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On an Equivalence Between Single-Server PIR with Side

Information and Locally Recoverable Codes

Swanand Kadhe, Anoosheh Heidarzadeh, Alex Sprintson, and O. Ozan Koyluoglu

Abstract—Private Information Retrieval (PIR) problem has

recently attracted a significant interest in the information-theory
community. In this problem, a user wants to privately download
one or more messages belonging to a database with copies stored
on a single or multiple remote servers. In the single server

scenario, the user must have prior side information, i.e., a subset
of messages unknown to the server, to be able to privately retrieve
the required messages in an efficient way.

In the last decade, there has also been a significant interest
in Locally Recoverable Codes (LRC), a class of storage codes in

which each symbol can be recovered from a limited number of
other symbols. More recently, there is an interest in cooperative
locally recoverable codes, i.e., codes in which multiple symbols

can be recovered from a small set of other code symbols.

In this paper, we establish a relationship between coding
schemes for the single-server PIR problem and LRCs. In partic-
ular, we show the following results: (i) PIR schemes designed for
retrieving a single message are equivalent to classical LRCs; and

(ii) PIR schemes for retrieving multiple messages are equivalent
to cooperative LRCs. These equivalence results allow us to
recover upper bounds on the download rate for PIR-SI schemes,
and to obtain a novel rate upper bound on cooperative LRCs.

We show results for both linear and non-linear codes.

I. INTRODUCTION

The Private Information Retrieval (PIR) problem is one of

the important problems in theoretical computer science [1].

The setting of the problem includes a client that needs to

retrieve a message belonging to a database with copies stored

on a single or multiple remote servers. The message needs to

be retrieved by satisfying the privacy condition, which prevents

the server from identifying the index of the retrieved message.

The theoretical computer science community has primarily

focused on the settings with small message sizes with the

objective to minimize the total number of bits uploaded to

and downloaded from the server (see [2]).

Starting with the seminal work of Sun and Jafar [3], the

multiple-server PIR problem has received a significant atten-

tion from the information and coding theory community with
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breakthrough results in the past few years (see, e.g., [4]–[7],

and references therein). The information-theoretic approach

has focused on a practical setting with large message sizes

with the goal to minimize the ratio of the total number of

downloaded bits to the message size.

Recently, Kadhe et al. [8], [9] considered the single-server

PIR with Side Information (PIR-SI) problem, wherein the user

knows a random subset of messages that is unknown to the

server. It was shown that the side information enables the user

to substantially reduce the download cost and still achieve

information-theoretic privacy for the requested message. The

multi-message extension of PIR-SI, which enables a user

to privately download multiple messages from the server, is

considered by Heidarzadeh et al. [10] as well as Li and

Gastpar [11].

It is well-known in the theoretical computer science com-

munity that there is a strong relationship between PIR schemes

and a class of error-correcting codes called locally decodable

codes (LDCs) (see, e.g., the surveys [2], [12]). LDCs allow

one to locally decode an arbitrary message symbol from only a

small subset of randomly chosen codeword symbols, even after

a fraction of codeword symbols are corrupted by an adversary.

Continuing with this theme, in this paper, we show that

single-server PIR-SI schemes are closely related to another

class of codes with locality called locally recoverable codes

(LRCs) [13]. LRCs are a class of erasure codes that enable

one to recover an erased codeword symbol from only a small

subset of other codeword symbols.

In particular, in an LRC with block-length n and locality r,

every codeword symbol can be reconstructed from at most

r other codeword symbols [13]. Rawat et al. [14], [15]

extended the notion of local recovery to cooperative local

recovery. Specifically, in an LRC with block-length n and

(r, ℓ)-cooperative locality, every subset of ℓ codeword symbols

can be reconstructed from at most r other codeword symbols.

In this paper, we show that single-message PIR-SI schemes

are related to LRCs, whereas multi-message PIR-SI schemes

are related to cooperative LRCs. Detailed contributions are

outlined in the following.

Our Contributions: We focus out attention to the single-

server PIR-SI problem in which a user wishes to download D
messages from a database of K messages (over a finite field

Fq), stored on a single remote server. The user has a random

subset of M messages, referred to as side information, whose

identities are unknown to the server.

First, we focus on the scalar-linear case wherein the an-

swer from the server is of the form EX , where X =

http://arxiv.org/abs/1907.00598v1


[X1 · · · XK ]T ∈ F
K
q denotes the set of messages, and E

is a T ×K matrix with entries over Fq . When the user wishes

to protect only the identities of the requested messages, we

show the following results:

• Equivalence between single-message (D = 1) PIR with

Side Information (SM-PIR-SI) schemes and LRCs:

1) Any solution E to an SM-PIR-SI problem is a parity

check matrix of an LRC with block-length K and

locality M (Theorem 1).

2) Given a parity check matrix H of an LRC with

block-length K and locality M , it is possible to

construct an SM-PIR-SI scheme where E is a

column-permutation of H (Theorem 2).

• Equivalence between multi-message (D ≥ 2) PIR with

Side Information (MM-PIR-SI) schemes and cooperative

LRCs:

1) Any solution E to a MM-PIR-SI problem is a parity

check matrix of an LRC with block-length K and

(M,D)-cooperative locality (Theorem 3).

2) Given a parity check matrix H of an LRC with

block-length K and (M,D)-cooperative locality,

it is possible to construct an MM-PIR-SI scheme

where E is a column-permutation of H (Theo-

rem 4).

