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Abstract—We study a random extended network, where the
legitimate and eavesdropper nodes are assumed to be placed
according to Poisson point processes in a square region of
area n. It is shown that, when the legitimate nodes have unit
intensity, λ = 1, and the eavesdroppers have an intensity of
λe = O

(

(log n)−2
)

, almost all of the nodes achieve a perfectly

secure rate of Ω
(

1
√

n

)

. The achievability argument is based
on a novel multi-hop forwarding scheme where randomization
is added in every hop to ensure maximal ambiguity at the
eavesdropper(s). Remarkable, under these assumptions, securing
the transmissions of nodes does not entail a loss in the per-node
throughput in terms of scaling.

I. I NTRODUCTION

The broadcast nature of the wireless communication makes
it susceptible to eavesdropping. This motivates considering
secrecy as a quality of service (QoS) constraint that must
be accounted for in the network design. The scaling laws of
wireless networks under the assumption ofpre-distributed
private keys was studied in [1]. However, it is important to note
that, the key agreement step of the cryptographic protocols
is arguably the most challenging part and this step becomes
even more daunting as the network size grows. Our work
avoids these limitations by adopting an information theoretic
framework for secrecy in wireless networks. In particular,
we assume the presence of eavesdropper(s) withinfinite
computational power and characterize the scaling laws of
the network secrecy capacity whilerelaxing the idealistic
assumption of pre-distributed keys.

The notion of information theoretic secrecy was introduced
by Shannon for point-to-point noiseless channels [2]. Thisline
of work was later extended by Wyner [3] to noisy channels.
Recently, there has been a renewed interest in wireless physical
layer security (see, e.g., Special Issue on Information Theoretic
Security,IEEE Trans. Inf. Theory, June 2008 and references
therein). However, according to the best of our knowledge,
information theoretical secrecy analysis of large wireless net-
works has not been studied in the literature before.

Large networks is studied in the seminal work of Gupta and
Kumar ([4]). It is shown that the randomly located nodes can
achieve at most a rate that scales like1√

n
, asn → ∞, under an

interference-limited channel model. The authors have further
established the achievability of the same scaling behavior
when the nodes are arbitrarily placed in the network. In

random networks, however, the proposed multi-hop scheme
of [4] only achieves a scaling of 1√

n log n
per node. This gap

was recently closed in [5] using tools from the percolation
theory, where the authors proposed ahighway based multi-
hop forwarding protocol that achieves1√

n
rate per source-

destination pair in random networks.

This paper considers a random extended network, where
the legitimate nodes and eavesdroppers are distributed accord-
ing to Poisson point processes with intensityλ = 1 and
λe = O

(

(log n)−2
)

, respectively, over a square region of
area n. In such a network, we follow the footsteps steps
of [5] to construct a highway backbone, which achieves a
constant rate and servesO(

√
n) nodes. However, in addition

to the interference constraint considered in [5], our multi-
hop forwarding strategy is designed to ensure secrecy. More
specifically, an edge can be used in the highway if and only
if there is a legitimate node within the corresponding square
of the edge and if there is no eavesdropper within a certain
secrecy zone around the node. This allows the legitimate
nodes to create an advantage over the eavesdroppers, which
is, then, exploited to secure transmissions. Furthermore,an
independent randomization signal is injected in each hop to
ensure maximal ambiguity at the eavesdropper(s). We then
proceed to show that in this dependent edge model, the
network still percolates and many highway paths can be
constructed. This construction allows us to show that the
highways can carry data of each source-destination pair of
rate Ω

(

1√
n

)

securely. Finally, using the fact that each node

has anO(log n) distance to the closest highway, we show that
almost all nodes can access the highways with a secure rate
that scales better thanΩ

(

1√
n

)

, if the eavesdropper intensity

satisfiesλe = O
(

(log n)−2
)

. Combining these two results

establishes the achievability of a secure rate ofΩ
(

1√
n

)

for
almost all source-destination pairs. This implies that, under
these assumptions, securing the network does not entail a loss
in the per-node throughput in terms of scaling.

The rest of this paper is organized as follows. Section II
provides our system model and notations. Section III develops
our main result via several helper lemmas. Finally, concluding
remarks are given in Section IV.



II. SYSTEM MODEL AND NOTATION

Our extended network model is a square of side-length√
n. The legitimate nodes and eavesdroppers are assumed to

be placed randomly according to Poisson point processes of
intensity λ = 1 and λe, respectively. The set of legitimate
nodes is denoted byL, whereas the set of eavesdroppers is
represented byE . During time slott, the set of transmitting
nodes are denoted byT (t) ⊂ L, where each transmitting user
i ∈ T (t) transmits the signalXi(t). The received signals at
listening nodej ∈ L − T (t) and at eavesdroppere ∈ E are
denoted byYj(t) andYe(t), respectively:

Yj(t) =
∑

i∈T (t)

√

d−α
i,j Xi(t) + Nj(t)

Ye(t) =
∑

i∈T (t)

√

d−α
i,e Xi(t) + Ne(t),

whereNj(t) andNe(t) are i.i.d.N (0, N0) noise samples at
the legitimate nodej and at the eavesdroppere, respectively;
α > 2 is the path loss exponent; and the distance between
nodei and nodej is denoted bydij .

