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Abstract—Wyner’s work on wiretap channels and the recent
works on information theoretic security are based on random
codes. Achieving information theoretical security with practical
coding schemes is of definite interest. In this note, the attempt
is to overcome this elusive task by employing the polar coding
technique of Arıkan. It is shown that polar codes achieve non-
trivial perfect secrecy rates for binary-input degraded wiretap
channels while enjoying their low encoding-decoding complexity.
In the special case of symmetric main and eavesdropper chan-
nels, this coding technique achieves the secrecy capacity. Next,
fading erasure wiretap channels are considered and a secret key
agreement scheme is proposed, which requires only the statistical
knowledge of the eavesdropper channel state information (CSI).
The enabling factor is the creation of advantage over Eve,
by blindly using the proposed scheme over each fading block,
which is then exploited with privacy amplification techniques to
generate secret keys.

I. INTRODUCTION

The notion of information theoretic secrecy was introduced

by Shannon to study secure communication over point-to-

point noiseless channels [1]. This line of work was later

extended by Wyner [2] to noisy channels assuming a degraded

eavesdropper channel (compared to that of the legitimate

receiver). Under this assumption, Wyner showed that the

advantage of the main channel over that of the eavesdropper

can be exploited to transmit secret bits using random codes.

This keyless secrecy result was then extended to a more general

(broadcast) model in [3] and to the Gaussian setting in [4].

Recently, there has been a renewed interest in wireless physical

layer security (see, e.g., Special Issue on Information Theoretic

Security, IEEE Trans. Inf. Theory, June 2008 and references

therein). However, designing practical codes to achieve secrecy

for any given main and eavesdropper channels remained open.

In [5], the authors constructed LDPC based wiretap codes

for certain binary erasure channels (BECs) and binary symmet-

ric channels (BSCs). In particular, when the main channel is

noiseless and the eavesdropper channel is a BEC, [5] presented

codes that approach secrecy capacity. For other scenarios,

secrecy capacity achieving code design is stated as an open

problem. Similarly, [6] considers the design of secure nested

codes for the noiseless main channel setting (see also [7]).
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This work studies secret communication over a binary-input

degraded wiretap channel. Using the polar coding technique

of Arıkan [8], we show that non-trivial secrecy rates are

achievable. According to our best knowledge, this coding

technique is the first provable and practical (having low en-

coding and decoding complexity) secrecy encoding technique

for this set of channels. In the special case of the symmetric

main and eavesdropper channels, this technique achieves the

secrecy capacity of the channel. We note that the parallel

works [9], [10] independently established the result that polar

coding achieves the secrecy capacity of the degraded wiretap

channels, if both main and eavesdropper channels are binary-

input and symmetric, i.e., Corollary 7 of this paper. (This

result publicized for the first time in [9]. [10] includes the

rate-equivocation analysis. An earlier version of our work

can be found in [11].) Secondly, we consider fading wiretap

channels and propose a key agreement scheme requiring only

the statistical knowledge of the eavesdropper CSI at the users.

The enabling observation is that by blindly using the scheme

over many fading blocks, the users will eventually create an

advantage over Eve, which can then be exploited to generate

secret keys using privacy amplification techniques.

II. NOTATIONS

Throughout this paper, vectors are denoted by xN
1 =

{x1, · · · , xN} or by x̄ if we omit the indices. Random

variables are denoted with capital letters X , which are defined

over sets denoted by the calligraphic letters X . For a given set

A ⊂ {1, · · · , N}, we write xA to denote the sub-vector {xi :
i ∈ A}. Omitting the random variables, we use the following

shorthand for probability distributions p(x) , Pr(X = x),
p(x|y) , Pr(X = x|Y = y).

