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Abstract—In this paper, we study the problem of secure
communication over the broadcast channel with receiver side
information, under the lens of individual secrecy constraints
(i.e., information leakage from each message to an eavesdropper
is made vanishing). Several coding schemes are proposed by
extending known results in broadcast channels to this secrecy
setting. In particular, individual secrecy provided via one-time
pad signal is utilized in the coding schemes. As a preliminary
result, we obtain a general achievable region together witha
characterization of the capacity region for the case of a degraded
eavesdropper.

I. I NTRODUCTION

The broadcast channel is a fundamental communication
model that involves transmission of independent messages
to different users. In this paper, we consider the secure
transmission of independent messages to two receivers which
have, respectively, the desired message of the other receiver
as side information. The model is shown in Fig. 1. The
problem (without an eavesdropper) was originally motivated
by the concept of the bidirectional relay channel, where two
nodes exchange messages via a relay node. If the relay node
decodes both messages, then it can broadcast a common
codeword to both nodes each having their own message as side
information. In [1], the broadcasting capacity region (without
an eavesdropper) has been completely characterized.

The model of the broadcast channel with receiver side
information (BC-RSI) with an external eavesdropper has been
studied in [2]. The authors proposed achievable rate regions
and outer bounds for a joint secrecy constraint, whereby
the information leakage fromboth messages to the eaves-
dropper is made vanishing. Differently from [2], we review
the problem underindividual secrecy constraints that aim to
minimize the information leakage fromeach message to the
eavesdropper. Although individual secrecy constraints are by
definition weaker than the joint one, they nevertheless provide
an acceptable security strength that keeps each legitimate
receiver away from an invasion of secrecy. In addition, a joint
secrecy constraint can be difficult or even impossible to fulfill
in certain cases. So, in this paper, our main concern is to
characterize the fundamental limits of secure communications
under the individual secrecy constraints for the BC-RSI model.

II. SYSTEM MODEL

Consider a discrete memoryless broadcast channel given by
p(y1, y2, z|x) with two legitimate receivers and one passive
eavesdropper. The transmitter aims to send messagesm1,m2
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Fig. 1: Wiretap channel with receiver side information.

to receiver1, 2, respectively. Supposexn is the channel input,
whilst yn1 (at receiver 1),yn2 (at receiver 2) andzn (at
eavesdropper), are the channel outputs. Besides,m2 (available
at receiver 1) andm1 (available at receiver 2), serve also as
side information that may help to decode the desired message.
(Unless otherwise specified, we use capital letters for random
variables and corresponding small cases for their realizations.)

Denote the average probability of decoding error at receiver
i to bePe,i. The rate pair(R1, R2) is said to beachievable,
if for any ǫ > 0, there exists an encoder-decoder such that

1

n
H(Mi) ≥Ri − ǫ (1)

Pe,i ≤ǫ (2)
1

n
I(Mi;Z

n) ≤ǫ, (3)

for i = 1, 2 and for sufficiently largen. Equation (3) corre-
sponds toindividual secrecy constraints. If the coding scheme
fulfills a stronger condition that

1

n
I(M1,M2;Z

n) ≤ ǫ, (4)

then it is said to satisfy thejoint secrecy constraint.
We recall the capacity region of the discrete memoryless

broadcast channel with receiver side information, when none
of the secrecy constraints are taken into account.

Theorem 1. ( [1, Theorem 1]) The capacity region of the dis-
crete memoryless broadcast channel p(y1, y2|x) with receiver
side information is the set of the rate pairs (R1, R2) such that

R1 ≤ I(X ;Y1) and R2 ≤ I(X ;Y2) (5)

over all possible pmf p(x).



III. I NDIVIDUAL -SECRECY RATE REGION

A. Secret key approach

Consider the symmetric secret rate region whereR1 =
R2 = R, i.e., M1 andM2 are of the same entropy. One can
apply a one-time pad approach as proposed in [2]. With this
scheme, the following rate region is achievable.

Proposition 2. Any (R1, R2) ∈ R
+ satisfying

R1 = R2 ≤ min{I(X ;Y1), I(X ;Y2)} (6)

for any p(x) is achievable.

