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Abstract—A polar coding scheme for fading channels is pro-
posed in this paper. More specifically, the focus is on the Gaussian
fading channel with a BPSK modulation, where the equivalent
channel is modeled as a binary symmetric channel with varying
cross-over probabilities. To deal with variable channel states, a
coding scheme of hierarchically utilizing polar codes is proposed.
In particular, by observing the polarization of different binary
symmetric channels over different fading blocks, each channel
use corresponding to a different polarization is modeled as a
binary erasure channel such that polar codes could be adopted
to encode over blocks. It is shown that the proposed coding
scheme, without instantaneous channel state information at the
transmitter, achieves the capacity of the corresponding fading
binary symmetric channel.

I. INTRODUCTION

Polar codes are the first family of provably capacity achiev-
ing codes for arbitrary symmetric binary-input discrete mem-
oryless channels (B-DMC) with low encoding and decoding
complexity [1] [2]. Channel polarization has then been gen-
eralized to arbitrary discrete memoryless channels with the
same order of construction complexity and error probability
behavior [3]. Moreover, polar codes are proved to be optimal
for lossy compression with respect to binary symmetric source
[4][5], and then further extended to larger source alphabet [6].

Polar coding is useful for channels with non-discrete inputs
as well. By adopting polar codes as embedded codes, [7]
shows that the capacity of additive exponential noise channel is
achievable in high SNR region. Besides, a polar coding scheme
achieving capacity for additive Gaussian noise channel is pro-
posed in [8], which utilizes the polarization result for multiple
access channel [9]. It has been shown that the approach of
using a multiple access channel with a large number of binary-
input users has much better complexity attributes than the one
of using a single-user channel with large input cardinality.

In this paper, we propose a polar coding scheme for AWGN
block fading channel with BPSK modulation and demodula-
tion. (The model is similar to the binary input AWGN model
analyzed in [10][11], but here with channel coefficients that
vary according to a block fading model.) By adopting BPSK
modulation and demodulation technique, additive Gaussian
noise fading channel is converted into a binary symmetric
channel (BSC) with finite set of transition probabilities accord-
ing to the channel quality. The key intuition of the proposed
scheme is based on observing the polarization characteristics
of different BSCs. By hierarchically using polar codes, where
the transmitter encodes over blocks, it can be proved that the

designed coding scheme achieves the capacity of converted
channel (which we refer to as the fading BSC model).

The rest of paper is organized as follows. After introducing
the preliminary results on polar codes and problem background
in Section II and III, respectively, the polar coding scheme for
fading channels is stated and illustrated in Section IV. The
paper concludes with a discussion section.

II. POLAR CODING

The construction of polar code is based on the observa-
tion of channel polarization. Consider a binary-input discrete
memoryless channel W : X → Y , where X = {0, 1}. Define

F =

[
1 0
1 1

]
.

Let BN be the bit-reversal operator defined in [1], where N =
2n. By applying the transform GN = BNF

⊗n (F⊗n denotes
the nth Kronecker power of F ) to u1:N , consider transmitting
the encoded output x1:N through N independent copies of W .
Then N new binary-input coordinate channels W (i)

N : X →
YN × X i−1 are constructed, where for each i ∈ {1, . . . , N}
the transition probability is given by

W
(i)
N (y1:N , u1:i−1|ui) ,

∑
ui+1:N

1

2N−1
WN (y1:N |u1:NGN ).

Then, as N tends to infinity, the channels {W (i)
N } polarize

to either noiseless or pure-noisy, and the fraction of noiseless
channels is close to I(W ), the symmetric mutual information
of channel W [1].

To this end, polar codes can be considered as GN -coset
codes with parameter (N,K,A, uAc), where uAc ∈ XN−K
is frozen vector (can be set to all-zeros for symmetric channels
[1]), and the information set A is chosen as a K-element
subset of {1, . . . , N} such that the Bhattacharyya parameters
satisfy Z(W

(i)
N ) ≤ Z(W

(j)
N ) for all i ∈ A and j ∈ Ac.

The decoder in polar coding scheme is successive cancela-
tion (SC) decoder, which gives an estimate û1:N of u1:N given
knowledge of A, uAc , and y1:N by computing

ûi ,

{
0, if i ∈ Ac,

di(y1:N , û1:i−1), if i ∈ A,
in the order i from 1 to N , where

di(y1:N , û1:i−1) ,

{
0, if W

(i)
N (y1:N ,û1:i−1|0)

W
(i)
N (y1:N ,û1:i−1|1)

≥ 1,

1, otherwise.