III. POLAR CODES

Consider a binary-input DMC (B-DMC) given by W (y|x),
where x ∈ X = {0, 1} and y ∈ Y for some finite set Y . The

N uses of W is denoted by WN (yN
1 |xN

1 ). The symmetric

capacity of a B-DMC W is given by

I(W ) ,
∑

x∈X

∑

y∈Y

1

2
W (y|x) log2







W (y|x)
∑

x′∈X

1
2W (y|x′)






, (1)



which is the mutual information I(X ; Y ) when the input X

is uniformly distributed. The Bhattacharyya parameter of W

is given by

Z(W ) ,
∑

y∈Y

√

W (y|0)W (y|1), (2)

which measures the reliability of W as it is an upper bound

on the ML decision error probability on a single channel use.

Polar codes are recently introduced by Arıkan [8].

These codes can be encoded and decoded with complexity

O(N log N), while achieving an overall block-error proba-

bility that is bounded as O(2−Nβ

) for any fixed β < 1
2

([8], [12]). In [8], channel polarization is used to construct

codes (polar codes) that can achieve the symmetric capacity,

I(W ), of any given B-DMC W . Channel polarization consists

of two operations: Channel combining and channel splitting.

Let uN
1 be the vector to be transmitted. The combined channel

is represented by WN and is given by

WN (yN
1 |uN

1 ) = WN (yN
1 |uN

1 BNF⊗n), (3)

where BN is a bit-reversal permutation matrix, N = 2n, and

F ,

(

1 0
1 1

)

. Note that the actual channel input here is

given by xN
1 = uN

1 BNF⊗n. The channel splitting constructs

N binary input channels from WN , where the transformation

is given by

W
(i)
N (yN

1 , ui−1
1 |ui) ,

∑

uN
i+1∈XN−i

1

2N−1
WN (yN

1 |uN
1 ). (4)

The polarization phenomenon is shown by the following.

Theorem 1 (Theorem 1 of [8]): For any B-DMC W , N =
2n for some n, and δ ∈ (0, 1), we have

lim
N→∞

|{i ∈ {1, · · · , N} : I(W
(i)
N ) ∈ (1 − δ, 1]}|

N
= I(W ),

lim
N→∞

|{i ∈ {1, · · · , N} : I(W
(i)
N ) ∈ [0, δ)}|

N
= 1 − I(W ).

In order to derive the rate of the channel polarization, the

random process Zn is defined in [8] and in [12]. Basically,

Pr{Zn ∈ (a, b)} =
|{i ∈ {1, · · · , N} : Z(W

(i)
2n ) ∈ (a, b)}|

N

The rate of the channel polarization is given by the following.

Theorem 2 (Theorem 1 of [12]): For any B-DMC W and

for any given β < 1
2 ,

lim
n→∞

Pr{Zn < 2−2nβ

} = I(W ).

Now, the idea of polar coding is clear. The encoder-decoder

pair, utilizing the polarization effect, will transmit data through

the subchannels for which Z(W
(i)
N ) is near 0. In [8], the

polar code (N, K,A, uAc) for B-DMC W is defined by

xN
1 = uN

1 BNF⊗n, where uAc is a given frozen vector, and

the information set A is chosen such that |A| = K and

Z(W
(i)
N ) < Z(W

(j)
N ) for all i ∈ A, j ∈ Ac. The frozen vector

uAc is given to the decoder. Arıkan’s successive cancellation

(SC) estimates the input as follows: For the frozen indices

ûAc = uAc . For the remaining indices s.t. i ∈ A; ûi = 0, if

W
(i)
N (yN

1 , ûi−1
1 |0) ≥ W

(i)
N (yN

1 , ûi−1
1 |1) and ûi = 1, otherwise.

With this decoder, it is shown in [8] that the average block

error probability over the ensemble (consisting of all possible

frozen vector choices) of polar codes is bounded by

Pe(N) ≤
∑

i∈A

Z(W
(i)
N ).

We now state the result of [8] using the bound given in [12].

