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Abstract—This paper presents a new explicit construction for
locally repairable codes (LRCs) for distributed storage systems.
The codes possess all-symbols locality and maximal possible mini-
mum distance, or equivalently, can tolerate the maximal number
of node failures. This construction, based on maximum rank
distance (MRD) Gabidulin codes, provides minimum distance
optimal vector and scalar LRCs for a wide range of parameters.
In addition, vector LRCs that allow for efficient local repair
of failed nodes are considered. Towards this, the paper derives
an upper bound on the amount of data that can be stored
on DSS employing minimum distance optimal LRCs with given
repair bandwidth, and presents codes which attain this bound
by combining MRD and minimum storage regenerating (MSR)
codes.

Index Terms—Coding for distributed storage systems, locally
repairable codes, repair bandwidth efficient codes.

I. INTRODUCTION

In distributed storage systems (DSS), it is desirable that
data be reliably stored over a network of nodes in such a way
that a user (data collector) can retrieve the stored data even
if some nodes fail. To achieve such a resilience against node
failures, DSS introduce data redundancy based on different
coding techniques. For example, erasures codes are widely
used in such systems: When using an (n, k) code, data to
be stored is first divided into k blocks; subsequently, these
k information blocks are encoded into n blocks stored on
n distinct nodes in the system. In addition, when a single
node fails, the system reconstructs the data stored in the failed
node to keep the required level of redundancy. This process
of data reconstruction for a failed node is called node repair
process [1]. During a node repair process, the node which is
added to the system to replace the failed node downloads data
from a set of appropriate and accessible nodes.

There are two important goals that guide the design of codes
for DSS: reducing the repair bandwidth, i.e. the amount of
data downloaded from system nodes during the node repair
process, and achieving locality, i.e. reducing the number of
nodes participating in the node repair process. These goals
underpin the design of two families of codes for DSS called
regenerating codes (see [1]–[8] and references therein) and
locally repairable codes (see [9]–[20]), respectively.
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In this paper we focus on the locally repairable codes
(LRCs). Recently, these codes have drawn significant attention
within the research community. Oggier et al. [12], [13] present
coding schemes which facilitate local node repair. In [9],
Gopalan et al. establish an upper bound on the minimum
distance of scalar LRCs, which is analogous to the Singleton
bound. The paper also showes that pyramid codes, presented
in [17], achieve this bound with information symbols locality.
Subsequently, the work by Prakash et al. extends the bound
to a more general definition of scalar LRCs [11]. (Han and
Lastras-Montano [18] provide a similar upper bound which is
coincident with the one in [11] for small minimum distances,
and also present codes that attain this bound in the context
of reliable memories.) In [10], Papailiopoulos and Dimakis
generalize the bound in [9] to vector codes, and present locally
repairable coding schemes which exhibits MDS property at the
cost of small amount of additional storage per node.

The main contributions of this paper are as follows. First,
in Section II, we generalize the definition of scalar locally
repairable codes, presented in [11] to vector locally repairable
codes. For such codes, every node storing α symbols from a
given field F, can be locally repaired by using data stored
in at most r other nodes from a group of nodes of size
r + δ − 1 < n, which we call a local group, where n is the
number of system nodes, and r and δ are the given locality
parameters. Subsequently, in Section III, we derive an upper
bound on the minimum distance dmin of the vector codes that
satisfy a given locality constraint, which establishes a trade
off between node failure resilience (i.e., dmin) and per node
storage α. 1 The bound presented in [10] can be considered as
a special case of our bound with δ = 2. Further, we present
an explicit construction for LRCs which attain this bound on
minimum distance. This construction is based on maximum
rank distance (MRD) Gabidulin codes, which are a rank-metric
analog of Reed-Solomon codes. The scalar and vector LRCs
that are obtained by this construction are the first explicit
optimal locally repairable codes with (r + δ − 1) - n.

Finally, in Section IV, we discuss a hybrid construction,
which optimizes repair bandwidth for given locality param-
eters (r, δ). In particular, we focus on locally repairable
codes with local minimum storage regeneration (MSR-LRCs),
where the code allows for a) having the maximal possible

1In a parallel and independent work, [19], Kamath et al. also provide upper
bounds on minimum distance together with constructions and existence results
for vector LRCs.



minimum distance for given locality constraints; b) minimizing
storage overhead at each node given locality constraints; and
c) minimizing the repair bandwidth for local repairs. We first
provide an upper bound on the amount of data that can be
stored on minimum distance optimal DSS given a fixed repair
bandwidth. We then present codes, based on the combination
of MRD and MSR codes, that attain this bound. We conclude
the paper with Section V.

