

=H(M1,M1,r,M2,M2,r, Z
n|Qn)

−H(M1,r,M2,M2,r|M1, Z
n, Qn)−H(Zn|Qn)

(a)=H(M1,M1,r,M2,M2,r|Qn) +H(Zn|V n
1 , V

n
2 , Q

n)
−H(M1,r,M2,M2,r, V

n
1 , V

n
2 |M1, Z

n, Qn)−H(Zn|Qn)
(b)
≥n[R1 +R1,r +R2 +R2,r]− I(V n

1 , V
n

2 ;Zn|Qn)
−H(V n

1 , V
n

2 |M1, Z
n, Qn)− nεn

(c)
≥n[R1 +R1,r +R2 +R2,r]− nI(V1, V2;Z|Q
−H(V n

1 , V
n

2 |M1, Z
n, Qn)− 2nεn

(d)
≥nR1 − nτn,

where (a) follows from the fact that V n
1 and V n

2
are functions of (M1,M1,r) and (M2,M2,r), respec-
tively, and the Markov chain (M1,M1,r,M2,M2,r) →
(V n

1 , V
n

2 , Q
n) → Zn; (b) follows from the fact that

H(M1,M1,r,M2,M2,r|Qn) = n[R1 + R1,r + R2 + R2,r];
and H(M1,r,M2,M2,r|M1, V

n
1 , V

n
2 , Z

n, Qn) ≤ nεn by date
processing inequality and Fano’s inequality (if (6) is ful-
filled):

H(M1,r,M2,M2,r|M1, V
n

1 , V
n

2 , Z
n, Qn)

≤H(M1,M1,r,M2,M2,r|V n
1 , V

n
2 , Q

n)
≤H(M1,M1,r,M2,M2,r|Y n, Qn) ≤ nεn;

(c) follows from the fact that I(V n
1 , V

n
2 ;Zn|Qn) ≤

nI(V1, V2;Z|Q)+nεn (the proof of which follows similarly
to the proof of [15, Lemma 3]); and (d) is due to Lemma
3 by requiring (7), (8) and (9) and by taking τn = 3εn.

A similar proof applies to H(M2|Zn, Qn). That is, for
the secrecy of M2 at the eavesdropper, the following
additional conditions have to be fulfilled (as required in
step (d) for the secrecy of M1 at the eavesdropper):

R2,r ≥ I(V2;Z|Q), (10)
R1 +R1,r ≥ I(V1;Z|Q), (11)

R2,r +R1 +R1,r ≥ I(V1, V2;Z|Q). (12)

Note that (8), (11) are fulfilled if (7), (10) are satisfied
(due to the non-negativity of the rates).

Individual secrecy achievable rate region: We summarize
the requirements in order to guarantee a reliable commu-
nication under the individual secrecy constraint as follows:
• the non-negativity for rates;
• the conditions for a reliable communication to the

legitimate receiver, i.e., (6); and

• the conditions for individual secrecy of the messages
at the eavesdropper, i.e., (7), (9), (10) and (12).

Eliminating R1,r, R2,r by applying Fourier-Motzkin proce-
dure [14], we get the desired rate region in Theorem 1.

B. Achievability proof of Theorem 2

For the achievability of the joint secrecy rate region in
Theorem 2, we utilize the same encoding and decoding
scheme (at the transmitters and legitimate receiver) as
described in Section IV-A. As a direct consequence, the
reliability proof (i.e., analysis of the error probability of
decoding) remains the same. Therefore, we only need to
revise the secrecy analysis under the joint secrecy con-
straint. Following a similar proof for Lemma 3, we have
the following lemma for the joint secrecy analysis.

Lemma 4. H(V n
1 , V

n
2 |M1,M2, Z

n, Qn) ≤ n[R1,r +R2,r−
I(V1, V2;Z|Q)] + nεn if

R1,r ≥ I(V1;Z|Q), (13)
R2,r ≥ I(V2;Z|Q), (14)

R1,r +R2,r ≥ I(V1, V2;Z|Q). (15)

Analysis of joint secrecy: For the joint secrecy (5), i.e.,
RL ≤ τn, we show in the following its equivalent form that
H(M1,M2|Zn, Qn) ≥ n[R1 + R2] − nτn, as this implies
nRL = I(M1,M2;Zn) ≤ I(M1,M2;Zn, Qn) ≤ nτn.