Theorem 3 (Theorem 2 of [12]): For any given B-DMC W

with I(W ) > 0, let R < I(W ) and β ∈ (0, 1
2 ) be fixed. Block

error probability for polar coding under SC decoding (averaged

over possible choices of frozen vectors) satisfies Pe(N) =

O(2−Nβ

).
Note that, for any β ∈ (0, 1

2 ) and ǫ > 0, we can define

the sequence of polar codes by choosing the information

indices as AN = {i ∈ {1, · · · , N} : Z(W
(i)
N ) ≤ 1

N
2−Nβ

}.
Then, from the above theorems, for sufficiently large N , we

can achieve the rate R = |AN |
N

≥ I(W ) − ǫ with average

error probability (averaged over the possible choices of uAc
N

)

Pe(N) ≤
∑

i∈AN

Z(W
(i)
N ) ≤ 2−Nβ

under SC decoding. (See

also [13].)

This result shows the existence of a polar code

(N, K,A, uAc) achieving the symmetric capacity of W . We

note that, any frozen vector choice of uAc will work for

symmetric channels [8]. For our purposes, we will denote a

polar code for B-DMC W with C(N,F , uF), where the frozen

set is given by F , Ac. Note that, A denotes the indices of

information transmission for the polar code, whereas F is the

set of frozen indices.

We conclude this section by noting the following lemma

(given in [13]) regarding polar coding over degraded channels.

Lemma 4 (Lemma 4.7 of [13]): Let W : X → Y and W ′ :
X → Y ′ be two B-DMCs such that W is degraded w.r.t. W ′,

i.e., there exists a channel W ′′ : Y ′ → Y such that

W (y|x) =
∑

y′∈Y′

W ′(y′|x)W ′′(y|y′).

Then, W
(i)
N is degraded w.r.t. W ′(i)

N and Z(W
(i)
N ) ≥ Z(W ′(i)

N ).

IV. SECURE TRANSMISSION OVER WIRETAP CHANNEL

A discrete memoryless wiretap channel with is denoted by

(X , W (ym, ye|x),Ym × Ye),

for some finite sets X ,Ym,Ye. Here the symbols x ∈ X are

the channel inputs and the symbols (ym, ye) ∈ Ym×Ye are the

channel outputs observed at the main decoder and at the eaves-

dropper, respectively. The channel is memoryless and time-

invariant: p(ymi, yei|x
i
1, ym

i−1
1 , ye

i−1
1 ) = W (ymi, yei|xi). We

assume that the transmitter has a secret message M which

is to be transmitted to the receiver in N channel uses and

to be secured from the eavesdropper. In this setting, a secret

codebook has the following components:



1) The secret message set M. The transmitted messages are

assumed to be uniformly distributed over these message sets.

2) A stochastic encoding function f(.) at the transmitter

which maps the secret messages to the transmitted symbols:

f : m → XN
1 for each m ∈ M.

3) Decoding function φ(.) at receiver which maps the

received symbols to estimate of the message: φ(Ym
N
1 ) = {m̂}.

The reliability of transmission is measured by the following

probability of error.

Pe =
1

|M|

∑

(m)∈M

Pr
{

φ(Ym
N
1 ) 6= (m)|(m) is sent

}

We say that the rate R is an achievable secrecy rate, if, for

any given ǫ > 0, there exists a secret codebook such that,

1

N
log(|M|) = R

Pe ≤ ǫ
1

N
I

(

M ; Ye
N
1

)

≤ ǫ (5)

for sufficiently large N .

Consider a degraded binary-input wiretap channel, where,

for the input set X = {0, 1}, the main channel is given by

Wm(ym|x) (6)

and the eavesdropper channel is

We(ye|x) =
∑

ym∈Ym

Wm(ym|x)Wd(ye|ym). (7)

Note that, due to degradation, polar codes designed for the

eavesdropper channel can be used for the main channel. For

a given sufficiently large N and β ∈ (0, 1
2 ), let

Am = {i ∈ {1, · · · , N} : Z(Wm
(i)
N ) ≤

1

N
2−Nβ

},

Ae = {i ∈ {1, · · · , N} : Z(We
(i)
N ) ≤

1

N
2−Nβ

}.