• As corollaries to Theorems 1 and 3, we derive upper

bounds on the download rates for SM-PIR-SI problem

(Corollary 1) and MM-PIR-SI problem (Corollary 3),

respectively. In addition, as a corollary to Theorem 4,

we derive a novel tight upper bound on the rate of a

cooperative LRC for the regime ℓ > r (see Corollary 4

and Remark 2).

Next, we consider the case when the user wants to protect

both the identities of the requested messages and that of the

side-information, referred to as (W,S)-PIR-SI.1 We show the

following equivalence result:

• Equivalence between (W,S)-PIR-SI schemes and maxi-

mum distance separable (MDS) codes2:

1) Any solution E to a (W,S)-PIR-SI problem is a

parity check matrix of an MDS code with block-

length K and dimension M (Theorem 5).

2) Given a parity check matrix H of an MDS code with

block-length K and dimension M , it is possible to

construct a (W,S)-PIR-SI scheme where E = H
(Theorem 6).

Finally, we lift the restriction of scalar-linear solutions, and

consider generic (non-linear) SM-PIR-SI schemes. We show

the following equivalence result:

1Here, W denotes the demand index set and S denotes the side information

index set. We use the term (W,S)-PIR-SI to reflect the fact that the user wants

to protect (W,S) jointly.
2An MDS code can be considered as an LRC with locality r = k.

• Equivalence between SM-PIR-SI schemes and LRCs with

maximum possible size3:

1) Given a solution to an SM-PIR-SI problem, it is

possible to construct an LRC with block-length K
and locality M (Theorem 7).

2) Given an LRC with block-length K and locality M
with the maximum possible size, it is possible to

construct an SM-PIR-SI scheme (Theorem 8).

II. PRELIMINARIES

Notation: For a positive integer K , denote {1, . . . ,K} by

[K]. Let Fq denote the finite field of order q, where q is

a power of a prime. For a set {X1, . . . , XK} and a subset

S ⊂ [K], let XS = {Xj : j ∈ S}. For a positive integer P ,

let 1P and 0P , respectively, denote the all-one and all-zero

row vectors of length P . Let ej be a unit vector of length K
such that its j-th entry is 1 and the other entries are 0. For a

set W = {W1,W2, . . . ,WD} ⊆ [K], let

IW =











eW1

eW2

...

eWD











.

For a T × K matrix E ∈ F
T×K
q , let 〈E〉 denote the row-

space of E. For a subset S ⊂ [K], let ES denote the T × |S|
submatrix consisting of columns of E indexed by S. For a

vector v, let Supp (v) denote the support of v. For a subspace

C ⊂ F
K
q , let C⊥ be its dual subspace.

A. Single-Server PIR with Side Information

We briefly overview the single-server PIR with side infor-

mation problem [8], [16] (see also [9]). Consider a server

containing a database that consists of a set of K messages

X = [X1 · · · XK ]T , with each message being independently

and uniformly distributed over Fq. A user is interested in

privately downloading D (1 ≤ D ≤ K) messages XW from

the server for some W ⊆ [K], |W |= D. We refer to W
as the demand index set and XW as the demand. The user

has the knowledge of a subset XS of the messages for some

S ⊂ [K] \W , |S|= M , M ≤ K −D. We refer to S as the

side information index set and XS as the side information.

Let W and S denote the random variables corresponding

to the demand and side information index sets, respectively.

We assume that the side information index set S is distributed

uniformly over over all subsets of [K] of size M , i.e.,

pS(S) =

{

1

(KM)
, S ⊂ [K], |S|= M,

0, otherwise.
(1)

3It is possible to show that any LRC over Fq with block-length n and

locality r can contain at most qn−⌈n/(r+1)⌉ codewords (see Proposition 2).

Any LRC with qn−⌈n/(r+1)⌉ codewords is said to be an LRC code with
maximum possible size.



Further, we assume that the demand index set W has the

following conditional distribution given S:

pW |S(W | S) =

{

1

(K−M
D )

, W ⊆ [K] \ S, |W |= D,

0, otherwise.
(2)

We assume that the server does not know the side information

realization at the user and only knows the a priori distributions

pS(S) and pW |S(W |S).
To download the set of messages XW given the side

information XS , the user sends a query Q[W,S] to the server.

The server responds to the query it receives with an answer

A[W,S] over FT
q . Let Q[W,S] and A[W,S] be the corresponding

random variables.

Definition 1. [PIR-SI] Any scheme consisting of a query and

an answer is referred to as the PIR with side information (PIR-

SI) scheme if the query and answer satisfy the following two

conditions.

1. W -privacy: The server cannot infer any information

about the demand index set from the query it receives

i.e.,

I
(

W ;Q[W ,S]
)

= 0. (3)

2. (W,S)-privacy: The server cannot infer any information

about the demand index set as well as the side informa-

tion index set from the query it receives i.e.,

I
(

W ,S;Q[W ,S]
)

= 0. (4)

3. Recoverability: From the answer A[W,S] and the side

information XS , the user should be able to decode the

desired set of messages XW for any (W,S), i.e.,

H
(

XW | A[W ,S],Q[W ,S],XS ,W ,S
)

= 0. (5)

We refer to the case of D = 1 as single-message PIR-SI,

while the case of D ≥ 2 as multi-message PIR-SI.

