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Abstract—1 This work develops new achievable rate regions
for the two way wiretap channel. In our setup, Alice and Bob
wish to exchange messages securely in the presence of a passive
eavesdropper Eve. In the full-duplex scenario, our achievability
argument relies on allowing the two users to jointly optimize
their channel prefixing distributions, such that the new channel
conditions are favorable compared to that of Eve. Random
binning and private key sharing over the channel are then used to
exploit the secrecy advantage available in the equivalent cascade
channel and to distribute the available secrecy rate among users.
For the half-duplex case, we introduce the idea of randomized
scheduling and establish the significant gain it offers in terms of
the achievable secrecy sum-rate. We also quantify the gains that
can be leveraged from the proposed schemes in the modulo-2
and Gaussian channels via numerical results in certain selected
scenarios.

I. INTRODUCTION

In a pioneering paper [1], Shannon established the achiev-

ability of perfectly secure communication in the presence of

an eavesdropper with unbounded computational complexity.

However, the necessary condition for perfect secrecy, i.e., that

the entropy of the private key is larger than that of the message,

appears to be prohibitive for most practical applications. In [2],

Wyner revisited this problem and proved the achievability of

a positive secrecy rate over a degraded discrete memoryless

channel, via a key-less secrecy approach, by relaxing the

noiseless assumption and the strict notion of perfect secrecy

employed in [1]. Wyner’s results were later extended to the

Gaussian and Broadcast channels in [3] and [4]; respectively.

In [5], Maurer showed how to exploit the presence of a public

discussion channel to achieve positive secrecy over the one

way wiretap channel even when the Eve’s channel is less noisy

than that seen by Bob. In [6], the authors considered a more

practical feedback scenario where the role of the noiseless

public discussion channel is played by receiver feedback over

the same noisy channel. Under this assumption, it was shown

that the perfect secrecy capacity is equal to the capacity

of the main channel in the absence of the eavesdropper

for full-duplex modulo-additive discrete memoryless channels.

More interestingly, [6] established the achievability of positive
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secrecy rates, even under the half-duplex constraint where

each feedback symbol introduces an erasure event in the main

channel.

This work studies the two way wiretap channel, where Alice

and Bob wish to exchange secure messages in the presence

of a passive eavesdropper Eve. It is easy to see that the one

way channel with feedback considered in [6] is a special case

of this model. Using the cooperative channel prefixing and

binning technique proposed in [9] together with a private key

sharing over the channel, we derive an inner bound on the

secrecy capacity region of the full-duplex discrete memoryless

two way wiretap channel, which is strictly larger than the

region reported in [7] and [8]. By specializing our results to

the modulo-2 additive and Gaussian channels, we highlight the

role of cooperative channel prefixing in creating an advantage

for Alice and Bob, over Eve. In the half-duplex setting,

we develop the randomized scheduling for secrecy concept,

whereby Alice and Bob send their symbols at random time

instants. This approach is shown to offer significant gains in

the achievable secrecy sum-rate by introducing ambiguity at

Eve regarding the source of any particular received symbol.

The rest of the paper is organized as follows. In Section II,

we develop an achievable secrecy rate region for the general

discrete memoryless two way wiretap channel, and specialize

the result to the modulo-2 additive setting. In this section,

we also derive the achievable rate region with randomized

scheduling in the modulo-2 half-duplex channel. Section III

extends these results to the Gaussian channel, and some

concluding remarks are provided in Section IV.

II. DISCRETE MEMORYLESS CHANNELS

In the two way wiretap channel, each of the two legitimate

terminals is equipped with a transmitter and a receiver. The

two users intend to exchange messages in the presence of a

passive eavesdropper. More specifically, the kth user has a

secret message selected from a set of equiprobable messages

Wk = {1, . . . , Mk}, and the message wk ∈ Wk is transmitted

to the other user, in n channel uses. For message wk, a

codeword Xk(wk) = {Xk(1), . . . , Xk(n)} is transmitted at

a rate Rk = 1
n

log2 Mk. The kth decoder employs a decoding

function φk(.) to map the received sequence Yk to an estimate



ŵk of wk . The two way communication is governed by

reliability and secrecy constraints. The former is measured by

the average probability of error,

Pe,k =
1

Mk

∑

wk∈Wk

P{ŵk 6= wk|wk is sent}, for k = 1, 2;

(1)

and the latter is given by the mutual information leakage rate

to the eavesdropper, i.e.,

1

n
I(W1, W2;Z), (2)

where Z = {Z(1), . . . , Z(n)} is the observed sequence at the

eavesdropper. Here, we focus on the perfect secrecy ([2]) rate

region as formalized in the following definition.