Now, consider a polar code Cm , C(N,Fm, uFm
) for the

main channel with some uFm
(the frozen vector for the main

channel). Due to Lemma 4, we have Ae ⊂ Am and hence

Fm ⊂ Fe. Now, for any given length |Fe| − |Fm| vector

v̄m (to be called as message vector) and uFm
, we define the

frozen vector for the eavesdropper, denoted by uFe
(v̄m), by

choosing (uFe
(v̄m))Fm

= uFm
and (uFe

(v̄m))Fe\Fm
= v̄m.

Note that, denoting Ce(v̄m) , C(N,Fe, uFe
(v̄m)), the en-

semble ∪v̄m,uFm
Ce(v̄m) is a symmetric capacity achieving

polar code ensemble for the eavesdropper channel We (if

the eavesdropper channel is symmetric, any frozen vector

choice will work [8], and hence the code achieves the capacity

of the eavesdropper channel for any v̄m, uFm
). This implies

that the code for the main channel can be partitioned as

Cm = ∪v̄m
Ce(v̄m). This observation, when considered over the

ensemble of codes, enables us to construct secrecy achieving

polar coding schemes, even if the eavesdropper channel is not

symmetric, as characterized by the following theorem.

Theorem 5: For a binary-input degraded wiretap channel,

the perfect secrecy rate of I(Wm) − I(We) is achieved by

polar coding.

Proof:

Encoding: We map the secret message to be transmitted

to the message vector, v̄m, and generate a random vector

v̄r, according to uniform distribution over X , of length |Ae|.
Then, the channel input is constructed with xN

1 = uN
1 BNF⊗n,

where uFm
is the frozen vector of the polar code Cm,

uFe\Fm
= v̄m, and uAe

= v̄r. The polar code ensemble is

constructed over all different choices of frozen vectors, i.e.,

uFm
.

Decoding: The vectors v̄m and v̄r can be decoded with

the SC decoder described above with error probability Pe =
O(2−Nβ

) (averaged over the ensemble) achieving a rate R =
|v̄m|
N

= I(Wm) − I(We) for sufficiently large N .

Security: Lets assume that the vector v̄m is given to

the eavesdropper along with uFm
. Then, employing the SC

decoding, the eavesdropper can decode the random vector v̄r

with Pe = O(2−Nβ

) averaged over the ensemble. Utilizing

the Fano’s inequality and average it over the code ensemble

seen by the Eve, i.e. over V̄m and UFm
, we obtain

H(V̄r|V̄m, UFm
, Ye

N
1 ) ≤ H(Pe) + N log(|X |)Pe ≤ Nǫ(N), (8)

where ǫ(N) → 0 as N → ∞.

Then, the mutual information leakage to the eavesdropper

averaged over the ensemble can be bounded as follows.

I(M ; Ye
N
1 |UFm

) = I(V̄m; Ye
N
1 |UFm

)

= I(V̄m, V̄r ; Ye
N
1 |UFm

) − I(V̄r; Ye
N
1 |V̄m, UFm

) (9)

(a)
= I(UN

1 ; Ye
N
1 ) − H(V̄r) + H(V̄r|V̄m, UFm

, Ye
N
1 )(10)

(b)

≤ I(XN
1 ; Ye

N
1 ) − H(V̄r) + H(V̄r|V̄m, UFm

, Ye
N
1 )(11)

(c)

≤ NI(We) − |Ae| + H(V̄r|V̄m, uFm
, Ye

N
1 ) (12)

(d)

≤ NI(We) − |Ae| + Nǫ(N), (13)

where in (a) we have UN
1 each entry with i.i.d. uniformly

distributed, (b) follows from data processing inequality, (c) is

due to I(XN
1 ; Ye

N
1 ) =

N
∑

i=1

I(XN
1 ; Yei|Ye

i−1
1 ) ≤

N
∑

i=1

H(Yei) −

H(Yei|Xi) = NI(Xi; Yei) with a uniformly distributed Xi,

and (d) follows from (8) with ǫ(N) → 0 as N → ∞. As
|Ae|
N

→ I(We) as N gets large, we obtain

1

N
I(V̄m; Ye

N
1 |UFm

) ≤ ǫ (14)

for a given ǫ > 0 for sufficiently large N . As the reliability and

secrecy constraints are satisfied averaged over the ensemble,

there exist a polar code with some fixed uFm
achieving the

secure rate I(Wm) − I(We).
Note that in the above result, the code satisfying the reliabil-

ity and the secrecy constraints can be found from the ensemble

by an exhaustive search. However, as block length increases,

almost all the codes in the ensemble will do equally well.