The rate of a PIR-SI scheme is defined as the ratio of the

message length (log q bits) to the total length of the answers

(in bits) as follows:4

R =
D log q

H
(

A[W ,S]
) . (6)

The capacity of W -PIR-SI, denoted by CW , is defined as the

supremum of rates over all W -PIR-SI schemes for a given K
and M .

B. Locally Recoverable Codes

Let C denote a linear [n, k, d]q code over Fq with block-

length n, dimension k, and minimum distance d. For any

codeword c ∈ C, ci is said to be the i-th symbol of the

codeword c.

4We focus our attention to the download rate similar to [3]. This is because

the download rate dominates the total communication rate when the message
size is sufficiently large as compared to the size of a query.

We say that the i-th symbol of a code C has locality r if its

value can be recovered from some other r symbols of C. The

formal definition of locality is as follows (see [13]).

Definition 2. [Locality] We say that the i-th coordinate of a

code C has locality r if there exists a set R (i) ⊂ [n] \ {i},
|R (i) |≤ r, such that, for every codeword c ∈ C,

ci =
∑

l∈R(i) λlcl, where λl ∈ Fq \ {0}, ∀ l ∈ R (i). We

say that R (i) is a repair group of the i-th coordinate and

define Γ (i) = {ci ∪R (i)}.
We say that an [n, k, d]q code has (all-symbol) locality r if

each of its n coordinates has locality r. An LRC with these

parameters is referred to as an (n, k, r) LRC.

Equivalently, we say that the coordinate i has locality r, if

the dual code C⊥ contains a codeword c
′ of Hamming weight

at most r+1 such that the i-th coordinate is in the support of

c
′.

Example 1. Let us consider a (7, 3) Simplex code C, which is

a dual of a (7, 4) Hamming code. In particular, C encodes

three information symbols {a, b, c} into seven symbols as

{a, b, c, a+ b, a+ c, b+ c, a+ b+ c}. It is easy to see that any

symbol can be recovered from two other symbols. For instance,

a can be recovered from b+ c and a+ b+ c.5

In [13], it is shown that the minimum distance dmin (C) of

an (n, k, r) LRC C is upper bounded as

dmin (C) ≤ n− k −

⌈

k

r

⌉

+ 2. (7)

Further, the authors of prove that any systematic code with

locality for information symbols that achieves equality in (7)

must follow a specific structure [13]. We state below the

structure theorem [13, Theorem 9], adapted to the form useful

for our setup.

Proposition 1. [13] Let C be an (n, k, r) code, where r | k,

r < k, and n = k + k/r. Then, for any i, j ∈ [n], i 6= j, we

have either Γ (i) = Γ (j) or Γ (i) ∩ Γ (j) = ∅.

C. Cooperative Locally Recoverable Codes

Let C denote a linear [n, k, d]q code over Fq with block-

length n, dimension k, and minimum distance d. We say that

the code has (r, ℓ)-cooperative locality if for every codeword,

it is possible to repair any ℓ symbols from at most r other

symbols. The formal definition is as follows (see [14]).

Definition 3. We say that an [n, k, d] code C has (r, ℓ)-
cooperative locality, if for any subset of ℓ coordinates ∆ ⊂ [n],
|∆|= ℓ, there exists a set Γ(∆) ⊂ [n] satisfying ∆∩Γ(∆) = ∅,
|Γ(∆)|≤ r, such that, for every codeword c ∈ C, the symbols

c∆ can be recovered using the symbols cΓ(∆).

5In fact, every symbol of the (7, 3) simplex code has three disjoint repair

groups [17]. Further, note that, even though the (7, 3) simplex code is not

optimal with respect to the distance upper bound in (7), it is optimal with
respect to a field size dependent rate upper bound established in [17].



An LRC with these parameters is referred to as an (n, k, r, ℓ)
cooperative LRC. Note that when ℓ = n− k and r = k, then

the above definition coincides with that of an MDS code.

In [15], it is shown that the minimum distance dmin (C) of

an (n, k, r, ℓ) cooperative LRC C for r ≥ ℓ is upper bounded

as

dmin (C) ≤ n− k + 1− ℓ

(⌈

k

r

⌉

− 1

)

. (8)

III. EQUIVALENCE RESULTS FOR SCALAR-LINEAR

SCHEMES

In this section, we consider non-interactive (single round),

scalar-linear PIR-SI schemes. In particular, for any given query

Q[W,S], the answer A[W,S] can be specified as

A[W,S] = EX , (9)

where the matrix E ∈ F
T×K
q depends on Q[W,S]. We refer to

E as a solution to the PIR-SI problem. Note that T , the number

of rows of E, denotes the number of symbols downloaded

from the server.

A. Single-Message PIR-SI Schemes and LRCs

In this section, we show that a single-message PIR-SI

scheme is equivalent to a locally recoverable code (LRC). In

particular, we show that any solution to the single-message

PIR-SI problem (SM-PIR-SI) must be a parity check matrix of

an LRC. Furthermore, we show that it is possible to construct

a solution to the SM-PIR-SI problem using a parity check

matrix of an LRC.

First, we establish the relation from a solution of the SM-

PIR-SI problem to a parity check matrix of an LRC.

Theorem 1. Any scalar-linear solution E to the single-

message PIR-SI problem must be a parity check matrix of an

LRC with block length K and locality M .