It has been proved that by adopting an SC decoder, polar cod-
ing achieves any rate R < I(W ) with a decoding error scaling
as O(2−N

β

), where β < 1/2. Moreover, the encoding and
decoding complexity of polar coding are both O(N logN).

III. SYSTEM MODEL

Fading channels characterize the wireless communication
channels, where the channel states vary over channel uses.
Fading coefficients typically vary much slower than transmis-
sion symbol duration in practice. To this end, a block fading
model is proposed, whereby the channel state is assumed to
be constant over each coherence time interval, and follow a
stationary ergodic process across fading blocks. In addition,
we consider the practical scenario where the channel state
information (CSI) is available at the decoder [12].

Consider the AWGN fading channel,

Yb,i = Hb,iXb,i + Zb,i, b = 1, . . . , B, i = 1, . . . , N, (1)

where Zb,i is i.i.d. additive Gaussian noise with variance EZ ;
Xb,i is channel input with power constraint

1

BN

B∑
b=1

N∑
i=1

x2b,i ≤ EX ;

Hb,i is the channel gain; N is blocklength; and B is number
of blocks. For this moment, Hb,i are assumed to be constant
within a block and follow an i.i.d. fading process over blocks.
(That is, Hb,i = Hb, ∀i, and Hb is an i.i.d. random variable.)
In particular, for the case of two channel states {h1, h2}, the
distribution of Hb is given by Pr{Hb = h1} , q1 and Pr{Hb =
h2} , q2 = 1− q1 for each fading block b.

Using BPSK modulation, any codeword produced
by encoder is mapped to a signal with element in
{−√EX ,+

√
EX}. After utilizing a BPSK demodulation at

the decoder, the equivalent channel can be formulated as a
binary symmetric channel, with transition probability relating
to channel states. More specifically, the converted channel is
given by

Ȳb,i = X̄b,i ⊕ Z̄b,i, b = 1, . . . , B, i = 1, . . . , N, (2)

where X̄b,i and Ȳb,i are both Bernoulli random variables repre-
senting channel input and output correspondingly; Z̄b,i is i.i.d.
channel noise, also distributed as Bernoulli random variable,
but related to channel state. More precisely, if Hb,i = hs,
where s ∈ {1, 2}, then

Pr{Z̄b,i = 1} = 1− Φ(hs
√

SNR) , ps, (3)

where Φ(·) is CDF of normal distribution and SNR =
EX/EZ . In other words, the channel can be modeled as
Ws ,BSC(ps) with probability qs, for s ∈ {1, 2}.

The ergodic capacity of the converted channel (fading BSC)
is given by [12]

CSI-D = q1[1−H(p1)] + q2[1−H(p2)], (4)

where H(·) is the binary entropy function, and SI-D refers
to channel state information at the decoder. The capacity

I(W
(π(i))
N )

M BG

p1 p2

π(i)1

0

1

N

Fig. 1: Illustration of polarizations for two BSCs. The blue-
solid line represents the channel with transition probability
p1, and the red-dashed one is for p2 (p1 > p2). Values of
I(W

(π(i))
N ), the reordered mutual information, are shown for

both channels.

achieving input distribution is uniform over {0, 1}. In this
paper, we show a polar coding scheme achieving the capacity
of converted fading channel with low encoding and decoding
complexity, without having instantaneous channel state infor-
mation at the transmitter (only the statistical knowledge is
assumed).

IV. POLAR CODING FOR FADING CHANNEL

A. Intuition

In polar coding for a general B-DMC W , we have seen the
channel can be polarized by transforming a set of independent
copies of given channels into a new set of channels whose
symmetric capacities tend to 0 or 1 for all but a vanishing frac-
tion of indices. To this end, an information set A is constructed
by picking the indices corresponding to K minimum values of
Z(W

(i)
N ), which is equivalent to picking those corresponding

to K largest values of I(W
(i)
N ). In this sense, the construction

of A is deterministic. However, as indicated in [1], the indices
in A are not adjacent. For this, we introduce a permutation
π : {1, . . . , N} → {1, . . . , N}, which reorders all the indices
by the value of I(W

(i)
N ) ranging from high to low. Note that

the construction of polar codes already implies the fact that
for channels of the same type, their permutation mappings are
the same.