Definition 1: We say that the rate tuple (R1, R2) is achiev-

able for the two way wiretap channel, if for any given ǫ > 0,

there exists an (n, M1, M2, Pe,1, Pe,2) code such that,

R1 =
1

n
log2 M1

R2 =
1

n
log2 M2

max(Pe,1, Pe,2) ≤ ǫ

1

n
I(W1, W2;Z) ≤ ǫ,

for sufficiently large n.

We note that the last condition implies the following

1

n
H(Wk|Z) ≥ Rk − ǫ,

for k = 1, 2 (see, e.g., [9, Lemma 15]).

The secrecy capacity region is defined as the set of all

achievable rates (R1, R2). We use the following shorthand

notations for probability distributions: p(x) , p(X = x),
p(x|y) , p(X = x|Y = y), and p(x, y) , p(X = x, Y = y),
where X and Y denote arbitrary random variables. We also

use log(x) to denote log2(x), and [a]+ to denote max(a, 0).
Finally, we use the following superscripts: 1) F : Full-duplex

discrete memoryless channel, 2) FM : Full-duplex modulo-2
channel, and 3) HM : Half-duplex modulo-2 channel.

For the general discrete memoryless two way channel with

an external passive eavesdropper (DM-TWC-E), we use the

calligraphic letters X1 and X2 to denote the discrete input finite

alphabets for user 1 and user 2; and Y1, Y2, and Z , to denote

the output alphabets observed at the decoders of user 1, user

2, and the eavesdropper, respectively. The channel is given by

p(y1, y2, z|x1, x2) and is memoryless in the following sense.

p(y1(i), y2(i), z(i)|xi
1,x

i
2,y

i−1
1 ,yi−1

2 , zi−1)

= p(y1(i), y2(i), z(i)|x1(i), x2(i)).

We use a coding scheme inspired by the one proposed in [9]

(see also [10]): The codewords C1 and C2 for respective

messages W1 and W2 are input to the prefix channels, where,

to maximize the ambiguity at Eve, cooperation is allowed in

the design of both binning codebooks and channel prefixing.

The following result characterize the set of achievable rates

using our coding scheme.

Theorem 1: The set of achievable rates for the full-duplex

DM-TWC-E is given by,

RF , closure of







⋃

p∈PF

RF (p)







,

where PF denotes the set of all joint distributions of the

random variables Q, C1, C2, X1, and X2 satisfying

p(q, c1, c2, x1, x2) = p(q)p(c1|q)p(c2|q)p(x1|c1)p(x2|c2)
(3)

and RF (p) is the closure of all non-negative rate tuples

(R1, R2) satisfying

R1 ≤ I(C1; Y2|X2, Q) (4)

R2 ≤ I(C2; Y1|X1, Q) (5)

R1 + R2 ≤ I(C1; Y2|X2, Q) + I(C2; Y1|X1, Q)

−I(C1, C2; Z|Q) (6)

Proof: The achievability argument follows in the footsteps

of [9, Theorem 1] with the addition of private key sharing over

the channel. The detailed proof will be reported in the journal

version.

To shed more light on the structural properties of the achiev-

able rate region, we now focus on the full-duplex modulo-2
two way wiretap channel described by the following set of

input-output relations.

Y1 = X1 ⊕ X2 ⊕ N1 (7)

Y2 = X1 ⊕ X2 ⊕ N2 (8)

Z = X1 ⊕ X2 ⊕ Ne, (9)

where N1= {N1(1), . . . , N1(n)}, N2= {N2(1), . . . , N2(n)},

and Ne= {Ne(1), . . . , Ne(n)} are the additive binary noise

vectors impairing Alice, Bob, and Eve; respectively. The

corresponding transition probabilities are given by: p(N1(i) =
1) = ǫ1, p(N2(i) = 1) = ǫ2, and p(Ne(i) = 1) = ǫe for

i = 1, . . . , n.

In this special case, the transmitted codeword reduces to

the modulo-2 sum of a binning codeword and an independent

prefix noise component, i.e.,

X1 = C1 ⊕ N̄1 (10)

X2 = C2 ⊕ N̄2, (11)

where N̄1= {N̄1(1), . . . , N̄1(n)}, N̄2= {N̄2(1), . . . , N̄2(n)}
are the prefix noise vectors transmitted by Alice and Bob. The

components of these vectors are generated according to i.i.d.

distributions with the following marginals: p(N̄1(i) = 1) = ǭ1,

p(N̄2(i) = 1) = ǭ2 for i = 1, . . . , n. The binning codebooks,

on the other hand, are generated according to i.i.d. distributions

with the following marginals: p(C1(i) = 1) = µ1 and

p(C2(i) = 1) = µ2. We further define the following crossover
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Fig. 1. Boundaries of achievable rate regions for the modulo-2 channel,
when ǫ1 = 0.2, ǫ2 = 0.3, ǫe = 0.25, and µ1 = µ2 = 0.5. The outer bound
is the capacity of the two way channel without the secrecy constraints.

probabilities to describe the cascade of the prefix and original

channels.