Proof: First, we note that the following necessary condi-

tion is imposed by the privacy and recoverability conditions.

For any query Q[W,S], the answer E should satisfy the fol-

lowing necessary condition: for any candidate demand index

W ′ ∈ [K], there must exist a potential side information index

set S′ ⊆ [K]\W ′, |S′|≤M such that it is possible to recover

W ′ from EX and XS′ . In other words, the following condition

must hold:

eW ′ ∈

〈[

E
IS′

]〉

. (10)

If the aforementioned necessary condition does not hold, then

the server will learn from E that W ′ is not the user’s demand

index. Indeed, since E is the solution corresponding to the

query Q[W,S], we have

P

(

W = W ′ | Q[W ,S] = Q[W,S]
)

= 0, (11)

which, in turn, implies that I
(

W ;Q[W ,S]
)

> 0. This

violates the W -privacy condition (3).

The above condition (10) implies that for every W ′ ∈ [K],
〈E〉 must contain a vector v of Hamming weight at most M+1

such that W ′ ∈ Supp (v). According to Definition 2, 〈E〉⊥ is

an LRC with block-length K and all-symbol locality M .

Theorem 1 has the following two immediate implications.

First, it allows us to construct a class of LRCs using solutions

to the SM-PIR-SI problem. More specifically, given a solution

E to the SM-PIR-SI problem with K messages and side

information size M , one can easily obtain an LRC with block-

length K and locality M as C = 〈E〉⊥.

Now, consider the Partition-and-Code scheme proposed

in [9] for the SM-PIR-SI problem. Let K = α(M + 1) + β
for some α > 0 and 0 ≤ β < M + 1. In the P&C scheme,

the user first randomly partitions the K messages into (α+1)
subsets, each of size at most M + 1, such that one of the

subsets is W ∪ S′ for some S′ ⊆ S. The user then asks the

server to send the sum of messages in each subset, resulting

in the download cost of α+ 1 symbols.

Note that the Partition-and-Code scheme yields a solution

E of size (α+ 1)×K with the following form (up to column

permutation):

E =











1M+1 0M+1 · · · 0β

0M+1 1M+1 · · · 0β

...
...

. . .
...

0M+1 0M+1 · · · 1β











, (12)

It is easy to verify that the corresponding LRC C = 〈E〉⊥ is a

direct-sum of α+1 single-parity check codes, each of length at

most M+1. In other words, C is a simple LRC that partitions

the message symbols into α + 1 subsets each of size at most

M + 1, and adds a parity check symbol for each subset.

Second, Theorem 1 enables us to use (7) to obtain an upper

bound on the capacity of a (scalar-linear) single-message PIR-

SI scheme. As we show next, the bound coincides with the

upper bound derived in [8], [9].

Corollary 1. The scalar-linear capacity of the single-message

PIR-SI problem is upper bounded by ⌈K/(M + 1)⌉−1.

Proof: Let E be a scalar-linear solution to the SM-PIR-SI

problem. Let C = 〈E〉⊥. Suppose the minimum distance of C
is d. Note that we must have d ≥ 2. For, if d = 1, E must

contain a column of all zeros. Let W ′ denote the index of this

all-zero column. However, this implies that XW ′ cannot be the

demand, and this will violate the privacy.6 Now, since 〈E〉⊥

is an LRC with block-length n = K , dimension k = K − T ,

and locality r = M from Theorem 1, we have from (7) that

K ≥ K − T +

⌈

K − T

M

⌉

− 2 + d.

After re-arranging, and noting that d ≥ 2 and T is an integer,

we get

T ≥

⌈

K

M + 1

⌉

.

6Note that here we are using the same argument as in the proof of
Theorem 1 (cf. (16)).



As the messages are independent and uniformly distributed

over Fq, we have H
(

A[W,S]
)

= T log q. The result then

follows from (6).

Remark 1. The above result can be directly proved using

an upper bound on the rate of an LRC with locality r given

as r/(r + 1) (see [18, Theorem 1]). It is interesting to note

that [18, Theorem 1] uses an argument based on acyclic

induced subgraphs similar to [8], [9].

We say that a scalar-linear solution to SM-PIR-SI problem is

an optimal solution, if T = ⌈K/(M+1)⌉. Then, Proposition 1

implies the following structure on any optimal scalar-linear

solution.

Corollary 2. When (M + 1) | K , any optimal scalar-linear

solution E to the PIR-SI problem can be converted to the

following form using elementary row operations and column

permutations:

E =











× · · · × 0 · · · 0 · · · 0 · · · 0
0 · · · 0 × · · · × · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...

0 · · · 0 0 · · · 0 · · · × · · · ×











, (13)

where × can be any non-zero element in Fq, i.e., × ∈ Fq\{0},
and the number of non-zero entries in each row is exactly

M + 1.

Since the solution obtained using the partition-and-code

scheme (cf. (12)) has the same form as (13), this shows the

uniqueness of the solution obtained by the partition-and-code

scheme. In other words, any optimal scalar-linear solution

can be obtained from the partition-and-code solution using

elementary row operations and column permutations.

Next, we establish the relation from a parity check matrix

of an LRC to a solution of the SM-PIR-SI problem.

Theorem 2. Let H be a parity check matrix of an LRC with

block length K and locality M . Then, it is possible to construct

a single-message PIR-SI scheme, such that the solution E is

a column-permutation of H .