II. BACKGROUND

A. System Parameters

Let f be a file of size M over finite field F that needs to
be stored on a DSS with n nodes. Each node is assumed to
store α symbols over F.

B. Vector Codes

A linear [n,M, dmin, α]q vector code C over Fq of length
n is defined as a linear subspace of Fαnq of dimensionM. The
symbols ci, 1 ≤ i ≤ n, of a codeword c ∈ C belong to Fαq .
The minimum distance dmin of C is defined as the minimum
Hamming distance over Fαq . An alternative definition for the
minimum distance of an [n,M, dmin, α]q vector code is as
follows:

Definition 1. The minimum distance dmin of a vector code C
of dimension M is defined as

dmin = n− max
A⊆[n]:H(cA)<M

|A|, (1)

where A = {i1, . . . , i|A|} ⊆ [n] and cA = (ci1 , . . . , ci|A|).

Vector codes are also known as array codes. An
[n,M, dmin, α]q array code is called MDS array code if
dmin = n −M + 1. Constructions for MDS array codes can
be found e.g. in [25]–[27].

C. Locally Repairable Codes

In this subsection, we generalize the definition of scalar
LRCs, presented in [11] to vector LRCs.

Definition 2. We say that an [n,M, dmin, α]q vector code C
has (r, δ) locality if for each symbol ci ∈ Fαq , 1 ≤ i ≤ n, of
a codeword c = (c1, . . . , cn) ∈ C, there exists a set of nodes
Γ(i) such that
• i ∈ Γ(i)
• |Γ(i)| ≤ r + δ − 1
• Minimum distance of C|Γ(i) is at least δ, where C|Γ(i)

denotes the code obtained by puncturing C over set of
indices Γ(i) ⊆ [n].

Note that the last two properties imply that each element
j ∈ Γ(i) can be written as a function of a set of at most r
elements in Γ(i) (not containing j) and that H(Γ(i)) ≤ rα.

Codes that satisfy these properties are called (r, δ, α) locally
repairable codes (LRCs).

Note, that definition of LRCs presented in this paper gen-
eralizes the notion of LRCs given in [10], which is restricted
to δ = 2.

In order to store a file f on a DSS using an LRC, f is
first encoded to a codeword of an LRC. Each symbol of the
codeword is then stored on a different node. In particular, we
have xi = ci, where xi denotes the content of ith node. Note
that a node i in locally repairable DSS can be repaired by
downloading data from at most r nodes in Γ(i)\{i}.
Remark 3. (r, δ, α = 1) LRCs are named as (r, δ) scalar
LRCs.

In [11], Prakash et al. present the following upper bound
on the minimum distance of an (r, δ) scalar LRC:

dmin ≤ n−M+ 1−
(⌈M

r

⌉
− 1

)
(δ − 1). (2)

It was established in [11] that a family of pyramid codes,
presented in [17], attains this bound and has information
locality, i.e. only information symbols satisfy the locality
constraint. However, an explicit construction of optimal scalar
LRCs with all-symbols locality is known only for the case
n =

⌈
M
r

⌉
(r+δ−1) [11], [18]. Towards optimal scalar LRCs

for broader range of parameters, given field size |F| >MnM,
[11] establishes the existence of scalar codes with all-symbols
locality for the setting when (r + δ − 1)|n. In this paper, we
provide an explicit construction of optimal scalar LRCs with
all-symbols locality relaxing the restriction of (r + δ − 1)|n.

The following upper bound on the minimum distance of
(r, δ = 2, α) LRCs and a construction of codes that attain this
bound was presented in [10]:

dmin ≤ n−
⌈M
α

⌉
−
⌈M
rα

⌉
+ 2 (3)

In the sequel, we generalize this bound for any δ ≥ 2 and
present (r, δ, α) LRCs that attain this bound.

D. Maximum Rank Distance Codes

The construction presented in this paper involves a precod-
ing step, where the file is encoded using an optimal rank-
metric code, called maximum rank distance code [21], [22]. In
this subsection, we present a brief introduction to rank-metric
codes.

Let Fqm be en extension field of Fq . An element γ ∈ Fqm
can be represented as the vector γ= (γ1, . . . , γm)T ∈ Fmq ,
such that γ =

∑m
i=1 γibi, for a fixed basis {b1, . . . , bm} of the

extension field Fqm . Using this, a vector v = (v1, . . . , vN ) ∈
FNqm can be represented by an m×N matrix V = [vi,j ] over
Fq , which is obtained by replacing each vi of v by its vector
representation (vi,1, . . . , vi,m)T .

Definition 4. The rank of a vector v ∈ FNqm , denoted by
rank(v) is defined as the rank of its m × N matrix repre-
sentation V (over Fq). Similarly, for two vectors v,u ∈ FNqm ,
the rank distance is defined by

dR(v,u) = rank(V −U).