If the eavesdropper channel is symmetric, then the secrecy



constraint is satisfied for any given frozen vector uFm
and

the code search is only for the reliability constraint. If the

eavesdropper channel is not symmetric, a prefix channel can

be utilized to have this property.

Corollary 6: For non-symmetric eavesdropper channels, the

channel can be prefixed with some p(x|x′) such that the

resulting eavesdropper channel

W ′
e(ye|x

′) =
∑

ym∈Ym

p(x|x′)Wm(ym|x)Wd(ye|ym)

is symmetric. Then, using the scheme above, the secret rate

R = I(W ′
m) − I(W ′

e)

is achievable, where W ′
m(ym|x′) = p(x|x′)Wm(ym|x).

Finally, we note that the scheme achieves the secrecy capacity

and any code in the ensemble, i.e., any fixed uFm
, will satisfy

both the reliability and secrecy constraints, if the main and

eavesdropper channels are symmetric.

Corollary 7: For a binary-input degraded wiretap channel

with symmetric main and eavesdropper channels, polar coding

achieves the secrecy capacity of the channel, i.e., C(Wm) −
C(We).

We note that the stated results are achievable by encoders

and decoders with complexity of O(N log N) for each. In

addition, if the channels are binary erasure channels (BECs),

then there exists algorithms with complexity O(N) for the

code construction [8].

V. SECRET KEY AGREEMENT OVER FADING WIRETAP

CHANNELS

In this section, we focus on the following key agreement

problem: Alice, over (slow) fading wiretap channel, would

like to agree on a secret key with Bob in the presence of

passive eavesdropper Eve. We focus on the special case of

binary erasure main and eavesdropper channels, for which the

code construction is shown to be simple [8].

Fading blocks are represented by i = 1, · · · , LM , each

block has N channel uses, and there are L super blocks

each with M fading blocks. Random variables over blocks are

represented with the following bar notation. Ȳ
(l;m)
e denotes the

observations of Eve over the fading block m of the super block

l, the observations of Eve over super block l ∈ [1, · · · , L] is

denoted by ¯̄Y
(l)
e = Ȳ

(l;1···M)
e , {Ȳ

(l;1)
e , · · · , Ȳ

(l;M)
e }, and

Eve’s total observation over all super blocks is denoted by

Y ∗
e = ¯̄Y

(1···L)
e = { ¯̄Y

(1)
e , · · · , ¯̄Y

(L)
e }.

Main and eavesdropper channels are binary erasure channels

and are denoted by W
(i)
m and W

(i)
e , respectively. Here, the

channels Wm and We are random, outcome of which result in

the channels of each block. Instantaneous eavesdropper CSI is

not known at the users, only the statistical knowledge of it is

assumed. The channels are assumed to be physically degraded

w.r.t. some order at each block. 1 Note that, in this setup,

1We remark that a random walk model with packet erasures can be covered
with this model. Also, parallel channel model can be adapted into this
framework.

eavesdropper channel can be better than the main channel on

the average.

We utilize the proposed secrecy encoding scheme for the

wiretap channel at each fading block. Omitting the block

indices, frozen and information bits are denoted as uFm
and

uAm
, respectively. Information bits are uniformly distributed

binary random variables and are mapped to uAm
. Secure

message and randomization bits among these information bits

are denoted by V̄m and V̄r, respectively. Frozen bits are

provided both to main receiver and eavesdropper at each block.

(We omitted writing this side information below as all zero

vector can be chosen as the frozen vector for the erasure

channel [8].) Note that Alice and Bob do not know the length

of V̄
(i)
m at fading block i. In particular, there may not be any

secured bits at a given fading block.