Proof: We present a constructive proof. In the rest of

the proof, we consider all sets as ordered sets (with a natural

ascending order). For a given W and S, the user first finds

a permutation π on [K] as follows. Choose an index W ′

uniformly at random from [K], independent of W and S. Let

R(W ′) be a repair group of W ′. If a coordinate has multiple

repair groups, arbitrarily choose one repair group.7 By the

definition of locality, we have |R(W ′)|≤ M . For simplicity,

we assume that every repair group of any symbol is of size

M .8 Let R′(W ′) be a random permutation of R(W ′). Let

P = [K] \ {W ∪ S}, and P ′ be a random permutation of

7This arbitrary choice of a repair group for each coordinate is made a

priori, and are known to the server as a part of the scheme.
8The arguments can be easily generalized to the case when some repair

groups are smaller than M .

[K] \ {W ′ ∪R(W ′)}. Let π be the permutation that maps W
to W ′, S to R′(W ′), and P to P ′. The user sends π as its

query Q[W,S]. The server then applies π to the columns of H
to obtain E, i.e., Ei = Hπ(i) for each i ∈ [K], where Hj is

the jth column of H . Then, the server computes the answer

as EX .

Next, we show that the above scheme satisfies the recov-

erablity and W -privacy conditions. Indeed, by the definition

of locality for W ′, 〈H〉 contains a vector whose support is

W ′∪R(W ′). Therefore, by the construction of E, 〈E〉 contains

a vector whose support is W ∪ S. Hence, the recoverability

condition in (5) is satisfied.

For the W -privacy, it suffices to show that, for any W ∈ [K]
and any permutation π,

P

(

Q[W ,S] = π |W = W
)

=
1

K!
. (14)

This is because using (14), it is easy to show that

P

(

W = W | Q[W ,S] = π
)

= P (W = W ), from which

the privacy condition (3) follows.

Now, we give a proof of (14). Observe that the query gener-

ation process first maps the demand index to a random index

in [K]. Let W ′ denote that random index. Let R′(W ′) and P ′

be random variables corresponding to (independent) uniform

random permutations of R(W ′) and [K] \ {W ′ ∪ R(W ′)},
respectively. Now, given a permutation π on [K] as a query,

define the following events:

P

(

Q[W ,S] = π |W = W
)

(a)
= P (E1|W = W )× P (E2 | E1,W = W )

× P (E3 | E2,E1,W = W ) ,
(b)
=

1

K
×

1

M !
(

K−1
M

) ×
1

(K − 1−M)!
,

=
1

K!
,

Then, for any W ∈ [K] and a permutation π on [K], the

probability of choosing π as a query can be written as

P

(

Q[W ,S] = π |W = W
)

(a)
= P (E1|W = W )× P (E2 | E1,W = W )

× P (E3 | E2,E1,W = W ) ,
(b)
=

1

K
×

1

M !
(

K−1
M

) ×
1

(K − 1−M)!
,

=
1

K!
,

where (a) follows from the query generation procedure, and

(b) uses (1) and (2) to compute P (E2 | E1,W = W ). This

completes the proof of (14), and concludes the proof.

B. Multi-Message PIR-SI and Cooperative LRCs

In this section, we show that a multi-message PIR-SI

scheme is a dual of a cooperative LRC, introduced in [14].



First, we show that any solution to the multi-message PIR-

SI problem should be a parity check matrix of a code with

cooperative locality.

Theorem 3. Any scalar-linear solution E to the multi-message

PIR-SI problem with a demand set of size D and a side

information set of size M must be a parity check matrix of an

LRC with block length K and (M,D)-cooperative locality.

Proof: First, we note that the following necessary condi-

tion is imposed by the privacy and recoverability conditions.

For any query Q[W,S], the answer E should satisfy the

following necessary condition: for every candidate demand

index set W ′ ∈ [K], |W ′|= D, there must exist a potential

side information index set S′ ⊆ [K] \W ′, |S′|≤M such that

it is possible to recover XW ′ from EX and XS′ . In other

words, the following condition must hold:

eij ∈

〈[

E
IS′

]〉

, ∀ ij ∈ W ′. (15)

If the aforementioned necessary condition does not hold, then

the server will learn from E that W ′ is not the user’s demand

index. Since E is the solution corresponding to the query

Q[W,S], we have

P

(

W = W ′ | Q[W ,S] = Q[W,S]
)

= 0,

which, in turn, implies that I
(

W ;Q[W ,S]
)

> 0. This

violates the W -privacy condition (3). This violates the privacy

condition (3).

The above condition (15) implies that for every subset W ′ =
{i1, i2, . . . , iD} ⊆ [K] of size D, 〈E〉 must contain D vectors

v1, v2, . . . , vD such that |∪Dj=1Supp (vj) |≤ D + M , and for

each 1 ≤ j ≤ D, Supp (vj) ∩W ′ = {ij}. It is easy to verify

from Definition 3 that 〈E〉⊥ is an (M,D) cooperative LRC

with block-length K .

Corollary 3. For M ≥ D, the scalar-linear capacity of

the multi-message PIR-SI problem is upper bounded by

D/⌈DK/(M +D)⌉.