ǫ̂1 = ǫ1(1 − ǭ2) + ǭ2(1 − ǫ1) (12)

ǫ̂2 = ǫ2(1 − ǭ1) + ǭ1(1 − ǫ2) (13)

ǭ12 = ǭ2(1 − ǭ1) + ǭ1(1 − ǭ2) (14)

ǫ̂e = ǫe(1 − ǭ12) + ǭ12(1 − ǫe) (15)

Using this notation, the achievable region in Theorem 1

reduces to the following.

Corollary 1: The set of achievable rates for the full-duplex

modulo-2 two way wiretap channel is given by,

RFM , closure of convex hull of







⋃

0≤ǭ1,ǭ2≤1

RFM (ǭ1, ǭ2)







where RFM (ǭ1, ǭ2) is the closure of all non-negative rate

tuples (R1, R2) satisfying

R1 ≤ 1 − H(ǫ̂2) (16)

R2 ≤ 1 − H(ǫ̂1) (17)

R1 + R2 ≤ 1 + H(ǫ̂e) − H(ǫ̂1) − H(ǫ̂2) (18)

The region in Corollary 1 is strictly larger than the ones

reported in [7], [8]; as demonstrated by the numerical results of

Fig. 1. Here we compare our region with the one achieved by

random binning and key sharing only; and channel prefixing

only ([7, Section 5]). On the other hand, we remark that the

corner points of the region in Corollary 1 is achieved by

random binning and key sharing only if ǫe > max(ǫ1, ǫ2);
and achieved by only channel prefixing if ǫe < min(ǫ1, ǫ2).
Moreover, the previous result identifies the separate role of

channel prefixing and binning. First, channel prefixing is used

to create an advantage of Alice and Bob over Eve; via the

joint optimization of ǭ1 and ǭ2. Then, the binning codebooks

are used to transform this advantage into a secrecy gain for

the two terminals.

Next, we turn our attention to the half-duplex modulo-2
channel in which each terminal can only transmit or receive

at any point in time. We model this scenario as a ternary

input channel where the third input corresponds to the no-

transmission event. This way, the three nodes can identify

the symbol intervals when no one is transmitting. Moreover,

we give the eavesdropper the advantage of identifying the

symbol intervals at which both users are transmitting. These

assumptions are intended to model a worst case scenario where

Eve can identify the three different states; via the different

received power levels for example.

Let P1 and P2 be the probability of transmission for user 1
and user 2, respectively (known a-priori by the three nodes).

It is easy to see that the eavesdropper channel will have four

possible states. The silence symbols will be identified and

erased, and the crossover probabilities corresponding to the

other three states are given by,

p(z 6= c1|only user 1 is transmitting) = ǫe1

p(z 6= c2|only user 2 is transmitting) = ǫe2

p(z 6= (c1 ⊕ c2)|both users are transmitting) = ǫ̂e

where ǫ̂e is given as above, and,

ǫe1 = ǫe(1 − ǭ1) + ǭ1(1 − ǫe) (19)

ǫe2 = ǫe(1 − ǭ2) + ǭ2(1 − ǫe) (20)

For simplicity of presentation, we obtain the following results

assuming that the binary binning codebooks used by Alice and

Bob are generated according to an i.i.d uniform distribution

(one can potentially obtain a larger rate by optimizing the

binning codebook distribution).

Proposition 1: The set of achievable rates for the half-

duplex modulo-2 two way wiretap channel is given by

RHM , closure of the convex hull of







⋃

p∈PHM

RHM (p)







where PHM is defined as,

PHM , {(ǭ1, ǭ2, P1, P2) : 0 ≤ ǭ1, ǭ2, P1, P2 ≤ 1},
and RHM (p) is the closure of all non-negative rate tuples

(R1, R2) satisfying

R1 ≤ P1(1 − P2)(1 − H(ǫ̂2)) (21)

R2 ≤ P2(1 − P1)(1 − H(ǫ̂1)) (22)

R1 + R2 ≤ P1(1 − P2)(1 − H(ǫ̂2))

+ P2(1 − P1)(1 − H(ǫ̂1))

− P1P2(1 − H(ǫ̂e))

− (P1(1 − P2) + P2(1 − P1))
(

1 − 0.5H(d1ǫe1 + d2ǫe2)

− 0.5H(d1(1 − ǫe1) + d2ǫe2)

)

,

where

d1 =
P1(1 − P2)

P1(1 − P2) + P2(1 − P1)
(23)

d2 = 1 − d1 (24)



Proof: Here, we provide the computation of I(C1, C2; Z).
The complete proof will be provided in the journal version.