H(M1,M2|Zn, Qn) = H(M1,M2, Z
n|Qn)−H(Zn|Qn)

=H(M1,M1,r,M2,M2,r, Z
n|Qn)

−H(M1,r,M2,r|M1,M2, Z
n, Qn)−H(Zn|Qn)

(e)=H(M1,M1,r,M2,M2,r|Qn) +H(Zn|V n
1 , V

n
2 , Q

n)
−H(M1,r,M2,r, V

n
1 , V

n
2 |M1,M2, Z

n, Qn)−H(Zn|Qn)
(f)
≥n[R1 +R1,r +R2 +R2,r]− I(V n

1 , V
n

2 ;Zn|Qn)
−H(V n

1 , V
n

2 |M1,M2, Z
n, Qn)− nεn

(g)
≥n[R1 +R1,r +R2 +R2,r]− nI(V1, V2;Z|Q)
−H(V n

1 , V
n

2 |M1,M2, Z
n, Qn)− 2nεn

(h)
≥n[R1 +R2]− nτn,

where (e), (f), (g) follows the similar argument as for the
steps (a), (b), (c) in Section IV-A, respectively; and (h)
follows from Lemma 4 by requiring (13), (14) and (15).

Joint secrecy achievable rate region: We summarize the
requirements in order to guarantee a reliable communica-
tion under the joint secrecy constraint as follows:
• the non-negativity for rates;
• the conditions for a reliable communication to the

legitimate receiver, i.e., (6); and
• the conditions for the joint secrecy of the messages at

the eavesdropper, i.e., (13), (14) and (15).
Eliminating R1,r, R2,r by applying Fourier-Motzkin proce-
dure [14], we get the desired rate region in Theorem 2.
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Fig. 2: Impacts of channel prefixing on achievable rate regions under different secrecy constraints.

V. Numerical results
In this section, we provide numerical results to illustrate

the impact of channel prefixing and different secrecy con-
straints on the respective achievable rate regions.

Consider a binary-input binary-output MAC with an
external eavesdropper. The channel to the legitimate re-
ceiver (X1, X2)→ Y is defined by the transition matrix

p(y|x1, x2) :

y = 0 y = 1
(x1, x2) = 00
(x1, x2) = 01
(x1, x2) = 10
(x1, x2) = 11


1 0
0 1

1/2 1/2
0 1

 ; (16)

while the channel to the eavesdropper (X1, X2) → Z is
defined by the transition matrix

p(z|x1, x2) :

z = 0 z = 1
(x1, x2) = 00
(x1, x2) = 01
(x1, x2) = 10
(x1, x2) = 11


1 0

1/2 1/2
1/2 1/2
0 1

 . (17)

For this specific MAC with an external eavesdropper, its
achievable rate regions under different secrecy constraints
are depicted in Fig. 2. The capacity region (without any
secrecy constraint) is enclosed by (green) solid lines. It is
known that channel prefixing is not necessary in this case
[14]. However, for the secrecy rate regions, channel prefix-
ing demonstrates its advantage as can be seen in Fig. 2a
(under joint secrecy) and Fig. 2b (under individual se-
crecy). The achievable individual and joint secrecy regions
(according to Theorem 1 and Theorem 2, respectively) are
shown in Fig. 2c (with binary V1, V2). Not surprisingly,
there is a price for the secrecy. As one can see, the joint
secrecy rate region is smaller than the individual one; and
both secrecy rate regions are smaller than the capacity
region with no secrecy constraint. Interestingly, in both
secrecy scenarios, the maximum marginal transmission
rates (i.e., only one active transmitter), remain the same.

VI. Conclusion
In this paper, we studied the problem of secure commu-

nication over a 2-transmitter MAC subject to the individ-
ual/joint secrecy constraint. As a result, we provided the
respective achievable secrecy rate regions. Moreover, we
showed that channel prefixing is advantageous in enlarging
the achievable rate region under both secrecy constraints.

Appendix A
Proof of Lemma 3

To prove Lemma 3, we need to show that the in-
equality H(V n

1 , V
n

2 |M1, Z
n, Qn) ≤ n[R1,r + R2 + R2,r −

I(V1, V2;Z|Q)] + nεn holds if the rates fulfill (7), (8) and
(9). This can be done by showing that if taking (7), (8)
and (9), H(V n

1 , V
n

2 |m∗1, Zn, Qn) ≤ n[R1,r + R2 + R2,r −
I(V1, V2;Z|Q)] + nεn holds for each fixed M1 = m∗1, and
then averaging over M1. The proof is given as follows.

For a given M1 = m∗1, consider the corresponding sub-
codebook of codebook 1 (which construction is described
in Section IV-A), i.e., the set of codewords vn

1 (m∗1,m1,r)
with m1,r ∈ [1 : 2nR1,r ]. Randomly and equally partition
the 2nR1,r codewords into 2nI1 sets such that each set
consists of 2n min{R1,r,I(V1;Z|V2,Q)−εn/2} codewords, where

I1 = max{0, R1,r − I(V1;Z|V2, Q) + εn/2}. (18)

We useW1 to denote the index of the sets that takes value
from [1 : 2nI1 ], and C1(W1) for the corresponding set.
Secondly consider the codebook 2 (as described in Sec-

tion IV-A), i.e., the set of codewords vn
2 (m2,m2,r) with

(m2,m2,r) ∈ [1 : 2nR2 ]×[1 : 2nR2,r ]. Randomly and equally
partition the 2n[R2+R2,r] codewords into 2nI2 sets such
that each set consists of 2n min{R2+R2,r,I(V2;Z|V1,Q)−εn/2}

codewords, where

I2 = max{0, R2 +R2,r − I(V2;Z|V1, Q) + εn/2}. (19)

We useW2 to denote the index of the sets that takes value
from [1 : 2nI2 ], and C2(W2) for the corresponding set.