Proof: Let C = 〈E〉⊥. Note that from Theorem 3, C
must be a code with blocklength K and (M,D)-cooperative

locality. Using (8), it is shown in [15, Corollary 1] that the

rate of a code with (M,D)-cooperative locality for M ≥ D is

upper bounded as M/(M +D). Therefore, we have T/K ≥
1 −M/(M +D). This yields T ≥ ⌈DK/(D +M)⌉, which

gives the capacity upper bound.

Next, we show that it is possible to construct a solution to

the multi-message PIR-SI problem using a parity check matrix

of a cooperative locality code.

Theorem 4. Let H be a parity check matrix of an LRC with

block-length K and (D,M)-cooperative locality. Then, it is

possible to construct a multi-message PIR-SI scheme, such that

the solution E is a column-permutation of H .

Proof: The query generation process and the rest of the

proof is similar to the proof of Theorem 1.

Corollary 4. For ℓ > r, the rate of a linear (n, k, r, ℓ)
cooperative LRC is upper bounded by r/n.

Proof: Let H be a parity check matrix of an (n, k, r, ℓ)
cooperative LRC. From Theorem 3, H is a solution (up to a

column-permutation) of a multi-message PIR-SI problem such

that K = n, M = r, and D = ℓ. Now, in [16, Lemma 1], it is

shown that, when D > M , the number of transmissions in any

multi-message PIR-SI scheme is at least K −M . Therefore,

we have n− k ≥ n− r, from which the result follows.

Remark 2. Corollary 4 yields a better bound on the rate of

a cooperative LRC for ℓ > r than [15, Corollary 1] given

as r/(r + ℓ) + ℓ2/(nr). In fact, the rate bound is tight for

n > 2r. This is because an (n, r) MDS code trivially has

(r, ℓ)-cooperative locality for any ℓ ≥ r.

Theorem 3 also enables us to obtain computationally

efficient multi-message PIR-SI solutions. In particular, for

D ≤M , the schemes in [16] (see also [19]) rely on gener-

alized Reed-Solomon codes, and thus, require a finite field

size at least M + ⌈M/D⌉. On the other hand, it is possible

to use constructions of cooperative LRCs to obtain PIR-

SI schemes over smaller field size.9 As an example, an

(n = 2k−1, k) simplex code has (ℓ+1, ℓ)-cooperative locality

for any 1 ≤ ℓ ≤ (n − 1)/2 (see [15]). Thus, it is possible

to obtain multi-message PIR-SI solutions over the binary field

when K = 2t−1 for a positive integer t, 1 ≤ D ≤ (K−1)/2,

and M = D + 1.

C. (W,S)-Private PIR-SI Schemes and MDS Codes

In this section, we show an equivalence between a solu-

tion to the (W,S)-PIR-SI problem and a maximum distance

separable (MDS) code.

First, we establish the relation from a solution of the (W,S)-
PIR-SI problem to a parity check matrix of an MDS code.

Theorem 5. Any scalar-linear solution E to the (W,S)-PIR-

SI problem must be a parity check matrix of a (K,M) MDS

code.

Proof: First, we note that the (W,S)-privacy condition

implies the following necessary condition: for each message

Xi and every set Si ⊆ [K] \ {i} of size M , it is possible to

recover Xi from EX and XSi
. If this is not the case, then the

server learns that the user cannot possess XSi
and demand

any XW such that i ∈ W . Indeed, since E is the solution

corresponding to the query Q[W,S], we have

P

(

S = Si, i ∈W | Q[W ,S] = Q[W,S]
)

= 0, (16)

which, in turn, implies that I
(

W ,S;Q[W ,S]
)

> 0. This

violates the (W,S)-privacy condition (4).

9Note that small field size schemes obtained from cooperative LRCs may
have smaller download rate than those in [16], [19].



The aforementioned necessary condition implies that, for

any set S ⊂ [K] of size M , for every i ∈ [K] \ S, we should

have

ei ∈

〈[

E
IS

]〉

. (17)

Equation (17), in turn, implies that the columns of E in [K]\S
must be linearly independent. Since this should hold for each

subset S ⊂ [K] of size M , we have that every subset of

columns of E of size K −M are linearly independent. Thus,

E must be a parity check matrix of a (K,M) MDS code.

Next, we establish a relation from a parity check matrix of

an MDS code to a solution of the (W,S)-PIR-SI problem. It

is worth noting that the achievability schemes in [9], [16] for

(W,S)-privacy are based on MDS codes.

Theorem 6. Let H be a parity check matrix of a (K,M)-
MDS code. Then, E = H is a solution to the (W,S)-PIR-SI

problem.

Proof: First, note that the scheme with E = H is private,

since the solution is independent of the particular realization

of W and S. As the server already knows the size of the side

information index set, it does not get any other information

about W and S from E.

To see the recoverability, note that any K −M columns of

H are linearly independent. Thus, given the side information

XS for any S ⊂ [K] of size M , the user can recover all the

messages Xi, i ∈ [K] \ S, including the demand message(s)

XW .

IV. EQUIVALENCE RESULTS FOR NON-LINEAR SCHEMES

In this section, we consider generic PIR-SI schemes and

LRCs, which encompass scalar-linear, vector-linear, and non-

linear schemes. We begin with the definition of a generic LRC.