An [N,K,D]qm rank-metric code C ⊆ FNqm is a linear
block code over Fqm of length N with dimension K and
minimum rank distance D. A rank-metric code that attains



the Singleton bound D ≤ N − K + 1 in rank-metric is
called maximum rank distance (MRD) code. For m ≥ N , a
family of MRD codes, called Gabidulin codes, was presented
by Gabidulin [21]. Similar to Reed-Solomon codes, Gabidulin
codes can be obtained by evaluation of polynomials, however,
for Gabidulin codes a special family of polynomials, linearized
polynomials, is used:

Definition 5. A linearized polynomial f(x) over Fqm of
q−degree t has the form f(x) =

∑t
i=0 aix

qi , where ai ∈ Fqm ,
and at 6= 0.

Remark 6. Note that evaluation of a linearized polynomial
is an Fq-linear transformation from Fqm to itself, i.e., for any
a, b ∈ Fq and γ1, γ2 ∈ Fqm , we have f(aγ1+bγ2) = af(γ1)+
bf(γ2) [23].

A codeword in a [N,K,D = N − K + 1]qm

Gabidulin code CGab, m ≥ N , is defined as
c = (f(g1), f(g2), . . . , f(gN )) ∈ FNqm , where f(x) is a
linearized polynomial over Fqm of q−degree K − 1 with K
message symbols as its coefficients, and g1, . . . , gN ∈ Fqm
are linearly independent over Fq [21].

Remark 7. Given evaluations of f(·) at any K linearly
independent (over Fq) points in Fqm , say (z1, . . . , zK), one
can get evaluations of f(·) at qK points spanned by Fq-
linear combinations of (z1, . . . , zK) using linearized property
of f(·) (Remark 6). This allows one to recover qK−1-degree
polynomial f(·), and therefore to reconstruct the message
vector, by performing polynomial interpolation.

An MRD code CGab with minimum distance D can correct
any D − 1 = N − K erasures, which we will refer as rank
erasures. An algorithm for erasure correction of Gabidulin
codes can be found e.g. in [24].

E. Regenerating Codes

In their seminal work [1], Dimakis et al. consider the setting,
where a newcomer, a node that replaces a failed node, contacts
d nodes, k ≤ d ≤ n − 1, during node repair and downloads
β ≤ α symbols from each of these d nodes. Dimakis et al.
model operation of a DSS using a multicasting problem over
information flow graph. Using this approach, [1] characterizes
the information theoretic trade off between repair bandwidth
(γ = dβ) and per node storage (α) for DSS satisfying the
maximum distance separable (MDS) or “any k out of n”
property:

M≤
k∑
i=1

min{(d− i+ 1)β, α}. (4)

The codes that achieve this trade off are termed regenerating
codes. Two classes of codes that correspond two extreme
points of this trade off are known as minimum storage regen-
erating (MSR) codes and minimum bandwidth regenerating
(MBR) codes, corresponding to minimum storage per node
(i.e., α = M/k) and minimum possible repair bandwidth

(γ = α) respectively. The former is obtained by first choos-
ing a minimum storage per node (i.e., α = M/k), and
then minimizing repair bandwidth satisfying (4), whereas
the latter is obtained by first finding the minimum possi-
ble γ and then finding the minimum α in (4). For MSR
codes, we have (αmsr, βmsr) =

(
M
k ,

M
k(d−k+1)

)
. On the

other hand, MBR codes are characterized by (αmbr, βmbr) =(
2Md

k(2d−k+1) ,
2M

k(2d−k+1)

)
. Regenerating codes that allow exact

node repair, where the data on the regenerated node is the
same as that stored on the failed node, are of particular interest.
In this paper, we term MSR (MBR) codes with the ability to
perform exact repair as exact-MSR (MBR) codes.

III. OPTIMAL LOCALLY REPAIRABLE CODES

In this section, we first derive an upper bound on the
minimum distance of (r, δ, α) LRCs. Next, we propose a
general code construction which attains the derived bound on
dmin. Our approach is to apply a two-stage encoding, where we
use Gabidulin codes (a rank-metric analog of Reed-Solomon
codes) along with MDS array codes. This construction can
be viewed as a generalization of the construction proposed
in [28].

A. Upper Bound on dmin for an (r, δ, α) LRC

We state a generic upper bound on the minimum distance
dmin of an (r, δ, α) LRC C of length n and dimension M.
The bound generalizes the dmin bound given in [10] for LRC
with single local parity (δ = 2) to LRC with multiple local
parities (δ ≥ 2).