Another fact about polar codes is that the polarization
is uniform [13]. Consider polarizing two B-DMCs, for in-
stance BSCs with parameters p1 and p2 respectively, then
the information sets, denoted by A1 and A2, satisfy A1 ⊆
A2 if p1 ≥ p2. In other words, if a particular channel index
constructed from the worse channel (BSC with larger transition
probability) polarizes to be noiseless, so does that of the better
channel (BSC with smaller transition probability). Based on
this observation, when polarizing W1 and W2 with transition
probabilities defined by (3), the indices after permutation π
can be divided into three categories (illustrated in Fig. 1, and
without loss of generality, we assume p1 ≥ p2.):

1) G: both channels are good, i.e.

I(W
(π(i))
1,N )→ 1, I(W

(π(i))
2,N )→ 1.
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Fig. 2: Illustration of polar encoder for a fading channel with two states. Bits in blue are information bits, and those in
white are frozen as zeros. The codewords from Phase 1 are used in Phase 2 to generate the final codeword.

2) M: only channel 2 is good, while channel 1 is bad, i.e.

I(W
(π(i))
1,N )→ 0, I(W

(π(i))
2,N )→ 1.

3) B: both channels are bad, i.e.

I(W
(π(i))
1,N )→ 0, I(W

(π(i))
2,N )→ 0.

Denote the information sets for two channels as A1 and A2

correspondingly, then obviously A1 = G, and A2 = G ∪M.
Moreover, we have:

|G| = |A1| = N [1−H(p1)− ε], (5)
|M| = |A2| − |A1| = N [H(p1)−H(p2)], (6)
|B| = N − |A2| = N [H(p2) + ε], (7)

where ε is a arbitrary small positive number.
For the fading channel, we consider the transmitter has

no prior knowledge of channel states before transmitting,
hence, coding over channels with indices inM is challenging.
Observe that for those channels, with probability q2 they
are nearly noiseless, and with probability q1 they are purely
noisy. To this end, each channel can be modeled as a binary
erasure channel (BEC) from the viewpoint of blocks, and we
denote this channel as W̃ . This intuition inspires our design
of encoder and decoder for fading channels.

B. Encoder

The encoding process of polar coding for fading channel
has two phases, hierarchically using polar codes to generate
NB-length codewords, where N is blocklength and B is the
number of blocks.

1) Phase 1: Consider a set of B-length block messages
v(k) with k ∈ {1, . . . , |M|}. For every v(k), construct polar
codeword ũ(k), which is formed by the GB-coset code with
parameter (B, |Ã|, Ã, 0), where Ã is the information set for
W̃ , BEC(q1), and we choose

|Ã| = (1− q1 − ε)B. (8)

In other words, we construct a set of polar codes, where each
code corresponds to an index in setM, with the same rate 1−

q1−ε, the same information set Ã, and the same frozen values
0 as well. Mathematically, if denote the reordering permutation
for W̃ as π̃, then

π̃(v(k)) = [v
(k)
1 , . . . , v

(k)

|Ã|, 0, . . . , 0], (9)

ũ(k) = v(k)GB . (10)

2) Phase 2: Consider another set of N -length messages
u(b) with b ∈ {1, . . . , B}. For every u(b), construct polar code
x(b), which is GN -coset code with parameter (N, |G|,G, u(b)Gc ),
where G is BSC information set with size given by (5).
Remarkably, we do not set all non-information bits to be 0, but
embed the blockwise codewords from Phase 1. More precisely,
if denote the permutation operator of BSC as π, then

π(u(b)) = [u
(b)
1 , . . . , u

(b)
|G|, ũ

(1)
b , . . . , ũ

(|M|)
b , 0, . . . , 0], (11)

x(b) = u(b)GN . (12)

By collecting all {x(b)}1:B together, the encoder generates and
outputs a codeword with length NB. The proposed coding
method is illustrated in Fig. 2.