Definition 4. An (n, k, r) LRC C ⊆ F
n
q is a set of vectors in

F
n
q of size qk, referred to as codewords, together with

1) an encoding function f : Fk
q → C, which is a bijection

between vectors in F
k
q and codewords in C, and

2) a set of deterministic repair functions g1, g2, . . . , gn,

gi : F
r
q → Fq, such that, for every coordinate i ∈ [n],

there exists a set of coordinates R(i) ⊂ [n] \ {i},
|R(i)|= r satisfying gi(cR(i)) = ci for every codeword

c ∈ C. We say that R(i) is a repair group of the i-th
coordinate.

Next, for the SM-PIR-SI problem, we define a PIR-SI code.

Towards this end, we introduce the following notation:

W = {(W,S) |W ∈ [K], S ⊂ [K] \ {W}, |S|= M} . (18)

That is, W is the set of all possible combinations of the

demand index and the side information index set.

Definition 5. A PIR-SI code for F
K
q is a set of vectors in F

T
q ,

referred to as codewords, together with

1) a class of deterministic answer functions A, where each

function A ∈ A maps vectors from F
K
q to the codewords,

i.e., A : FK
q → F

T
q ,

2) a class of deterministic recovery functions D, where

each function D ∈ D is from F
T+M
q to Fq , and

3) a stochastic query function Q : W → A that maps

(W,S) to an answer function A ∈ A (independently of

the value of XS) such that:

(i) for every W ′,W ∈ [K], S ⊂ [K] \ {W}, |S|= M ,

and for each A ∈ A,

P (W = W ′ | Q(W,S) = A) = P (W = W ′) ,
(19)

and

(ii) there exists a decoding function D ∈ D satisfying

D (A(X1, · · · , XK), XS) = XW . (20)

We refer to T as the length of the PIR code.

It is straightforward to show that the W -privacy condi-

tion (19) implies the following necessary condition on a PIR

code.

Lemma 1. In a PIR-SI code, for any A ∈ A, for

every j ∈ [K], there must exist a decoding function

Dj ∈ D and a set Sj ⊂ [K] \ {j}, |Sj | = M , such that

Dj

(

A(X1, · · · , XK), XSj

)

= Xj .

Now, we show a relation from a PIR-SI code to an LRC.

It is worth noting that the proof technique is similar to [20,

Lemma 3].

Theorem 7. Given a PIR-SI code of length T over Fq , it is

possible to construct an LRC of size (at least) qK−T .

Proof: First, note that, for any A ∈ A, there must exist a

vector a ∈ F
T
q such that

∣

∣

{

X ∈ F
K
q | A(X) = a

}
∣

∣ ≥ qK−T .

This is because every A ∈ A maps F
K
q to F

T
q . Next, for

an arbitrary A ∈ A and the corresponding a, let us define

Ca =
{

X ∈ F
K
q | A(X) = a

}

. Now, from Lemma 1, for every

i ∈ [K], there must exist a deterministic decoding function Di

and a set Si ⊂ [K] \ {i}, |Si|= M , such that Di (a, XSi
) =

Xi. Using this, define, for every i ∈ [K], R(i) = Si, and

gi
(

cR(i)

)

= Di (a, XSi
). It is easy to verify that the set Ca

along with with an arbitrary bijection E : F
⌊logq|Ca|⌋
q → C

and repair functions g1, g2, . . . , gK is an LRC of size at least

qK−T .

Next, from [18, Theorem 2.1], we have the following upper

bound on the size of an (n, k, r) LRC.

Proposition 2. [18] For any (n, k, r) LRC C ⊂ F
n
q , the size

|C|≤ qn−⌈n/(r+1)⌉.

We refer to an (n, k, r) LRC C satisfying the equality |C|=
qn−⌈n/(r+1)⌉ to be an optimal LRC.

To complete the equivalence, we establish a relation from

an optimal LRC to a PIR-SI code.

Theorem 8. Given an optimal (K,K − ⌈K/(M + 1)⌉,M)
LRC, it is possible to construct a PIR-SI code of length

⌈K/(M + 1)⌉ over Fq.



In order to prove Theorem 8, we need two other lemmas. To

simplify the presentation, we define TOPT , ⌈K/(M + 1)⌉.
Also, for a code C of block-length K and a set P ⊂ [K], let CP
denote the code obtained by puncturing C on the coordinates

outside of P .

First, we show that any optimal LRC must contain K −
TOPT coordinates such that values on these coordinates deter-

mine the values of the remaining TOPT coordinates. Note that

for an arbitrary (n, k) non-linear code, there my not exist any

subset of k coordinates that determine values of the remaining

coordinates.

Lemma 2. For an optimal (K,K − TOPT ,M) LRC C, there

exists a partition of K coordinates into sets P1 and P2 such

that |P1|= K − TOPT , |P2|= TOPT , and for any codeword

c ∈ C, the symbols cP2
can be recovered from the symbols

cP1
.

Proof: We iteratively construct P1 and P2 as follows.

1. Initialize P1 = P2 = ∅
2. While |P1 ∪ P2|< K:

2.1 Choose a coordinate i 6∈ P1 ∪ P2

2.2 Set P1 ← P1 ∪R(i), for a repair group R(i) of i
2.3 Set P2 ← P2 ∪ {i}.

By the construction of P1 and P2, the coordinates in P2 can

be recovered from the coordinates in P1.

Note that, in each step, P2 grows by one, and P1 grows by

at most M as the locality of the code is M . In other words,

in each step, P1 ∪ P2 grows by at most M + 1. Therefore,

the number of steps for which the while loop runs is at least

⌈K/(M + 1)⌉ = TOPT . This gives |P2|≥ TOPT .