Theorem 8. For an (r, δ, α) LRC C over F of length n and
dimension M, we have

dmin(C) ≤ n−
⌈M
α

⌉
+ 1−

(⌈M
rα

⌉
− 1

)
(δ − 1). (5)

Proof: We follow the proof technique of [9], [10]. In
particular, the proof involves construction of a set of nodes
A for a locally repairable DSS such that total entropy of the
symbols stored in A is less than M and

|A| ≥
⌈M
α

⌉
− 1 +

(⌈M
rα

⌉
− 1

)
(δ − 1). (6)

Theorem 8 then follows from Definition 1 and (6). Refer [29]
for detailed proof.

Remarkably, the above theorem establishes a trade off
between node failure resilience (dmin) and per node storage
(α), where α can be increased to obtain higher dmin. This is
of particular interest to design codes having both locality and
high resilience to node failures.

Remark 9. For the special case of δ = 2, this bound matches
with the bound (3) presented in [10]. For the case of α = 1,
the bound reduces to dmin ≤ n−M+1+(dM/re−1)(δ−1),
which is coincident with the bound (2) presented in [11].



B. Construction of dmin-Optimal Vector LRCs

In this subsection we present a construction of an (r, δ, α)
LRC with length n and dimensionM, which attains the bound
given in Theorem 8.

Construction I. Consider a file f over F = Fqm of size
M≥ rα, where m will be defined in the sequel. We encode
the file in two steps before storing it on DSS. First, the file
is encoded using a Gabidulin code. The codeword of the
Gabidulin code is then partitioned into local groups and each
local group is then encoded using an MDS array code over
Fq .

In particular, let M, n, r, δ, α be the positive integers such
that r+ δ− 1 < n and M≥ rα. We denote by g =

⌈
n

r+δ−1

⌉
the number of local groups in the system. We consider the
following two cases:

1) (r + δ − 1)|n: Let N = nrα
r+δ−1 , m ≥ N , and let CGab

be an [N,M, D = N −M+ 1]qm Gabidulin code. First, we
encodeM to a codeword c ∈ CGab and partition c into g = N

rα
disjoint groups, each of size rα, and each group is stored on a
different set of r nodes, α symbols per node. In other words,
the output of the first encoding step generates the encoded
data stored on rg nodes, each one containing α symbols of a
(folded) Gabidulin codeword. Second, we generate δ−1 parity
nodes per group by applying an [(r + δ − 1), r, δ, α]q MDS
array code on each local group of r nodes, treating these r
nodes as input data blocks (of length α) for the MDS array
code. At the end of the second round of encoding, we have
n = g(r + δ − 1) = N

α + N
rα (δ − 1) nodes, each storing α

symbols over Fqm , partitioned into g local groups, each of size
r − δ + 1.

2) n(mod r+ δ− 1)− (δ− 1) > 0: Let β0, 1 ≤ β0 ≤ r− 1
be an integer, such that n = b n

r+δ−1c(r+δ−1)+β0 +δ−1 =
(g − 1)(r + δ − 1) + β0 + δ − 1. Let N = (g − 1)rα+ β0α,
m ≥ N , and let CGab be an [N,M, D = N −M + 1]qm

Gabidulin code. First, we encode M to a codeword c ∈ CGab

and partition c into g − 1 disjoint groups of size rα and one
additional group of size β0α, the first g−1 groups are stored on
(g−1)r nodes, and the last group is stored on β0 nodes, each
one containing α symbols of a (folded) Gabidulin codeword.
Second, we generate δ−1 parity nodes per group by applying
an [(r + δ − 1), r, δ, α]q MDS array code on each of the first
g − 1 local groups of r nodes, and by applying a [(β0 +
δ − 1), β0, δ, α]q MDS array code on the last local group.
At the end of the second round of encoding, we have n =
(g − 1)(r + δ − 1) + (β0 + δ − 1) = N

α +
⌈
N
rα

⌉
(δ − 1)

nodes, each storing α symbols over Fqm , partitioned into g
local groups, g − 1 of which of size r− δ + 1 and one group
of size β0 + δ − 1.

We denote the obtained code by C loc.

Remark 10. Note, that since an MDS array code from
Construction I is defined over Fq , any symbol of any node
of C loc can be written as

∑rα
j=1 ajcij =

∑rα
j=1 ajf(gij ) =

f(
∑rα
j=1 ajgij ), where aj ∈ Fq , cij ∈ Fqm are rα symbols of

the same group of c, and gij , are linearly independent over Fq
evaluation points. Hence, any s ≤ rα symbols inside a group

of C loc are evaluations of f(x) in s linearly independent over
Fq points. (If there is a group with β0 < r elements we have
the same result substituting r with β0). Thus any δ−1+i node
erasures in a group correspond to iα rank erasures. Moreover,
if we take any rα symbols of C loc from every group (and
αβ0 symbols from the smallest group, if it exists), we obtain a
Gabidulin codeword, for a corresponding choice of evaluation
points for a Gabidulin code, which encodes the given dataM.