C. Decoder

After receiving the sequence y1:NB from the channel, the
decoder’s task is to make estimates {v̂(k)}1:|M| and {û(b)}1:B ,
such that the information bits in both sets of messages match
the ones at the transmitter with high probability. Rewrite
channel output y1:NB as a B × N matrix, with row vectors
{y(b)}1:B . As that of the encoding process, the decoding
process also has two phases:

1) Phase 1: For every b ∈ {1, . . . , B}, decode û(b) from
y(b) using SC decoder. Here, as the channel state is available
at the receiver, one can modify the SC decoder based on the
channel state observed. In this coding scheme, we consider
declaring an erasure, denoted as “e”, for bad channel states for
the blocks with index inM. To this end, polar decoder is given
by: if the channel state is h1, then use Decoder 1, otherwise
use Decoder 2, where the two decoders are expressed follows:
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Fig. 3: Illustration of polar decoder for a fading channel with two states. After Phase 1, decoder outputs all estimates
{û(l)}1:B using BSC SC decoder based on channel states. Selected columns are delivered as inputs to Phase 2, where the
decoder uses BEC SC decoder to decode v̂(k) from ˆ̃u(k) for every k ∈ {1, . . . , |M|}. Bits in shade represent for erasures.

− Decoder 1 (for blocks b with a bad channel state):

û
(b)
i ,


0, if b ∈ B,
e, if b ∈M,

d1,i(y
(b), û

(b)
1:i−1), if b ∈ G,

in the order i from 1 to N , where

d1,i(y
(b), û

(b)
1:i−1) ,

 0, if
W

(i)
1,N (y(b),û

(b)
1:i−1|0)

W
(i)
1,N (y(b),û

(b)
1:i−1|1)

≥ 1,

1, otherwise.

− Decoder 2 (for blocks b with a good channel state):

û
(b)
i ,

{
0, if b ∈ B,
d2,i(y

(b), û
(b)
1:i−1), if b ∈ G ∪M,

in the order i from 1 to N , where

d2,i(y
(b), û

(b)
1:i−1) ,

 0, if
W

(i)
2,N (y(b),û

(b)
1:i−1|0)

W
(i)
2,N (y(b),û

(b)
1:i−1|1)

≥ 1,

1, otherwise.

After decoding from y(b) block by block, the decoder output
a B ×N matrix Û with rows {û(b)}1:B .

2) Phase 2: Select columns of Û with indices in M after
permutation π to construct a B×|M| matrix ˆ̃U. Consider each
column of ˆ̃U, denoted by ˆ̃u(k) for k ∈ {1, . . . , |M|}, as the
input to decoder in Phase 2. Then, receiver aims to decode v̂(k)

from ˆ̃u(k) using SC decoder with respect to W̃ =BEC(q1).
More formally, the decoder in Phase 2 is expressed as follow:
− Decoder 3:

v̂
(k)
j ,

{
0, if k ∈ Ãc,
d̃j(ˆ̃u(k), v̂

(k)
1:j−1), if k ∈ Ã,

in the order j from 1 to B, where

d̃j(ˆ̃u(k), v̂
(k)
1:j−1) ,

 0, if
W̃

(j)
N (ˆ̃u(k),v̂

(k)
1:j−1|0)

W̃
(j)
N (ˆ̃u(k),v̂

(k)
1:j−1|1)

≥ 1,

1, otherwise.

After Phase 2, the decoder output a |M| ×B matrix V̂ with
rows {v̂(k)}1:|M|. Decoding process is illustrated in Fig. 3.

D. Achievable Rate

We want to show the rate in proposed polar coding scheme
achieves the capacity of converted fading channel given by
(4). Intuitively, by using BSC SC decoders corresponding to
channel states, the output from Phase 1 successfully recovers
all information bits in {u(b)}1:B . Moreover, for those with
indices corresponding to M, the decoder could decode cor-
rectly if channel state is h2, and set to erasure otherwise. Thus,
for Phase 2, vector ˆ̃u(k) can be considered as an output of
BEC(q1), hence BEC SC decoder could decode all information
bits in v(k) correctly for any k ∈ {1, . . . , |M|}.
Theorem 1. The proposed polar coding scheme achieves
any rate R < CSI-D. (For sufficiently large N and B, the
error probability scales as O(B2−N

β

) + O(N2−B
β

) with
β < 1/2; and it vanishes with a choice of B = o(2N

β

) and
N = o(2B

β

).)