Proof: Randomly generate2nR codewordsxn according
to

∏n

i=1 p(xi). Given (m1,m2), sendxn(mk) with mk =
m1 ⊕ m2 to the channel. Both receivers can decode reliably
by utilizing their side information to extract intended messages
if R1 = R2 ≤ min{I(X ;Y1), I(X ;Y2)}.

For the secrecy constraint, we have fori = 1, 2,

I(Mi;Z
n) ≤ I(Mi;Z

n,Mk) = I(Mi;Mk) = 0, (7)

where the 1st equality is due to Markov chainMi → Mk →
Zn; and the 2nd is sinceMk is a one-time pad ofMi.

Note that the above achievable region is limited by the worse
channel. In the following, we consider other coding schemes
to enlarge the achievable region beyond the one stated above.

B. Secrecy coding approach

Consider those channel inputsp(x) such thatI(X ;Z) ≤
min{I(X ;Y1), I(X ;Y2)}. Assume thatI(X ;Y2) ≤ I(X ;Y1).
For such cases, we splitM1 into two parts: one of entropy
n(I(X ;Y1) − I(X ;Y2)) which is secured by using secrecy
coding for classical wiretap channels; and the other of entropy
nI(X ;Y2) which is secured by capsuling withM2 in a one-
time pad (thusM2 is also secured). We obtain the following.

Proposition 3. Any (R1, R2) ∈ R
+ satisfying

I(X ;Z) ≤ R1 ≤ I(X ;Y1); I(X ;Z) ≤ R2 ≤ I(X ;Y2) (8)

for p(x) such that I(X ;Z) ≤ min{I(X ;Y1), I(X ;Y2)} is
achievable.

Proof: Assume thatR2 ≤ R1. We splitM1 into two parts,
i.e., M1 = (M1k,M1s) with M1k of entropynR2, the same
asM2; whilst M1s of entropyn(R1 −R2).

Randomly generate2nR1 codewords xn according to∏n

i=1 p(xi). Throw them into2n(R1−R2) bins [3] and index
xn(ik, i1s) with (ik, i1s) ∈ [1 : 2nR2 ]× [1 : 2n(R1−R2)].

Given (m1,m2), sendxn(mk,m1s) with mk = m1k ⊕
m2 to the channel. Receiver 2 can decodemk reliably using
typical set decoding ifR2 < I(X ;Y2) with the help ofm1,
and thus extractm2. Receiver 1 can decode bothmk andm1s

if R1 < I(X ;Y1), and extractm1k from the former givenm2.
At the eavesdropper, for the secrecy ofM2, we have

I(M2;Z
n) ≤ I(M2;Z

n,Mk,M1s) = I(M2;Mk,M1s) = 0,

Further, the secrecy ofM1 is shown as follows. SinceR2 ≥
I(X ;Z), for a fixed i1s, one can further bin the codewords

xn and index them asxn(ikx, iks, i1s) with ik = (ikx, iks) ∈
[1 : 2n(I(X;Z)−ǫ)] × [1 : 2n(R2−I(X;Z)+ǫ)]. Correspondingly,
split Mk = (Mkx,Mks). We have
H(M1s,Mks|Zn)

=H(M1s,Mks, X
n|Zn)−H(Xn|M1s,Mks, Z

n)

(a)

≥H(M1s,Mks, X
n, Zn)−H(Zn)− nǫ1

=H(Xn) +H(Zn|Xn)−H(Zn)− nǫ1
(b)

≥nR1 + nH(Z|X)− nH(Z)− nǫ1
(c)

≥H(M1s,Mks)− nδ(ǫ),

where (a) follows asH(Xn|M1s,Mks, Z
n) ≤ nǫ1 due

to Fano’s inequality and that the eavesdropper can decode
Xn reliably, given (Mks,M1s, Z

n); (b) is due to the fact
that H(Xn) = nR1; H(Zn|Xn) = nH(Z|X) since the
channel is memoryless; andH(Zn) =

∑n

i=1 H(Zi|Z
i−1
1 ) ≤∑n

i=1 H(Zi) = nH(Z); (c) is due to the fact that
H(M1s,Mks) = n(R1 −R2) + n(R2 − I(X ;Z) + ǫ).