Next, we provide the conditions for parameters of the code
C loc obtained from Construction I to be a dmin optimal
(r, δ, α) LRC.

Theorem 11. Let C loc be an (r, δ, α) LRC obtained by
Construction I. Then,
• If (r+δ−1)|n, then C loc over F = Fqm , for m ≥ nrα

r+δ−1
and q ≥ (r + δ − 1), attains the bound (5).

• If n(mod r + δ − 1) − (δ − 1) ≥
⌈M
α

⌉
(mod r) > 0,

then C loc over F = Fqm , for m ≥
α
(
n− (δ − 1)

(⌊
n

r+δ−1

⌋
+ 1
))

and q ≥ (r + δ − 1),
attains the bound (5).

Proof: The proof is based on Remark 10 and the obser-
vation that any n−

⌈M
α

⌉
−
(⌈M

rα

⌉
− 1
)

(δ− 1) node erasures
correspond to at most D − 1 rank erasures which can be
corrected by the Gabidulin code CGab. See the details in
Appendix A.

Specializing the Construction I to scalar case (α = 1), we
obtain explicit (r, δ) scalar LRCs for the settings of parame-
ters, where only results on existence of scalar LRCs are present
in literature. For scalar case, Construction I employs MDS
codes instead of MDS array codes after encoding information
symbols (f ) with Gabidulin codes. The following corollary
(of Theorem 11) summarizes our contribution towards scalar
LRCs:

Corollary 12. Let C loc be a (r, δ) scalar LRC obtained by
Construction I. Then,
• If (r+δ−1)|n, then C loc over F = Fqm , for m ≥ nr

r+δ−1
and q ≥ (r + δ − 1), attains the bound (2).

• If n(mod r+δ−1)−(δ−1) ≥M(mod r) > 0, then C loc

over F = Fqm , for m ≥
(
n− (δ − 1)

(⌊
n

r+δ−1

⌋
+ 1
))

and q ≥ (r + δ − 1), attains the bound (2).

Remark 13. The required field size |F| = qm for the proposed
construction should satisfy m ≥ N , for any choice of q ≥
(r+ δ− 1). So we can assume that |F| = qN , for N given in
Theorem 11. Note that we can reduce the field size to |F| =
qN/α by stacking [19] of α independent optimal scalar LRCs,
obtained from Construction I.

We illustrate the construction of C loc in the following
examples. First we consider the scalar case.

Example 14. Consider the following system parameters:

(M, n, r, δ, α) = (9, 14, 4, 2, 1).

Since n =
⌊

14
4+2−1

⌋
· (4 + 2 − 1) + (3 + 2 − 1), let
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Fig. 1: Illustration of the construction of a scalar
(r = 4, δ = 2, α = 1) LRC for n = 14,M = 9 and dmin = 4.

N =
⌊

14
4+2−1

⌋
· 4 + 3 = 11. First M = 9 symbols over

F = F511 are encoded into a codeword c of a [11, 9, 3]511

Gabidulin code CGab. This codeword is partitioned into
three groups, two of size 4 and one of size 3, as follows:
c = (a1, a2, a3, a4|b1, b2, b3, b4|c1, c2, c3). Then, by applying
a [5, 4, 2] MDS code in the first two groups and a [4, 3, 2]
MDS code in the last group we add one parity to each group.
The symbols of c with three new parities pa, pb, pc are stored
on 14 nodes as shown in Fig 1. By Theorem 8, the minimum
distance dmin of this code is at most 4. By Remark 10, any
3 node erasures correspond to at most 2 rank erasures and
then can be corrected by CGab, hence dmin = 4. In addition,
when a single node fails, it can be repaired by using the data
stored on all the other nodes from the same group.

Next, we illustrate Construction I for a vector LRC.

Example 15. We consider a DSS with the following parame-
ters:

(M, n, r, δ, α) = (28, 15, 3, 3, 4).

By (5) we have dmin ≤ 5. Let N = 15·3·4
3+3−1 = 36

and (a1, . . . , a12, b1, . . . , b12, c1, . . . , c12) be a codeword of a
[36, 28, 9]q36 code CGab, which is obtained by encoding M =
28 symbols over F = Fq36 of the original file. The Gabidulin
codeword is then partitioned into three groups (a1, . . . , a12),
(b1, . . . , b12), and (c1, . . . , c12). Encoded symbols in each
group are stored on three storage nodes as shown in Fig. 2. In
the second stage of encoding, a [5, 3, 3, 4]q MDS array code
over Fq is applied on each local group to obtain δ − 1 = 2
parity nodes per local group. The coding scheme is illustrated
in Fig. 2.