Next, we show that |P2|≤ TOPT . Since there is a bijection

between F
K−TOPT
q and C, and since the coordinates in P2 are

a function of those in P1, there must be a bijection between

F
K−TOPT
q and CP1

. This implies that |P1|≥ K − TOPT , and

thus, |P2|≤ TOPT .

We conclude that |P2|= TOPT , which completes the proof.

Given a vector u, we define a translation of an LRC C as

C + u = {c+ u | c ∈ C} . (21)

Now, using Lemma 2, we show that there exist qTOPT trans-

lations of an optimal LRC that partition F
K
q .

Lemma 3. For an optimal (K,K − ⌈K/(M + 1)⌉,M)
LRC C, there exist qTOPT distinct vectors uj ∈ F

K
q ,

j = 0, . . . , qTOPT − 1, such that the translations
{

C + uj | j = 0, . . . , qTOPT − 1
}

partition the space F
K
q .

That is,

(C + ui) ∩ (C + uj) = ∅, ∀ i 6= j, (22)

and

∪q
TOPT −1

j=0 (C + uj) = F
K
q . (23)

Proof: We give a constructive proof. Let P1 and P2 be the

sets of coordinates of C as described in Lemma 2. Without loss

of generality, let P1 be the first K − TOPT coordinates. Let

{

vi | 0 ≤ i ≤ qTOPT − 1
}

denote the set of vectors in F
TOPT
q

in a lexicographic order. For each 0 ≤ i ≤ qTOPT − 1, define

ui = [0 vi], where 0 is the all-zero vector of length K −T ∗.

Note that any translation of |C has the same size as C. Thus,

to prove (23), it suffices to show (22). We prove this by the way

of contradiction. Suppose, for contradiction, that there exists

a pair of codewords c, c′ ∈ C such that c+ui = c
′+uj . This

implies that

[cP1
cP2

+ vi] = [c′P1
c
′
P2

+ vj ]. (24)

Therefore, cP1
= c

′
P1

. Further, since the coordinates in P2

can be recovered from those in P1 (Lemma 2), we must have

cP2
= c

′
P2

. However, as vi 6= vj , we have a contradiction

to (24).

Proof of Theorem 8: Lemma 3 enables us to construct a

PIR-SI code of length TOPT over Fq using an optimal LRC

C as follows.

Answer functions: We construct a set A of K! answer func-

tions, and associate every answer function with a permutation

on [K]. Towards this end, we need the following additional

notation. For 0 ≤ a ≤ qTOPT − 1, let āq denote the length-

TOPT q-ary expansion of a. For a permutation π on [K] and

a vector [X1 · · ·XK ] ∈ F
K
q , let π(X) = Xπ([K])

Let U = {uj ∈ F
K
q , j = 0, . . . , qTOPT − 1} be a set

of vectors as described in Lemma 3. For a given X ∈ F
K
q

and a permutation π on [K], let 0 ≤ a ≤ qTOPT − 1
be such that π(X) ∈ C + ua. Note that, by Lemma 3,

the translations
{

C + uj | 0 ≤ j ≤ qTOPT − 1
}

partition the

space F
K
q . Hence, there exists a unique such ua ∈ U for every

X ∈ F
K
q and any permutation π on [K]. Define the answer

functions for every X ∈ F
K
q and every permutation π on [K]

as

Aπ (X) = āq. (25)

Query function: We are given an index W ∈ [K] and a set

S ⊂ [K]\{W}. First, choose an index W ′ ∈ [K] uniformly at

random independent of W and S. Choose an arbitrary repair

group of W ′, say R(W ′).10 Let P = [K] \ (W ∪ S). Let

R′(W ′) and P ′ be random permutations of sets R(W ′) and

[K] \ (W ′ ∪R(W ′)), respectively. Let π be a permutation on

the set [K] that maps W to W ′, S to R′(W ′), and P to P ′.

Then, the query function Q maps (W,S) to Aπ in A. Note

that it suffices for the user to send π as their query.

Recovery functions: For a set P ⊂ [K], let ua|P denote the

length-|P | vector obtained by deleting the coordinates of wa

outside P . Now, given π and Aπ , define the recovery function

as

D (Aπ(X), XS) = gW ′

(

XR′(W ′) − ua|R′(W ′)

)

+ ua|W ′ ,
(26)

where gW ′(·) is the repair function of C for the coordinate

cW ′ (see Definition 4).

10If a coordinate has multiple repair groups, arbitrarily choose one repair

group. This arbitrary choice of a repair group for each coordinate is made a

priori, and are known to the server as a part of the scheme.



Recoverability and Privacy: It is straightforward to verify

that D (Aπ(X), XS) = XW (cf. (26)). The W -privacy con-

dition (19) can be proven in the same way as in the proof of

Theorem 2, and thus, the proof is omitted.

V. CONCLUSION

The theoretical computer science community has estab-

lished a strong relationship between PIR schemes and locally

decodable codes. This paper extends this theme by establishing

strong relationship between PIR schemes for a recently pro-

posed single-server PIR with side information problem and

locally recoverable codes. As corollaries to these results, we

obtain upper bounds on the download rate for PIR-SI schemes,

and a novel rate upper bound on cooperative LRCs.
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