Above inequality impliesI(M1s;Z
n) ≤ nδ(ǫ). In addi-

tion, we boundI(M1k;Z
n|M1s) ≤ I(M1k;Z

n,M1s,Mk) =
I(M1k;Mk,M1s) = 0 due to Markov chainM1k →
(Mk,M1s) → Zn. Therefore, we obtain

I(M1;Z
n) = I(M1s;Z

n) + I(M1k;Z
n|M1s) ≤ nδ(ǫ).

This concludes the individual secrecy proof.

Proposition 4. If the channel to the eavesdropper is degraded
with respect to the channels of both legitimate receivers, then
the individual-secrecy capacity region is given by the union of
(R1, R2) ∈ R

+ pairs satisfying
R1 ≤ min{I(X ;Y1)− I(X ;Z) +R2, I(X ;Y1)};

R2 ≤ min{I(X ;Y2)− I(X ;Z) +R1, I(X ;Y2)},
(9)

where the union is taken over p(x).

Proof: With the degraded condition, we haveI(X ;Z) ≤
min{I(X ;Y1), I(X ;Y2)} for any p(x). DenoteR1 to be the
region achievable by Proposition 3, as defined in (8) . Further,
denoteR2 = {(R1, R2) : R1 = 0, R2 ≤ I(X ;Y2)−I(X ;Z)}
andR3 = {(R1, R2) : R1 ≤ I(X ;Y1) − I(X ;Z), R2 = 0},
which are achievable by employing Wyner’s secrecy coding.
The achievability of the region in (9) follows from the convex
hull of R1 ∪ R2 ∪ R3. The converse follows directly from
Theorem 1 together with Proposition 7 provided below.

C. Superposition coding

Consider a degraded broadcast channel whereX → Y1 →
Y2 forms a Markov chain. Then, one can utilize superposition
coding to transmit a cloud center to the weak receiver and
both the cloud center and satellite codewords to the strong
receiver [3]. By utilizing the one-time pad message as the
cloud center, one can readily achieve the following region.

Proposition 5. The individual-secrecy rate region for BC-RSI
is achievable for the set of the rate pairs (R1, R2) such that

Rt = I(U ;Yt); Rt̄ ≤ I(V ;Yt̄|U)− I(V ;Z|U) +Rt, (10)



over all p(u)p(v|u)p(x|v), where t = arg min
i∈{1,2}

{I(U ;Yi)}

and t̄ = {1, 2}\{t}.

Proof: Assume thatR2 ≤ R1. (This corresponds to the
case t = 2 in which I(U ;Y2) ≤ I(U ;Y1), since V can
be always chosen such thatI(V ;Yt̄|U) − I(V ;Z|U) is non-
negative). RepresentM1 by (M1k,M1s), with M1k of entropy
nR2, the same as that ofM2 andM1s of entropyn(R1−R2).

Codebook generation: Fix p(u), p(v|u). First, randomly
generate2nR2 i.i.d sequencesun(k), k ∈ [1 : 2nR2 ], accord-
ing to

∏n

i=1 p(ui). Secondly, for eachun(k), according to∏n

i=1 p(vi|ui), randomly generate i.i.d sequencesvn(k, s, r)
with (s, r) ∈ [1 : 2n(R1−R2)]× [1 : 2n(I(V ;Z|U)−ǫ)].

Encoding: To send messages(m1,m2), chooseun(k),
wherek = mk , m1k ⊕m2. Given un(k), randomly choose
r ∈ [1 : 2n(I(V ;Z|U)−ǫ)] and findvn(k,m1s, r). Generatexn

according to
∏n

i=1 p(xi|vi), and transmit it to the channel.

Decoding: Receiver 2, upon receivingyn2 , findsun(k̂) such
that (un(k̂), yn1 ) is jointly typical. (It is necessary thatR2 <
I(U ;Y2).) With the knowledge ofm1, decodem̂2 = m1k⊕ k̂.

Receiver 1, upon receivingyn1 , finds un(k̂) such that
(un(k̂), yn1 ) is jointly typical. (This is possible sinceR2 <
I(U ;Y2) ≤ I(U ;Y1).) Corresponding toun(k̂), further find
vn(k̂, m̂1s, r̂) which is jointly typical with yn1 . With the
knowledge ofm2, decodem̂1 = (m2 ⊕ k̂, m̂1s).