By Remark 10, any 4 node failures correspond to at most
8 rank erasures in the corresponding codeword of CGab. Since
the minimum rank distance of CGab is 9, these node erasures
can be corrected by CGab, and thus the minimum distance of
Cloc is exactly 5.
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Fig. 2: Example of an (r = 3, δ = 3, α = 4) LRC with n = 15
and dmin = 5.

Remark 16. The efficiency of the decoding of the codes
obtained by Construction I depends on the efficiency of the
decoding of the MDS codes and the Gabidulin codes.

IV. REPAIR BANDWIDTH EFFICIENT LOCALLY
REPAIRABLE CODES

In this section, we present the hybrid codes, which allow for
local repairs while minimizing repair bandwidth for given lo-
cality parameters. We combine MRD codes with regenerating
codes to obtain these codes.

As pointed out in Section II-C, LRCs allow for naı̈ve
repair process, where a newcomer can repair a failed node
by contacting r nodes in its local group and downloading all
symbols stored on these r nodes. Following the line of work
of bandwidth efficient repair in DSS due to [1], we allow a
newcomer to contact d ≥ r nodes in its local group and to
download only β ≤ α symbols from each of these d nodes in
order to repair the failed node. The motivation behind this is
to lower the repair bandwidth of an LRC. The main idea here
is to apply a regenerating code in each local group. (We note
that, in a parallel and independent work, Kamath et al. [19]
also proposed utilizing regenerating codes to perform efficient
local repairs.).

First, we provide an upper bound on the amount of data that
can be stored in a locally repairable DSS while supporting
a given repair bandwidth (dβ) and the maximum possible
failure resilience (i.e., maximum minimum distance). Next,
we present dmin - optimal codes, which attain this bound by
applying an MSR code in each local group instead of an MDS
array code in the second step of Construction I.

A. File Size Upper Bound for Repair Bandwidth Efficient
LRCs

In the rest of this section, we restrict ourselves to LRCs that
have the maximum possible minimum distance as described
in (5). We also assume for simplicity that (r + δ − 1)|n. We
remark that, for (r + δ − 1)|n, the upper bound on minimum
distance for LRCs given in (5) is achievable only if the code
have disjoint local groups [29]. Accordingly, we provide a file
size bound for the disjoint case. (See Fig. 3.)

Any failed node in a particular local group is repaired by
contacting d remaining nodes within that group, where r ≤
d ≤ r + δ − 2. During the node repair process a newcomer
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Fig. 3: Flow graph for (r, δ) LRC. In this graph, node pairs {Γin
i ,Γ

out
i }gi=1 with edge of capacity rα enforce the requirement

that each local group has at most rα entropy. Here η and τ denote r + δ − 1 and n − (r + δ − 1) respectively. The figure
illustrates the case where x1 and x2 sequentially fail and are replaced by introducing xn+1 and xn+2 respectively. The data
collector (DC) is assumed to contact a set of n− dmin + 1 nodes for reconstruction of original data.

downloads β symbols from each of these d nodes. In what
follows, we denote such LRC by the tuple (r, δ, α, d, β).

Next, we perform the standard min-cut max-flow based
analysis for locally repairable DSS by mapping it to a multi-
casting problem on a dynamic information flow graph. (The
information flow graph representing a locally repairable DSS is
a modification of the information flow graph for classical DSS
analyzed in [1] and is first introduced in [10] for naı̈ve repair,
where the newcomer contacts r nodes.) Each data collector
contacts n − dmin + 1 storage nodes for data reconstruction.
Consider n − dmin + 1 = g′′(r + δ − 1) + h, for some
h < r+ δ − 1. Here, to minimize the cut over the flow graph
(see Fig. 3), we consider that the DC connects to all the nodes
in g′′ number of groups, and connects to an additional group
with h nodes. Within each group contacted by the DC, we
consider a repair scenario similar to [1] in order to obtain a
lower cut value. Thus, from (4), we obtain the following file
size upper bound for LRCs.

Theorem 17. For an DSS employing an (r, δ, α, d, β) LRC,
such that from any set of n− dmin + 1 nodes the original file
can be recovered, we have

M≤ min

{
rα,

h−1∑
i=0

min{max{(d− i)β, 0}, α}
}

(7)

+

⌊
n−dmin+1

r+δ−1

⌋∑
j=1

min

{
rα,

r+δ−2∑
i=0

min{max{(d− i)β, 0}, α}
}
,

where h = n− dmin + 1− (r + δ − 1)
⌊
n−dmin+1
r+δ−1

⌋
.