Considering the resulting information accumulation over a

block, we obtain the followings.

1

N
H(V̄ (i)

m ) = [C(W (i)
m ) − C(W (i)

e )]+

1

N
H(V̄ (i)

r ) = min{C(W (i)
m ), C(W (i)

e )},

where the former denotes the amount of secure information

generated at block i (here the secrecy level is the bound

on the mutual information leakage rate), and the latter de-

notes the remaining information. Note that these entropies are

random variables as channels are random over the blocks.

Remarkable, this scheme converts the fading phenomenon

to the advantage of Alice and Bob (similar to the enabling

observation utilized in [14]). Exploiting this observation and

coding over LM fading blocks, the proposed scheme below

creates advantage for the main users: As L, M, N get large,

information bits, denoted by W ∗, are w.h.p. reliably decoded

at the Bob, H(W ∗) → LMNE [C(Wm)], and H(W ∗|Y ∗
e ) →

LMN E [[C(Wm) − C(We)]
+]. This accomplishes both ad-

vantage distillation and information reconciliation phases of a

key agreement protocol [15], [16]. Now, a third phase (called

as privacy amplification) is needed to distill a shorter string

K from W ∗, about which Eve has only a negligible amount

of information. The privacy amplification step can be done

with universal hashing as considered in [15]. We first state the

following definition and lemma regarding universal hashing,

and then formalize the main result of this section in the

following theorem.

Definition 8: A class G of functions A → B is universal if,

for any x1 6= x2 in A, the probability that g(x1) = g(x2) is

at most 1
|B| when g is chosen as random from G according to

the uniform distribution.

Note that the hash function should have complexity as 1)

it will be revealed to each user, and 2) Alice and Bob will

compute g(W ∗); and efficient universal classes exist, see, for

example, [17]. Generalized privacy amplification, proposed

in [15], is based on the following property of universal

hashing.

Lemma 9 (Theorem 3, [15]): Let X ∈ X be a random

variable with distribution PX and Rényi entropy (of second



order) R(X) = − log2 E[PX(X)]. Let G be a random choice

(according to uniform distribution) of a member of universal

class of hash functions X → {0, 1}r, and let Q = G(X).
Then, we have

H(Q|G) ≥ R(Q|G) ≥ r−log2

(

1 + 2r−R(X)
)

≥ r−
2r−R(X)

ln 2
.

Exploiting the proposed coding scheme, which creates ad-

vantage in favor of Bob over the fading channel, we use the

hash functions described above and obtain the following result.

Theorem 10: For any ǫ, ǫ∗ > 0, let

n = L M N (E [C(Wm)] − ǫ∗) ,

r = L M N
(

E
[

[C(Wm) − C(We)]
+

]

− ǫ∗
)

.

Then, for sufficiently large L, M and N , Alice and Bob can

w.h.p. agree on the random variable W ∗ , ¯̄W (1···L) of length

n over LM fading blocks (i.e., Pr{W ∗ 6= Ŵ ∗} ≤ ǫ, where

Ŵ ∗ denotes the estimate at Bob); and choose K = G(W ∗)
as their secret key (here G is chosen uniformly random from

universal class of hash functions {0, 1}n → {0, 1}r) satisfying

I(K; Y ∗
e , G) ≤ ǫ,

where Y ∗
e , ¯̄Y

(1···L)
e denotes the Eve’s total received symbols.

Proof:

We repeat the described scheme over LM fading blocks.

Due to the construction above, we have

1

N
H(V̄ (i)

m ) − ǫ1 ≤
1

N
H(V̄ (i)

m |Ȳ (i)
e ) ≤

1

N
H(V̄ (i)

m ), (15)

where 1
N

H(V̄
(i)
m ) = [C(W

(i)
m ) − C(W

(i)
e )]+ and ǫ1 → 0 as

N gets large (follows from the fact that conditioning does not

increase entropy and the security of V̄
(i)
m ), and

1

N
H(V̄ (i)

r |Ȳ (i)
e , V̄ (i)

m ) ≤ ǫ2, (16)

where ǫ2 → 0 as N → ∞ (follows from Fano’s inequality).