Analysis of the probability error: Similar to the analysis
of the superposition coding for general discrete memoryless
broadcast channels, we havePe,1, Pe,2 → 0 as n → ∞ if
R2 < I(U ;Y2)−ǫ andR1 < I(V ;Y1|U)−I(V ;Z|U)+R2−ǫ.

Analysis of individual secrecy: For the secrecy ofM2, due
to the Markov chainM2 → (Mk,M1s) → Zn, we have
I(M2;Z

n) ≤ I(M2;Z
n,Mk,M1s) = I(M2;Mk,M1s) = 0,

where the last equality is due to the fact thatMk = M2⊕M1k,
is independent ofM2 as its one-time pad encryption.

For the secrecy ofM1, we have

I(M1;Z
n) =I(M1k,M1s;Z

n) (11)

=I(M1k;Z
n) + I(M1s;Z

n|M1k) (12)
(a)
= I(M1s;Z

n|M1k) (13)

≤I(M1s;Z
n,M1k,Mk) (14)

=I(M1s;Z
n,Mk) + I(M1s;M1k|Z

n,Mk) (15)
(b)
=I(M1s;Z

n,Mk) (16)

=H(M1s)−H(M1s|Mk, Z
n) (17)

=n(R1 −R2)−H(M1s|Mk, Z
n), (18)

where (a) is due to the fact thatI(M1k;Z
n) = 0 by

following a similar proof ofI(M2;Z
n) = 0; (b) follows that

I(M1s;M1k|Z
n,Mk) ≥ 0 and thatH(M1k|Z

n,Mk,M1s) =
H(M1k|Mk,M1s) = H(M1k) ≥ H(M1k|Zn,Mk).

To complete the proof thatI(M1;Z
n) ≤ nδ(ǫ), we show

in the following thatH(M1s|Mk, Z
n) ≥ n(R1−R2)−nδ(ǫ).

H(M1s|Mk, Z
n)

(c)
=H(M1s|U

n, Zn)

=H(M1s, Z
n|Un)−H(Zn|Un)

=H(M1s, Z
n, V n|Un)

−H(V n|Un,M1s, Z
n)−H(Zn|Un)

=H(V n|Un) +H(Zn|Un, V n)

−H(V n|Un,M1s, Z
n)−H(Zn|Un)

(d)

≥n(R1 −R2)− nδ(ǫ),

where (c) is due to the fact thatUn is uniquely deter-
mined by Mk; (d) follows as H(V n|Un) = n(R1 −
R2) + n(I(V ;Z|U) − ǫ) by codebook construction;

H(Zn|Un, V n) =
n∑

i=1

H(Zi|Ui, Vi) = nH(Z|U, V ) since the

channel is discrete memoryless;H(V n|Un,M1s, Z
n) ≤ nǫ

due to Fano’s inequality and that the eavesdropper can de-
code V n reliably, given (Un,M1s, Z

n); and H(Zn|Un) =
n∑

i=1

H(Zi|Zi−1, Un) ≤
n∑

i=1

H(Zi|Ui) = nH(Z|U).

D. Marton’s coding

A universal approach is to apply Marton’s coding for the
general broadcast channels, utilizing the one-time pad message
as common message to transmit secure messages to both users.

Proposition 6. The rate region is given by (R1 = Rk +
R1s, R2 = Rk +R2s) pairs such that (Rk, R1s, R2s) belongs
to the region given by the union of rate tuples

Rk ≤min{I(U ;Y1), I(U ;Y2)}

R1s ≤min{I(V1, V2;Y1|U)−R0, I(V1;Y1, V2|U)}

R2s ≤min{I(V1, V2;Y2|U)−R0, I(V2;Y2, V1|U)}

R1s +R2s ≤I(V1;Y1, V2|U) + I(V2;Y2, V1|U)−R0

over any pmf p(u)p(v1, v2|u)p(x|v1, v2), where R0 =
I(V1;V2|U) + I(V1, V2;Z|U).

Proof: RepresentM1,M2 by M1 = (M1k,M1s) and
M2 = (M2k,M2s) with M1k,M2k of entropynRk; whilst
M1s of entropynR1s andM2s of entropynR2s.