Note that according to Definition 2 of an (r, δ, α) LRC, any
set of r nodes has at most rα independent symbols. Now we
assume that any set of r nodes has exactly rα independent
symbols. Note that the construction of Section III applying
MDS array codes in each local group has this property.
However, to have a local repair bandwidth efficient code, we
apply an (r + δ − 1, r, d, α, β) MSR code with a file of size
rα in each local group. Such a code will be called MSR-LRC.
Similar to the analysis given in [1] for the classical setup, the
parameters of MSR-LRC need to satisfy

rα =

r−1∑
i=0

min{(d− i)β, α}, (8)

and then (d − i)β ≥ α for each i = 0, · · · , r − 1. Thus,
minimum β is obtained as β∗ = α

d−r+1 and the bound in (7)
reduces to

M≤
⌊
n− dmin + 1

r + δ − 1

⌋
rα+ min{h, r}α (9)

where h is as defined in Theorem 17. This establishes the file
size upper bound for bandwidth efficient dmin-optimal LRCs
applying MSR codes in each local group.

B. Optimal MSR-LRC

In the following we prove that the code presented in
Section III-B, when an MSR code is employed for the second



encoding stage, achieves the bound (9) if α|M. We establish
this claim in the following theorem.

Theorem 18. Let C loc be a code obtained from Construction I
described in Sec. III-B with an MSR code employed in the
second encoding stage in Construction I to generate local
parities. If α|M, then C loc attains the bound (9).

Proof: Lets assume that α|M. Then, we can write M =
α(α1r + β1), for some integers 0 ≤ α1, β1, s.t. β1 ≤ r − 1.
Then, by (5),
• If β1 > 0 then n − dmin + 1 = (α1r + β1) + α1(δ −

1) = (r + δ − 1)α1 + β1, hence h = β1 < r and⌊
n−dmin+1
r+δ−1

⌋
rα+ min{h, r}α = α1rα+ β1α =M.

• If β1 = 0 then n− dmin + 1 = α1r+ (α1 − 1)(δ − 1) =

(r+δ−1)(α1−1)+r, hence h = r and
⌊
n−dmin+1
r+δ−1

⌋
rα+

min{h, r}α = (α1 − 1)rα+ rα =M.
This establishes that C loc, when an MSR code is used to

generate its local parities, attains the bound given in (9).

Example 19. Consider the parameters given in Example 15.
Now we apply an (r+ δ− 1 = 5, r = 3, d = 4, α = 4, β = 2)
exact-MSR code (e.g., (5,3)-zigzag code [6]) in each group
instead of an MDS array code. For these parameters, h = 1,
and by (9), M ≤ 2 · 3 · 4 + 1 · 4 = 28, thus the code attains
the bound (9). Moreover, each failed node can be repaired
bandwidth efficiently as an exact-MSR code is used within
each local group.

V. CONCLUSION

This paper studies the problem of designing LRCs for
distributed storage systems. We characterized the resilience
(minimum distance) vs. per node storage trade-off for such
codes. We then presented a novel construction for vector
LRCs that are optimal in the sense they achieve this trade
off for a wide range of parameters. This construction is based
on MRD codes. As a special case of these vector LRCs,
this construction gives optimal scalar LRCs in the range
of parameters, where explicit scalar LRCs were previously
unknown.

We then introduced the notion of minimizing repair band-
width for locally repairable DSS and provided a bound on
file size, the amount of data that can be stored on DSS, for
a given repair bandwidth. We specialized this bound to MSR-
LRC, where restriction of LRC to a local group is an MSR
code. We further showed that the MRD based construction
for LRCs, presented in this paper, can also be used to design
codes that are file size optimal.

A similar construction for vector LRC also allows to design
optimal MBR-LRC [30]. On the similar note, following the
mechanism given in [19], scalar LRCs presented in this paper
can also be used to design novel MBR-LRC.

The MRD (in particular, Gabidulin) precoding utilized in
this paper also has applications in the security context. In
particular, the issue of designing secure locally repair DSS
against passive eavesdropping attack is studied in [29], where

classical secret sharing scheme [31] is combined with vector
locally repairable codes presented in this paper in order to
characterize secrecy capacity of locally repairable DSS. In
addition, utilizing MRD precoding, security in DSS with
cooperative repairs (where multiple failures repaired simulata-
neously) against passive eavesdropper is studied in [32], and
codes for security against active eavesdroppers are proposed
in [28].
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APPENDIX A
PROOF OF THEOREM 11

To prove that C loc attains the bound (5) we need to show
that any E , n−

⌈M
α

⌉
−
(⌈M

rα

⌉
− 1
)

(δ−1) node erasures can
be corrected by C loc. In order to show this we prove that any E
erasures of C loc correspond to at most D−1 rank erasures of
the underlying [N,M, D]qm Gabidulin code CGab, and hence
can be corrected by CGab. Here, we point out the the worst
case erasure pattern is when the erasures appear in the smallest
possible number of groups and the number of erasures inside
a local group is maximal.