We now consider the total information accumulation and

leakage. Let W ∗ = ¯̄W (1···L) , {V̄
(l;m)
m , V̄

(l;m)
r , ∀l ∈

[1, L], ∀m ∈ [1, M ]} and denote the estimate of it at Bob as

Ŵ ∗. We obtain that, there exist N1, M1, s.t. for any N ≥ N1

and M ≥ M1, we have

H(W ∗) ≥ LMN (E [C(Wm)] − ǫ∗) (17)

Pr{W ∗ 6= Ŵ ∗} ≤ LM2−Nβ

, (18)

for some β ∈ (0, 1
2 ) due to polar coding and the union bound.

Considering Y ∗
e , ¯̄Y

(1···L)
e at Eve, we write

H(W ∗|Y ∗
e ) =

L
∑

l=1

H( ¯̄W (l)| ¯̄Y
(l)
e )

=

LM
∑

i=1

H(V̄ (i)
m |Ȳ (i)

e ) + H(V̄ (i)
r |Ȳ (i)

e , V̄ (i)
m ). (19)

Focusing on a particular super block, omitting the index (l)

in ( ¯̄W (l), ¯̄Y
(l)
e ), and using (15) and (16) in (19), we obtain

MN (E [[C(Wm) − C(We)]
+] − ǫ4) ≤ H( ¯̄W | ¯̄Ye)

≤ MN
(

E
[

[C(Wm) − C(We)]
+

]

+ ǫ5
)

, (20)

where ǫ4 and ǫ5 vanishes as M, N get large.

In order to translate H(W ∗|Y ∗
e ) to Rényi entropy, to use

Lemma 9 in our problem, we resort to typical sequences,

as for a uniform random variable both measures are the

same. Considering ( ¯̄W (1), · · · , ¯̄W (L), ¯̄Y
(1)
e , · · · , ¯̄Y

(L)
e ) as L

repetitions of the experiment of super block random variables

( ¯̄W, ¯̄Ye), we define the event T based on typical sets as

follows [18]: Let δ > 0. T = 1, if the sequences ¯̄w(1···L) and

( ¯̄w(1···L), ¯̄y
(1···L)
e ) are δ-typical; and ¯̄y

(1···L)
e is such that the

probability that ( ¯̄w′(1···L)
, ¯̄y

(1···L)
e ) is δ-typical is at least 1−δ,

which is taken over ¯̄w′(1···L)
according to p( ¯̄W ′(1···L)

|¯̄y
(1···L)
e ).

Otherwise, we set T = 0 and denote δ0 , Pr{T = 0}. Then,

by Lemma 6 of [18], as L → ∞

Lδ0 → 0, Lδ → 0, and (21)

R( ¯̄W (1···L)| ¯̄Y (1···L)
e = ¯̄y(1···L)

e , T = 1)

≥ L(H( ¯̄W | ¯̄Ye) − 2δ) + log(1 − δ). (22)

We continue as follows.

R( ¯̄W (1···L)| ¯̄Y
(1···L)
e = ¯̄y

(1···L)
e , T = 1)

≥ L(H( ¯̄W | ¯̄Ye) − 2δ) + log(1 − δ)

≥ LMN

(

E
[

[C(Wm) − C(We)]
+

]

− ǫ4

−
2δ

MN
+

log(1 − δ)

LMN

)

= LMN
(

E
[

[C(Wm) − C(We)]
+

]

− δ∗
)

, (23)

where δ∗ → 0 as M, N → ∞. Thus, for the given ǫ∗, there

exists M2, N2 s.t. for M ≥ M2 and N ≥ N2, ǫ∗

2 ≥ δ∗. We let

r = LMN (E [[C(Wm) − C(We)]
+] − ǫ∗) and consider the

following bound.