All legitimate transmitters have an individual peak power
constraint, denoted byP . The transmitters are assumed to
know a-priori whether there is any eavesdropper within some
neighborhood or not (the neighborhood is called secrecy zone
and the size of it will be clear in later parts of the text). To
simulate a worst case scenario, from a security perspective,
the legitimate receivers are assumed to consider interference
as noise, whereas no such assumption is made on the eaves-
droppers. Finally, the set of all observations at eavesdropper
e is denoted byYe.

Now, consider any random source-destination pair, where
the sources wishes to transmit the messageWs,d securely
to the intended destinationd. In our multi-hop strategy, each
transmission consists ofN channel uses. We say that the secret
rate of R is achievable for almost all the source-destination
pairs, (s, d), if

• The error probability of decoding the intended message
at the intended receiver can be made arbitrarily small as
N → ∞, and

• The information leakage rate, i.e.,I(Ws,d;Ye)
N

, can be
made arbitrarily small∀e ∈ E asN → ∞.

If there are onlyH hops carrying the messagews,d, one
only needs to consider the associated channel observationsat
the eavesdropper when evaluating our security constraint.(We
denote these by{Ye(1), · · · ,Ye(H)}.)

To derive our asymptotic scaling results, we use the fol-
lowing probabilistic version of Knuth’s notation. We say
f(n) = O(g(n)) w.h.p., if there exists a constantk such that

lim
n→∞

Pr{f(n) ≤ kg(n)} = 1.

We also say thatf(n) = Ω(g(n)) w.h.p., if w.h.p.g(n) =
O(f(n)).
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Fig. 1. The time division approach is represented by denoting the squares
that are allowed for transmission. It is evident from the dotted square that the
time division requires(ft d)2 time slots. The transmitter located at the center
of the figure wishes to communicate with a receiver that isd squares away.
The second square surrounding the transmitter is the secrecy zone, which is
the region of points that are at mostfe d squares away from the transmitter.
Side length of each square is denoted byc.

III. T HE MAIN RESULT

To establish the main result of the paper, we first consider
the secrecy rate per hop. We partition the network area into
squares of constant side lengthc. We further divide the area
into larger squares of sideftdc, each of which contains(ftd)2

small squares. These small squares take turn over a Time-
Division-Multiple-Access (TDMA) frame of size(ftd)2 slots.
In each slot, a transmitter within a small square can transmit to
a receiver that is located at mostd squares away as illustrated
in Fig. 1. On the same figure, we also show the secrecy
zone, around a transmitting square, consisting of squares that
are at mostfed squares away. Our first result establishes an
achievablesecurerate pera single hop, active overN channel
uses, under the assumption of a single eavesdropper on the
boundary of the secrecy zone.

Lemma 1 (Secure Rate per Hop): In a communication sce-
nario depicted in Fig.1, the secure rate, simultaneously
achievable between any transmitter-receiver pair is:

RTR =
1

(ftd)2

[

1

2
log(1 + SNRTR) − 1

2
log(1 + SNRe∗)

]

,

(1)
whereft ≥ 2(d+1)

d
,

SNRTR ≥ SNRTR ,
P (d + 1)−αc−α(

√
2)−α

No + P8(ft)−αd−αc−αS(α)
, (2)

S(α) ,

∞
∑

i=1

i(i−0.5)−α, SNRe∗ ,
P (fe)

−αd−αc−α

No

, (3)

(d + 1)α(
√

2)α

(d)α

[

1 +
P

No

8(ft)
−αd−αc−αS(α)

]

< (fe)
α.

(4)
Here, secrecy is guaranteed assuming the presence of an
eavesdropper on the boundary of the secrecy zone.

Proof: Please refer to [6].



Next we introduce our novel multi-hoprandomization strat-
egy. This technique ensures secrecy over theentire path, from
a source to a destination node, atevery eavesdropper observing
all transmissions.

Lemma 2 (Securing a Multi-Hop Path): Securing each hop
from an eavesdropper located on the boundary of the secrecy
zone is sufficient to ensure secrecy from any eavesdropper
which listens to the transmissions from all the hops and lie
outside the secrecy zones.