Now, consider the product codebook for each fixed
(W1,W2), i.e., C1(W1) × C2(W2), which consists of 2nJ

codewords with

J = min{R1,r, I(V1;Z|V2, Q)− εn/2}
+ min{R2 +R2,r, I(V2;Z|V1, Q)− εn/2}. (20)

Randomly and equally partition them into 2nI0 sets such
that each set consists of 2n min{J,I(V1,V2;Z|Q)−εn/2} code-
words, where

I0 = max{0, J − I(V1, V2;Z|Q) + εn/2}. (21)

We useW0 to denote the index of the sets that takes value
from [1 : 2nI0 ], and C(W0,W1,W2) for the corresponding
set.

Let W = (W0,W1,W2) that takes value from [1 :
2n(I0+I1+I2)]. Note that if the eavesdropper is given
the index information W, then the corresponding set
C(W0,W1,W2) will be taken as a codebook to decode.
With the observation Zn, the eavesdropper could decode
(V n

1 , V
n

2 ) correctly with an arbitrary small decoding error
probability by using simultaneous jointly typical decoding.
This follows from the standard decoding analysis for MAC
and the construction of C(W0,W1,W2). That is, we have

H(V n
1 , V

n
2 |m∗1,W,Zn, Qn) ≤ nεn/2. (22)

Note that

H(V n
1 , V

n
2 |m∗1, Zn, Qn) = H(V n

1 , V
n

2 ,W |m∗1, Zn, Qn)
=H(W |m∗1, Zn, Qn) +H(V n

1 , V
n

2 |m∗1,W,Zn, Qn)
(a)
≤H(W ) + nεn/2

(b)
≤ n[I0 + I1 + I2] + nεn/2

(c)
≤n[R1,r +R2 +R2,r − I(V1, V2;Z|Q)] + nεn

where (a) is due to (22); (b) is by the fact that H(W ) ≤
n[I0 + I1 + I2]; and (c) is by the fact that

I0+I1+I2 ≤ R1,r+R2+R2,r−I(V1, V2;Z|Q)+εn/2, (23)

if (7), (8) and (9) are fulfilled, i.e.,
R1,r ≥ I(V1;Z|Q),

R2 +R2,r ≥ I(V2;Z|Q),
R1,r +R2 +R2,r ≥ I(V1, V2;Z|Q).

(24)

To prove (23), we consider the following 4 cases of (24):
• In addition to (24), in case of R1,r ≤ I(V1;Z|V2, Q)−
εn/2 and R2 +R2,r ≤ I(V2;Z|V1, Q)− εn/2, we have

J =R1,r +R2 +R2,r; I1 = I2 = 0;
I0 =R1,r +R2 +R2,r − I(V1, V2;Z|Q) + εn/2.

• In addition to (24), in case of R1,r ≥ I(V1;Z|V2, Q)−
εn/2 and R2 +R2,r ≤ I(V2;Z|V1, Q)− εn/2, we have

J =R2 +R2,r + I(V1;Z|V2, Q)− εn/2;
I0 =R2 +R2,r − I(V2;Z|Q); (by (21) and (8))
I1 =R1,r − I(V1;Z|V2, Q) + εn/2; I2 = 0.

• In addition to (24), in case of R1,r ≤ I(V1;Z|V2, Q)−
εn/2 and R2 +R2,r ≥ I(V2;Z|V1, Q)− εn/2, we have

J =R1,r + I(V2;Z|V1, Q)− εn/2; I1 = 0;
I0 =R1,r − I(V1;Z|Q); (by (21) and (7))
I2 =R2 +R2,r − I(V2;Z|V1, Q) + εn/2.

• In addition to (24), in case of R1,r ≥ I(V1;Z|V2, Q)−
εn/2 and R2 +R2,r ≥ I(V2;Z|V1, Q)− εn/2, we have

J =I(V1;Z|V2, Q) + I(V2;Z|V1, Q)− εn;
I0 =I(V1;Z|V2, Q) + I(V2;Z|V1, Q)

− I(V1, V2;Z|Q)− εn/2;
I1 =R1,r − I(V1;Z|V2, Q) + εn/2;
I2 =R2 +R2,r − I(V2;Z|V1, Q) + εn/2.

It is easy to verify that (23) holds in all cases, i.e., if (24)
(i.e., (7), (8) and (9)) is fulfilled. This concludes the proof.
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