H(K|Y ∗
e , G) ≥ H(K|Y ∗

e , G, T )

(a)

≥ (1 − δ0)
∑

y∗
e∈Y∗

e

(

H(K|Y ∗
e = y∗

e , G, T = 1)

P (Y ∗
e = y∗

e |T = 1)

)

(b)

≥ (1 − δ0)

(

r −
2−LMN(ǫ∗−δ∗)

ln 2

)

, (24)

where in (a) δ0 is s.t. Lδ0 → 0 as L → ∞, (b) is due to

Lemma 9 given above and due to (23) and the choice of r.

Here, for the given ǫ > 0, there exists M3, N3 s.t. for M ≥ M3

and N ≥ N3, 2−LMN( ǫ∗

2
)

ln 2 ≤ ǫ
2 . Hence, we obtain

I(K; Y ∗
e , G) = H(K) − H(K|Y ∗

e , G) (25)

≤ δ0r +
2−LMN(ǫ∗−δ∗)

ln 2
(26)

(a)

≤ δ0LMN +
2−LMN( ǫ∗

2 )

ln 2
(27)

(b)

≤ δ0LMN +
ǫ

2
, (28)



where (a) holds if M ≥ M2 and N ≥ N2 and (b) holds if

M ≥ M3 and N ≥ N3.

Now, we choose some M ≥ max{M1, M2, M3}. For this

choice of M , we choose sufficiently large L and sufficiently

large N such that N ≥ max{N1, N2, N3} and

δ0LMN ≤
ǫ

2
(29)

LM2−Nβ

≤ ǫ, (30)

which holds as δ0L → 0 as L → ∞ in (21). (In fact, due

to [18, Lemma 4 and Lemma 6], for any ǫ′ > 0, we can

take δ0L ≤ ǫ′

L
as L gets large.) Therefore, for this choice of

L, M, N , we obtain the desired result from (17), (18), (28),

due to (29) and (30):

H(W ∗) ≥ LMN (E [C(Wm)] − ǫ∗) (31)

Pr{W ∗ 6= Ŵ ∗} ≤ ǫ (32)

I(K; Y ∗
e , G) ≤ ǫ (33)

In addition, for this choice of L, M, N , we bound H(K) ≥
r − ǫ due to (24), which shows that the key is approximately

uniform.

Few remarks are now in order.

1) Existing code designs in the literature and the previous

section of this work assume that Eve’s channel is known at

Alice and Bob. In the above scheme, Alice and Bob only

need the statistical knowledge of eavesdropper CSI. Also, the

main channel is not necessarily stronger than the eavesdropper

channel, which is not the case for degraded wiretap settings.

2) The above scheme can be used for the wiretap channel

of Section IV by setting M = 0 to achieve strong secrecy

(assuring arbitrarily small information leakage) instead of the

weak notion (making the leakage rate small). See also [18].

3) The results can be extended to arbitrary binary-input

channels along the same lines, using the result of Sec-

tion IV. In such a setting, the above theorem would be

reformulated with n = LMN(E[I(Wm)] − ǫ∗) and r =
LMN(E[[I(Wm)− I(We)]

+]− ǫ∗). However, the code con-

struction complexity of such channels may not scale as good

as that of the erasure channels [8].

VI. DISCUSSION

In this work, we considered polar coding for binary-input

DMCs with a degraded eavesdropper. We showed that polar

coding can be utilized to achieve non-trivial secrecy rates for

this set of channels. If both receiver and eavesdropper have

binary-input symmetric channels in addition to the degraded-

ness assumption, this coding technique achieves the secrecy

capacity. The results might be extended to arbitrary discrete

memoryless channels using the techniques given in [19]. The

second focus of this work was the secret key agreement over

fading channels, where we showed that Alice and Bob can

create advantage over Eve by using the polar coding scheme

at each fading block, which is then exploited with privacy

amplification techniques to generate keys. This result is inter-

esting in the sense that part of the key agreement protocol is

established information theoretically over fading channels by

only requiring the statistical knowledge of eavesdropper CSI

at the users.
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