Proof: We consider a sources, a destinationd, and an
eavesdroppere in the network. Without loss of generality,
we considerH hops in the multi-hop scheme. We design
the secrecy codebook at each transmitter according to highest
possible eavesdropper SNR assumption for each hop. In our
multi-hop routing scenario, each code of the ensemble at
the transmitter of hopi has 2N(Ri+Rx

i −
ǫ1
H

) codewords each
entry with i.i.d. N (0, P ), for someǫ1 > 0. Each codeword
is represented with the tuple(ws,d, wx

i ), wherews,d is the
bin index (secret message) andwx

i is the codeword index
(randomization message). To transmit the messagews,d, the
codewordXi(ws,d, w

x
i ) is transmitted at transmitteri, where

wx
i is randomly chosen. It is clear now that each transmitter

on the path addsindependent randomness, i.e., the codeword
index wx

i is independent ofwx
j for i 6= j.

We consider an eavesdropper at the boundary of the secrecy
zone around the transmitter of the hopi, and denote it bye∗i .
We subtract all the interference seen by this virtual node and
denote its observations for hopi asYe∗

i
. Omitting the indices

(ws,d, w
x
i ), for simplicity, we denote the symbols transmitted

from the transmitteri as Xi; and setRx
i = I(Xi; Ye∗

i
) =

1
2 log

(

1 + SNRe∗

i

)

(note that this is the rate loss in (1)). We
continue as below.

I(Ws,d;Ye) = I(Ws,d;Ye(1), · · · ,Ye(H))

(a)

≤ I(Ws,d;Ye∗

1
, · · · ,Ye∗

H
)

(b)

≤ I(X1, · · · ,XH ;Ye∗

1
, · · · ,Ye∗

H
)

− I(W x
1 , · · · , W x

H ;Ye∗

1
, · · · ,Ye∗

H
|Ws,d)

(c)
=

H
∑

i=1

I(X1, · · · ,XH ;Ye∗

i
|Ye∗

1
, · · · ,Ye∗

i−1
)

− H(W x
1 , · · · , W x

H)

+

H
∑

i=1

H(W x
i |Ws,d,Ye∗

1
, · · · ,Ye∗

H
, W x

1 , · · · , W x
i−1)

(d)

≤
H

∑

i=1

H(Ye∗

i
|Ye∗

1
, · · · ,Ye∗

i−1
)

− H(Ye∗

i
|Ye∗

1
, · · · ,Ye∗

i−1
,Xi) − NRxi

+ N
ǫ1 + ǫ2

H

(e)

≤
H

∑

i=1

I(Xi;Ye∗

i
) − NRxi

+ N
ǫ1 + ǫ2

H

(f)

≤
H

∑

i=1

NI(Xi; Ye∗

i
) − NRxi

+ N
ǫ1 + ǫ2 + ǫ3

H

w

√
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Fig. 2. There are⌈δ log n⌉ number of disjoint highways within each rectangle
of size (κ log n − ǫ) × √

n. (Please refer to [5] and [6] for details.) The
legitimate users in the slab denoted by dotted line of the depicted rectangle is
served by the highway denoted with red bold line. It is clear that the highway
serves toO(

√
n) nodes in this setup.

= N(ǫ1 + ǫ2 + ǫ3),
where (a) is due to the fact thatYe∗

i
is an enhanced

set of observations compared to that ofYe(i), (b)
is due to data processing inequality and the Markov
chain {Ws,d, W

x
1 , · · · , W x

H} → {X1, · · · ,XH} →
{Ye∗

1
, · · · ,Ye∗

H
}, (c) follows since Ws,d and W x

i are
independent, (d) is due to Fano’s inequality (as we choose
Rx

i ≤ I(Xi; Ye∗

i
), the codebook construction allows for

decoding randomization message at the eavesdropper given the
bin index) with someǫ2 → 0 asN → ∞ and due to fact that
the second term in the sum is zero, (e) follows by the fact that
conditioning does not increase the entropy and the observation
that H(Ye∗

i
|Ye∗

1
, · · · ,Ye∗

i−1
,Xi) = H(Ye∗

i
|Xi), and (f) is

due to the fact thatI(Xi;Ye∗

i
) ≤ NI(Xi; Ye∗

i
) + N ǫ3

H
for

someǫ3 → 0 asN → ∞ (see, e.g., [3, Lemma 8]).
After setting,ǫ = ǫ1 + ǫ2 + ǫ3, we obtain our result: For

any givenǫ > 0, I(Ws,d;Ye)
N

< ǫ asN → ∞.
The following result, using the construction given in [5],

shows the existence of a sufficient number ofsecure highways
in our network.

Lemma 3 (Secure Highways): There exist a sufficient num-
ber of secure vertical and horizontal highways such that, as
n → ∞, each secure highway is required to serveO(

√
n)

nodes and an entry (exit) point has w.h.p. a distance of at most
κ′ log n away from each source (respectively, destination),
whereκ′ can be made arbitrarily small.