Codebook generation: Fix p(u), p(v1|u), p(v2|u) and
p(x|v1, v2). First, randomly generate2nRk i.i.d sequences
un(k), k ∈ [1 : 2nRk ], according to

∏n

i=1 p(ui).
For eachun(k), randomly generate2n(R1s+R1c+R1r) i.i.d

sequencesvn1 (k, s1, c1, r1) with (s1, c1, r1) ∈ [1 : 2nR1s ] ×
[1 : 2nR1c ] × [1 : 2nR1r ], according to

∏n

i=1 p(v1i|ui);
and similarly generate2n(R2s+R2c+R2r) i.i.d sequences
vn2 (k, s2, c2, r2), (s2, c2, r2) ∈ [1 : 2nR2s ] × [1 : 2nR2c ]× [1 :
2nR2r ], according to

∏n

i=1 p(v2i|ui). For a fixed(k, s1, s2), we
denote the productV1×V2 codebook to beCV1,V2|U (k, s1, s2).

Encoding: To send messages(m1,m2), chooseun(k),
where k = mk , m1k ⊕ m2k. Given un(k), find in
the product codebookCV1,V2|U (k,m1s,m2s) a jointly typi-
cal (vn1 (k,m1s, c1, r1), v

n
2 (k,m2s, c2, r2)) pair. (This is pos-

sible if R1c + R2c > I(V1;V2|U)). Generate and transmit
xn(vn1 , v

n
2 ) according to

∏n

i=1 p(xi|v1i, v2i).



Decoding: Receiver 1, upon receivingyn1 , finds un(k̂)
such that(un(k̂), yn1 ) is jointly typical. (It is necessary that
Rk < I(U ;Y1)). With the knowledge ofm2 andun(k̂), further
find (vn1 (k̂, m̂1s, ĉ1, r̂1), v

n
2 (k̂,m2s, ĉ2, r̂2)), which is jointly

typical with yn1 . Decodem̂1 = (m2k ⊕ k̂, m̂1s).
Receiver 2, upon receivingyn2 , finds un(k̂) such that

(un(k̂), yn2 ) is jointly typical. (It is necessary thatRk <
I(U ;Y2)). With the knowledge ofm1 and un(k̂), further
find (vn1 (k̂,m1s, ĉ1, r̂1)), v

n
2 (k̂, m̂2s, ĉ2, r̂2)), which is jointly

typical with yn2 . Decodem̂2 = (m1k ⊕ k̂, m̂2s).
Analysis of decoding error: For Pe,1 (similar for Pe,2), a

decoding error happens iff≥ 1 of the following events occur:

E11 ={(un(k), yn1 ) /∈ T (n)
ǫ },

E12 ={(vn1 (k,m1s, c1, r1), v
n
2 (k,m2s, c2, r2)) /∈ T (n)

ǫ },

E13 ={(vn1 (k,m1s, c1, r1), v
n
2 (k,m2s, c2, r2), y

n
1 ) /∈ T (n)

ǫ )},

E14 ={(vn1 (k,m
′
1s, c

′
1, r

′
1), v

n
2 (k,m2s, c

′
2, r

′
2), y

n
1 ) ∈ T (n)

ǫ ,

m′
1s 6= m1s}.

The probability of errorPe,1 is upper bounded asPe,1 ≤
Pr(E11)+Pr(E12|Ec

11)+Pr(E13|Ec
11, E

c
12)+Pr(E14|Ec

11). By the
LLN, Pr(E11) andPr(E13|E

c
11, E

c
12) tend to zero asn → ∞;

Pr(E12|Ec
11), by the mutual covering lemma [3] , tends to zero

as n → ∞ since R1c + R2c > I(V1;V2|U) + ǫ; The 4th
term,Pr(E14|Ec

11), by the packing lemma [3], tends to zero as
n → ∞ if R1s+R1c+R2c+R1r+R2r < I(V1, V2;Y1|U)−ǫ,
andR1s +R1c +R1r < I(V1;Y1, V2|U)− ǫ.