First, given n = N
α +

⌈
N
rα

⌉
(δ−1), we can rewrite E in the

following way:

E =
N

α
−
⌈M
α

⌉
+

(⌈
N

rα

⌉
−
⌈M
rα

⌉
+ 1

)
(δ − 1). (10)

Let α1, β1, γ1 be the integers such thatM = α(α1r+β1)+

γ1, where 1 ≤ α1 ≤ g, for g =
⌈

n
r+δ−1

⌉
, 0 ≤ β1 ≤ r − 1,

and 0 ≤ γ1 ≤ α− 1. Then
1) If (r + δ − 1)|n then N = grα and

D − 1 = N −M = (g − α1)rα− β1α− γ1. (11)

• If γ1 = β1 = 0 then
⌈M
α

⌉
= α1r and

⌈M
rα

⌉
= α1.

Then by (10), E = (g − α1)(r + δ − 1) + (δ − 1).
Hence, in the worst case we have (g − α1) groups
with all the erased nodes and one additional group
with δ − 1 erased nodes, which by Remark 10
corresponds to rα rank erasures in (g−α1) groups
of the corresponding Gabidulin codeword. Since
by (11), D − 1 = (g − α1)rα, this erasures can
be corrected by the Gabidulin code.

• If γ1 = 0, β1 > 0 then
⌈M
α

⌉
= α1r + β1 and⌈M

rα

⌉
= α1 + 1. Then by (10) we have E = (g −

α1 − 1)(r + δ − 1) + (r + δ − 1 − β1). Hence, in
the worst case we have (g − α1 − 1) groups with
all the erased nodes and one additional group with

r+δ−1−β1 erased nodes, which by Remark 10 and
by (11) corresponds to (g − α1)rα− β1α = D− 1
rank erasures that can be corrected by the Gabidulin
code.

• If γ1 > 0 then
⌈M
α

⌉
= α1r + β1 + 1 and

⌈M
rα

⌉
=

α1 + 1. Then by (10) we have E = (g − α1 −
1)(r + δ − 1) + (r + δ − 1 − β1 − 1). Hence, in
the worst case we have (g − α1 − 1) groups with
all the erased nodes and one additional group with
r+δ−1−β1−1 erased nodes, which by Remark 10
and by (11) corresponds to (g−α1)rα−β1α−α <
D − 1 rank erasures that can be corrected by the
Gabidulin code.

2) If n(mod r + δ − 1) − (δ − 1) ≥
⌈M
α

⌉
(mod r) > 0,

then since n(mod r + δ − 1) − (δ − 1) ≡ β0 we have
β0 ≥ β1 > 0, N = (g−1)rα+β0α, Nα = (g−1)r+β0,⌈
N
rα

⌉
= g and

D − 1 = (g − α1 − 1)rα+ (β0 − β1)α− γ1. (12)

• If γ1 = 0 then
⌈M
α

⌉
= α1r+β1 and

⌈M
rα

⌉
= α1+1.

Then by (10), we have E = (g − α1 − 1)(r + δ −
1) + (β0 − β1 + δ − 1). Hence, in the worst case
we have (g − α1 − 1) groups with all the erased
nodes and one additional group with β0−β1 +δ−1
erased nodes (or β0 + δ − 1 erased nodes in the
smallest group, (g − α1 − 2) groups with all the
erased nodes and one group with r+δ−1−β1 erased
nodes). This by Remark 10 and by (12) corresponds
to (g−α1−1)rα+(β0−β1)α = D−1 rank erasures
that can be corrected by the Gabidulin code.

• If γ1 > 0 then
⌈
M
α

⌉
= α1r + β1 + 1 and

⌈
M
rα

⌉
=

α1 + 1. Then by (10) we have E = (g − α1 −
1)(r + δ − 1) + (β0 − β1 − 1 + δ − 1). Hence, in
the worst case we have (g − α1 − 1) groups with
all the erased nodes and one additional group with
β0 − β1 − 1 + δ − 1 erased nodes (or β0 + δ − 1
erased nodes in the smallest group, (g − α1 − 2)
groups with all the erased nodes and one group with
r−β1−1+δ−1 erased nodes). This by Remark 10
and by (12) corresponds to (g−α1− 1)rα+ (β0−
β1)α−α < D−1 rank erasures that can be corrected
by the Gabidulin code.