Proof: The proof is straightforward by utilizing error
bound from polar coding. In Phase 1 of decoding, the er-
ror probability of recovering u(b) correctly for each b ∈
{1, . . . , B} is given by P (b)

1,e = O(2−N
β

). Similarly, in decod-
ing Phase 2, the error probability of recovering v(k) correctly
for each k ∈ {1, . . . ,M} is given by P (k)

2,e = O(2−B
β

). Hence,
by union bound, the total decoding error probability is upper
bounded by

Pe ≤
B∑
b=1

P
(b)
1,e +

|M|∑
k=1

P
(k)
2,e = O(B2−N

β

) +O(N2−B
β

),

as N and B tend to infinity. Therefore, Pe vanishes if B =
o(2N

β

) and N = o(2B
β

).
The achievable rate (corresponding to the transmission of

messages bits in v(k) and u(b)) is given by

R =
1

NB

{
|M||Ã|+B|G|

}
= [H(p1)−H(p2)][1− q1 − ε] + [1−H(p1)− ε]
= q1[1−H(p1)] + q2[1−H(p2)]− δ(ε),



where we have used (5), (6) and (8), and

δ(ε) , ε[1 +H(p1)−H(p2)]→ 0, as ε→ 0.

Thus, any rate R < CSI-D is achievable.

E. Complexity Analysis

Polar coding schemes for both BSC and BEC have relatively
low complexity. Since the proposed polar coding scheme for
fading channel hierarchically utilizes these polar codes, the
low complexity is inherited. More precisely, |M| number of
B-length polar codes as well as B number of N -length polar
codes are utilized. Thus, the overall complexity of the coding
scheme for both encoding and decoding is given by

|M| ·O(B logB) +B ·O(N logN) = O(NB log(NB)).

V. DISCUSSION

In this section, we generalize the polar coding scheme to
fading channels with arbitrary finite number of states. Consider
that the channel gain Hb has S states {h1, . . . , hS}, where
Pr{Hb = hs} , qs, s ∈ {1, . . . , S}, and

∑
s
qs = 1. Then, the

BPSK modulated channel, defined in (2), is still a BSC, where
the transition probability, with probability qs, is given by

Pr{Z̄ = 1} = 1− Φ(hs
√

SNR) , ps. (13)

Denote the converted BSC corresponding to state hs as Ws,
then the capacity of converted channel is given by

CSI-D =

S∑
s=1

qs[1−H(ps)], (14)

where 1−H(ps) is the capacity of Ws.
Observe that when polarizing S BSCs with different transi-

tion probabilities, the indices could be divided into S+ 1 sets
after permutation π. S − 1 mixture sets M1, . . . , MS−1 are
considered for this case. Without loss of generality, we assume
p1 ≥ p2 ≥ · · · ≥ pS . Then, |Ms|/N = H(ps)−H(ps+1), and
for index in set Ms, W1, . . . ,Ws are polarized to be purely
noisy and all others to be noiseless. To this end, we consider
a BEC with erasure probability es =

∑s
t=1 qt to characterize

the polarization result for an index in M. (See Fig. 4.)

B
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M1 M2 . . . MS−1
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Fig. 4: Illustration of polarizations for S BSCs. There are
S − 1 mixture sets, denoted as M1, . . . ,MS−1.

Polar coding scheme designed for this channel is similar.
In Phase 1 of encoding, transmitter needs to generate S − 1

sets of polar codes, where each one is GB-coset codes with
parameter (B, |Ãs|, Ãs, 0) with respect to BEC(es), and all
the encoded codewords are embed into messages for Phase 2.
At the receiver end, Phase 1 should use one of S SC decoders
for BSC to decode û(b), based on observation of channel states.
Then, in Phase 2, S−1 BEC SC decoders are implemented in
parallel to recover the information bits. By adopting this polar
coding scheme, the achievable rate is given by

R =
1

NB

{
B|G|+

S−1∑
s=1

|Ms||Ãs|
}

= [1−H(p1)− ε] +

S−1∑
s=1

[H(ps)−H(ps+1)](1− es − ε)

=

S∑
s=1

qs[1−H(ps)]− δ′(ε),

where δ′(ε) = ε[1 + H(p1) − H(pS)]. Thus, the proposed
polar coding scheme achieves the capacity of channel, and the
encoding and decoding complexities are both given by
S−1∑
s=1

|Ms|·O(B logB)+B ·O(N logN) = O(NB log(NB)),

which is independent to the value of S as
S∑
s=1
|Ms| ≤ N .
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