Analysis of individual secrecy: For the secrecy ofM1

(similar for M2), we follow the steps in (11)-(17) and obtain

I(M1;Z
n) ≤ nR1s −H(M1s|Mk, Z

n). (19)

In the following, we show thatH(M1s,M2s|Mk, Z
n) ≥

n(R1s + R2s) − nδ′(ǫ) holds if we takeR1r + R2r =
I(V1, V2;Z|U) − ǫ. This implies thatH(M1s|Mk, Z

n) ≥
nR1s − nδ(ǫ); and by (19) we obtainI(M1;Z

n) ≤ nδ(ǫ).
H(M1s,M2s|Mk, Z

n)

=H(M1s,M2s, Z
n|Un)−H(Zn|Un)

(a)

≥H(M1s,M2s, Z
n|W1c,W2c, U

n)−H(Zn|Un)

=H(M1s,M2s, Z
n, V n

1 , V n
2 |W1c,W2c, U

n)−H(Zn|Un)

−H(V n
1 , V n

2 |W1c,W2c, U
n,M1s,M2s, Z

n)

(b)

≥H(M1s,M2s, Z
n, V n

1 , V n
2 |W1c,W2c, U

n)

−H(Zn|Un)− nǫ

=H(M1s,M2s, V
n
1 , V n

2 |W1c,W2c, U
n)−H(Zn|Un)− nǫ

+H(Zn|W1c,W2c, U
n,M1s,M2s, V

n
1 , V n

2 )

=n(R1s +R2s +R1r +R2r) +H(Zn|Un, V n
1 , V n

2 )

−H(Zn|Un)− nǫ

(c)

≥n(R1s +R2s)− nδ′(ǫ)

where (a) follows by introducing random variableW1c,W2c

for the covering indicesc1, c2; (b) follows from the fact
that the eavesdropper can decodeV n

1 , V n
2 reliably given

(Un,M1s,M2s,W1c,W2c, Z
n); (c) follows thatH(Zn|Un) ≤

nH(Z|U) and H(Zn|Un, V n
1 , V n

2 ) = nH(Z|U, V1, V2) and
additionally by the rate choiceR1r+R2r = I(V1, V2;Z|U)−ǫ.

Adding those conditions such thatPe,1, Pe,2 → 0 asn → ∞
to the rate choiceR1r +R2r = I(V1, V2;Z|U)− ǫ, we have

Rk ≤min{I(U ;Y1), I(U ;Y2)}

R1c +R2c ≥I(V1;V2|U)

Ris +R1c +R2c +R1r +R2r ≤I(V1, V2;Yi|U) for i = 1, 2

R1s +R1c +R1r ≤I(V1;Y1, V2|U)

R2s +R2c +R2r ≤I(V2;Y2, V1|U)

Eliminating R1c, R2c, R1r, R2r by applying Fourier-Motzkin
procedure [3], we get the desired region of(Rk, R1s, R2s).

Remark: SettingU, Y2, V2 = ∅, the region coincides with
the secrecy capacity region of the wiretap channel [4]; If we
let U = ∅, it reduces to an achievable region under the joint
secrecy constraint (indicated by the above secrecy proof).

E. Upper bounds

For the individual secrecy capacity region of BC-RSI, an
obvious upper bound is the capacity region of the BC-RSI
without an eavesdropper as given in Theorem 1. Another upper
bound follows directly the work of wiretap channel with shared
key [5], as stated in the following proposition.

Proposition 7. For any R2 in the achievable region, R1 is
upper bounded by

max
U→V →X→(Y1,Z)

min{I(V ;Y1|U)−I(V ;Z|U)+R2, I(V ;Y1)}.

If the channel is degraded such that X → Y1 → Z , then for
any R2 in the achievable region, R1 is upper bounded by

max
X→Y1→Z

min{I(X ;Y1)− I(X ;Z) +R2, I(X ;Y1)}.

Similar results hold for interchanging 1 and 2 above.

IV. CONCLUSION

In this paper, we studied the problem of secure communi-
cation over BC-RSI under the individual secrecy constraints.
Compared to the joint secrecy constraint, this relaxed setting
allows for higher secure communication rates at the expenseof
having a weaker notion of security. We provide some special
case results together with several achievable schemes; whilst
the characterization for the general case still remains as an
open problem.
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