I(C1, C2; Z)

(a)
= (1 − P1)(1 − P2)I(C1, C2; Z|no transmission)

+P1P2I(C1, C2; Z|both users are transmitting)

+(P1(1 − P2) + P2(1 − P1))

I(C1, C2; Z|only one user is transmitting)

= P1P2(1 − H(ǫ̂e))

+(P1(1 − P2) + P2(1 − P1))[1 −
∑

i,j

p(C1 = i, C2 = j)H(Z|C1 = i, C2 = j)]

(b)
= P1P2(1 − H(ǫ̂e))

+(P1(1 − P2) + P2(1 − P1))
(

1 − 0.5H(d1ǫe1 + d2ǫe2)

−0.5H(d1(1 − ǫe1) + d2ǫe2)
)

(25)

where (a) follows from the assumption that Eve can identify

both silence and concurrent transmission symbol intervals, (b)

is a direct results of the following computation.

H(Z|C1 = 0, C2 = 0) = H(d1ǫe1 + d2ǫe2)

H(Z|C1 = 1, C2 = 1) = H(Z|C1 = 0, C2 = 0)

H(Z|C1 = 1, C2 = 0) = H(d1(1 − ǫe1) + d2ǫe2)

H(Z|C1 = 0, C2 = 1) = H(Z|C1 = 1, C2 = 0)

To illustrate the advantage offered by randomized scheduling,

we first observe that cooperative binning and channel prefixing

scheme with deterministic scheduling fails to achieve a non-

zero secrecy rate under our restrictive half-duplex scenario if

Eve’s channel is not more noisy than the legitimate channels

(this includes, as a special case, the randomized feedback

approach for one-way channel proposed in [6]). Now, consider

the noiseless case, i.e., ǫ1 = ǫ2 = ǫe = 0. By setting

P1 = P2 = 0.5 and ǭ2 = 0.5, Proposition 1 shows that the

randomized scheduling approach allows user 1 to achieve the

following secure rate R1 = 0.25 − 0.5(1 − H(0.25)).

III. THE GAUSSIAN CHANNEL

In a full-duplex Gaussian setting, the channel is given by,

Y1 = X1 +
√

g12X2 + N1 (26)

Y2 =
√

g21X1 + X2 + N2 (27)

Z =
√

ge1X1 +
√

ge2X2 + Ne (28)

where g12, g21, ge1, and ge2 are channel coefficients, N1, N2,

and Ne are noise vectors with i.i.d. zero-mean unit-variance

white Gaussian entries at user 1, user 2, and Eve, respectively.

We assume the following average power constraints.

1

n

n
∑

i=1

(X1(i))
2 ≤ ρ1 (29)

1

n

n
∑

i=1

(X2(i))
2 ≤ ρ2 (30)

We define γ(x) , 1
2 log(1 + x), h(X) is given by h(X) =

−
∫

fX(x) log fX(x), and use the following superscripts: 1)

FG: Full-duplex Gaussian channel and 2) HG: Half-duplex

Gaussian channel.

Let C1(i) and N̄1(i) be i.i.d. with respect to the time index,

and each element is generated according to C1 ∼ N (0, ρc
1)

and N̄1 ∼ N (0, ρn
1 ), where ρc

1 + ρn
1 = ρ1 − ǫ. The prefix

channel is chosen as X1 = C1 + N̄1. By the weak law of

large numbers, 1
n

∑n

i=1(X1(i))
2 → ρ1 − ǫ as n → ∞. By

similarly constructing X2, we obtain

Corollary 2: The set of achievable rates for the full-duplex

Gaussian two way wiretap channel is given by

RFG , closure of the convex hull of

{

⋃

p∈PF G

RFG(p)

}

where PFG is defined as,

PFG , {(ρc
1, ρ

n
1 , ρc

2, ρ
n
2 ) : ρc

1 + ρn
1 ≤ ρ1, ρ

c
2 + ρn

2 ≤ ρ2},

and RFG(p) is the closure of all non-negative rate tuples

(R1, R2) satisfying

R1 ≤ γ

(

ρc
1g21

1 + ρn
1 g21

)