Proof: Please refer to [6]. See also Fig.2.
We remark that, in our model, the status of edges are not

statistically independent due to the presence of associated
secrecy zones that intersect for successive squares. Therefore,
in addition to the percolation based construction developed
in [5], we utilized the result of [7] to establish Lemma 3. With
the following lemma we conclude the discussion of highways.

Lemma 4 (Rate per Node on the Highways): Each node
on the constructed highways can transmit to their next hop at
a constant secure rate. Furthermore, as the number of nodes
each highway serves isO(

√
n), each highway can w.h.p.
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Fig. 3. A typical multi-hop route consists of four transmission phases:1)
From source node to an entry point on the horizontal highway,2) Across
horizontal highway (message is carried until the desired vertical highway
member),3) Across vertical highway (message is carried until the exitnode),
and4) From the exit node to the destination node.

carry a per-node throughput ofΩ
(

1√
n

)

.

Proof: The highways are constructed such that there is
at least one legitimate node per square and there are no
eavesdroppers within the secrecy zone around the squares of
the highway. We choose one legitimate node per square as
a member of the highway, and compute the rate that can
be achieved with the multi-hop strategy. From Lemmas 1
and 2, one can see that highways can carry datasecurely
with a constant positive rate (we choosed = 1). As each
highway carries the data forO(

√
n) nodes due to Lemma 3,

the achievable rate per node on highways isΩ
(

1√
n

)

.

Our final step is to show that almost all the nodes can access
the highways simultaneously with high probability with a rate
scaling higher thanΩ

(

1√
n

)

.

Lemma 5 (Access Rate to Highways): Almost all source
(destination) nodes can w.h.p. simultaneously transmit (re-
ceive) their messages to (from) highways with a secure rate
of Ω

(

(log n)−3−α
)

, if λe = O
(

(log n)−2
)

.
Proof: The proof follows from Lemma 1, where we

choosed = κ′ log(n) with arbitrarily small κ′ (Lemma 3).
Please refer to [6] for details.

We now establish the main result of the paper. In our multi-
hop routing scheme, each user has a dedicated route with
each hop used forN channel uses. The secrecy encoding
at each transmitter is designed assuming an eavesdropper on
the boundary of the secrecy zone. This way, a transmitter
can achieve the rate reported in Lemma 1. We argue that
this secrecy encoding scheme will ensure secrecy from an
eavesdropper that listens to the transmissions of every hopdue
to Lemma 2. Then, the main result follows by utilizing the fol-
lowing time division approach. The total transmission timeof
the network is divided into four phases (see Fig.3). During the
first phase, the sources that are not affected by eavesdroppers
(i.e., almost all of them due to Lemma 5) will w.h.p. transmit
their messages to the closest highway entry point. Then, the
secret messages of all nodes are carried through the horizontal
highways and then the vertical highways (Lemma 4). During
the final phase, the messages are delivered from the highways

to almost all of the destinations (Lemma 5). From the achiev-
able rates given in these lemmas we obtain our main result,
which is formalized by the following theorem.

Theorem 6: If the legitimate nodes have unit intensity
(λ = 1) and the eavesdroppers have an intensity ofλe =
O

(

(log n)−2
)

in an extended network, almost all of the nodes

can achieve a secure rate ofΩ
(

1√
n

)

.
Utilizing the upper bound of [4] for the capacity of wireless

networks, we see that the proposed scheme achieves the
optimal scaling law.

IV. CONCLUSION

In this work, we considered the problem of securing trans-
missions of extended wireless networks, where the legitimate
nodes and eavesdroppers were assumed to be randomly placed
into the extended network according to Poisson point pro-
cesses of intensityλ = 1 and λe, respectively. It is shown
that, whenλe = O

(

(log n)−2
)

, almost all of the nodes

achieve a secure rate ofΩ
(

1√
n

)

. Our achievability argument
is based on novel secure multi-hop forwarding strategy where
independent randomization is employed in each hop. Tools
from percolation theory were used to establish the existence of
a sufficient number ofsecure highways allowing for network
connectivity. Finally, a time division approach was used to
accomplish an end-to-end secure connection between almost
all source-destination pairs. Overall, our results show that, as
long asλe = O

(

(log n)−2
)

, securing the transmissions does
not entail a loss in the per-node throughput.

We note that, the interference is considered as noise at
the legitimate receivers in our model. As shown in [8],
more sophisticated cooperation strategies achieve the same
throughput for the case of extended networks withα ≥ 3
leading to the conclusion that cooperation in the sense of [8]
does not increase the secrecy capacity forα ≥ 3. Our current
investigations aim at extending this analysis to a more practical
scenario, in which legitimate nodes have no (or more limited)
eavesdropper location information.
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