(31)

R2 ≤ γ

(

ρc
2g12

1 + ρn
2 g12

)

(32)

R1 + R2 ≤ γ

(

ρc
1g21

1 + ρn
1 g21

)

+ γ

(

ρc
2g12

1 + ρn
2 g12

)

− γ

(

ρc
1ge1 + ρc

2ge2

1 + ρn
1 ge1 + ρn

2 ge2

)

(33)

In Fig. 2, we compare the region of Corollary 2 with the

regions of the following special cases: 1) Both users implement

cooperative binning and key sharing without channel prefixing

and 2) While one of the users implement individual secrecy

encoding ([2]), the other one helps only with channel prefixing.

The same trends of the modulo-2 case are observed here except

for the fact that channel prefixing does not achieve the two

extreme points of RFG. We note that the region reported

in [8, Theorem 2] can be achieved by implementing binning

without key sharing, and it is a sub-region of Corollary 2. The

scheme in [8, Section V] is either binning only at both users,

or binning at one user and channel prefixing (jamming) at the

other user. Resulting regions of both schemes are subregions

of Corollary 2. (The first one is a subregion of the red-dashed

region and the second one is the green-dotted region in Fig. 2.)

Assuming half-duplex nodes, with P1 and P2 being the

probability of transmission for the two users, and that Eve

can perfectly identify the no transmission and simultaneous

transmission states. To further increase its ambiguity, we

assume both users know the channel coefficients, hence they



jointly set ρ1

P1

ge1 and ρ2

P2

ge2, to the same value ρr. We obtain

the following result.

Proposition 2: The set of achievable rates for the half-

duplex Gaussian two way wiretap channel is given by,

RHG , closure of the convex hull of

{

⋃

p∈PHG

RHG(p)

}

where PHG is defined as,

PHG , {(ρc
1, ρ

n
1 , ρc

2, ρ
n
2 , P1, P2) :

0 ≤ P1, P2 ≤ 1,
ρ1

P1
ge1 =

ρ2

P2
ge2 = ρr

P1(ρ
c
1 + ρn

1 ) ≤ ρ1, P2(ρ
c
2 + ρn

2 ) ≤ ρ2},
and RHG(p) is the closure of all non-negative rate tuples

(R1, R2) satisfying

R1 ≤ P1(1 − P2)γ

(

ρc
1g21

1 + ρn
1 g21

)

(34)

R2 ≤ P2(1 − P1)γ

(

ρc
2g12

1 + ρn
2 g12

)

(35)

R1 + R2 ≤
[

P1(1 − P2)γ

(

ρc
1g21

1 + ρn
1 g21

)

+ P2(1 − P1)γ

(

ρc
2g12

1 + ρn
2 g12

)

+ h(Z|C1, C2) − h(Z)

]+

(36)

h(Z) − h(Z|C1, C2) = P1P2γ

(

ρc
1ge1 + ρc

2ge2

1 + ρn
1 ge1 + ρn

2 ge2

)

+(P1(1 − P2) + P2(1 − P1))
[

1

2
log(2πe(1 + ρr))

−
∫

fC1
(i)fC2

(j)h(Z|i, j)dfC1
dfC2

]

(37)

and

fZ|C1,C2
(z|i, j) = d1N (i, 1 + ρn

1 ge1)

+d2N (j, 1 + ρn
2 ge2) (38)

d1 =
P1(1 − P2)

P1(1 − P2) + P2(1 − P1)
(39)

d2 = 1 − d1 (40)

IV. CONCLUSIONS

In this paper, we used the cooperative binning and channel

prefixing approach to obtain achievable secrecy rates for both

the discrete memoryless and Gaussian full-duplex two way

wiretap channels. In the proposed scheme, channel prefixing

is used to create an advantage for the legitimate terminals

over the eavesdropper which is transformed by the binning

codebooks into a non-trivial secrecy rate region. Moreover,
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Fig. 2. Boundaries of achievable rate regions for the Gaussian channel, when
g21 = 0.1, g12 = 10, ge1 = ge2 = 1, and ρ1 = ρ2 = 10. The outer bound
is the capacity of the two way channel without the secrecy constraints.

private key sharing is used to distribute the secrecy sum-

rate between two users. We then introduced the idea of

randomized scheduling and established its fundamental role

in the half-duplex two way wiretap channel. Numerical results

that illustrate the performance gains offered by joint binning,

channel prefixing, key sharing, and randomized scheduling

were reported. Our current investigations focus on deriving

outer bounds to the secrecy capacity region aiming at obtaining

sharp results; whenever possible.
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