

Abstract

- The joint activity of grid and place cell populations forms a neural code for space.
- We measure the performance of a network of these populations, as well as interneurons, which implement biologically realizable de-noising algorithms.
- Simulations demonstrate that these de-noising mechanisms can significantly reduce mean squared error (MSE) of location decoding.
- The modular organization of grid cells can improve MSE.

The hybrid code

- Components: N neurons, M grid modules (m), with J neu-
- Grid cell tuning curves

$$g_{m,j}(\mathbf{s}) = \frac{f_{\max}}{Z} \exp\left[\sum_{k=1}^{3} \cos\left(\frac{4}{\lambda_m \sqrt{3}} \mathbf{u}(\theta_k - \theta_{m,j}) \cdot (\mathbf{s} - \mathbf{c}_{m,j}) + \frac{3}{2}\right) - 1\right]$$

- $-\mathbf{u}(\theta_k \theta_{m,j})$ is a unit vector in the direction of $\theta_k \theta_{m,j}$
- $-\mathbf{s} \in [0, L] \times [0, L]$ is the position stimulus
- $-\mathbf{c}_{m,j}, \theta_{m,j}$, and λ_m are spatial phase offset, orientation offset, and scaling ratio
- Orientations, $\theta_{m,j} \in \{-60^\circ, 0^\circ, 60^\circ\}$
- -Z is a normalizing constant (≈ 2.857399)
- $-f_{\rm max}$ is the grid cell's maximum firing rate
- Place cells have bivariate Gaussian tuning curves with mean $\boldsymbol{\xi} \in [0, L] \times [0, L], \ \rho \in [-\frac{1}{2}, \frac{1}{2}], \ \text{and covariance} \left(\begin{array}{c} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right)$
- **Codewords** are formed by concatenating actities of these cells

De-noising network

A hybrid code from grid and place cells

David M. Schwartz and O. Ozan Koyluoglu

Laboratory for Information Processing Systems University of Arizona

- **This network** is a bipartite graph consisting of N pattern neurons and n_i interneurons
- The un-clustered design: Interneurons are connected to a random set of grid and place cells

• The clustered design:

-Interneurons are split into M distinct clusters of n interneurons per cluster with each cluster connected to a distinct grid module.

– Interneurons are connected randomly to pattern neurons chosen from a set consisting of every grid cell in the corresponding module, and every place cell.

Subspace learning

- **Before denoising** is possible, this network must learn (i.e. adapt its weights for) the hybrid code.
- Code subspace learning is complete when the interneurons may be read to determine if the states of the pattern neurons map to a valid codeword, i.e. when the network has developed a connectivity matrix, W, whose rows are approximately perpendicular to the code space.

• (anti)Hebbian learning update rule:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha_t(y(\mathbf{x} - \frac{y\mathbf{w}}{\|\mathbf{w}\|^2}) + \eta\Gamma(\mathbf{w}, \theta)),$$

- $-\alpha_t$ is the learning rate at iteration t
- $-y = \mathbf{x'w}$ is the scalar projection of \mathbf{x} onto \mathbf{w}
- $-\theta$ is a sparsity threshold
- $-\eta$ is a penalty coefficient
- $-\Gamma$ is a sparsity enforcing function, approximating the gradient of a penalty function, $g(\mathbf{w}) = \sum \tanh(\sigma \mathbf{w}_k^2)$, which, for ap-

propriate choices of σ , penalizes non-sparse solutions early in the learning procedure.

Algorithm 1 Neural Learnin
Require: set of C patterns, C , stopping point, ϵ
Ensure: learned weights matrix, W
1: for rows, \mathbf{w} , of W do
2: for $t \in \{1,, T_{\max}\}$ do
3: $\alpha_t \leftarrow \max\{\frac{50 \cdot \alpha_0}{50 + \log_{10}(t)}, 0.005\}$
4: $\theta_t \leftarrow \frac{\theta_0}{t}$
5: for $\mathbf{c} \in \mathcal{C}$ do
6: $y \leftarrow \mathbf{c} \cdot \mathbf{w}$
7: if $\ \mathbf{c}\ > \epsilon$ then
8: $\alpha_t \leftarrow \frac{\alpha_0}{\ \mathbf{c}\ ^2}$
9: end if
10: $\mathbf{w} \leftarrow \text{Dale}(\text{update}(\mathbf{c}, \mathbf{w}, \alpha_t, \theta_t, \eta))$
11: end for
12: if $\ \underline{C}\mathbf{w}'\ < \epsilon$ then
13: break
14: end if
15: $t \leftarrow t+1$
16: end for
17: for components, w_i of w do
18: if $ w_i \le \epsilon$ then
19: $\mathbf{w}_i \leftarrow 0$
20: end if
21: end for
22: end for

De-noising algorithms

- Goal: Recover the correct pattern of activity, **x** from the noisy state, $\mathbf{x}_n = \mathbf{x} + \mathbf{n}$, where **n** is this noise pattern.
- $\mathbf{x}_n W'$ reveals inconsistencies in \mathbf{x}_n that the de-noising algorithm seeks to correct in the feedback stage. To see this, consider that $\mathbf{x}_n W' = (\mathbf{x} + \mathbf{n})W' = \mathbf{x}W' + \mathbf{n}W' \approx 0 + \mathbf{n}W'$.
- Clustered de-noising begins with Algorithm 2. Algorithm 3 is invoked if errors are detected.
- Un-clustered de-noising utilizes Algorithm 3, treating the entire network as a single cluster.

- Random phases often produces a code with R = 1, independent of how grid cells are distributed to modules.
- Choosing $\mu_p > 1$ enables the code to achieve low rank at high rate (important for denoising a code with a large number of locations)

Subspace learning results

• **Define** connection strength from place cells to grid modules by $\frac{1}{n_i}(\sum |w_{i,j}w_{i,p}|)$ (for interneurons, *i*, grid cells, *j*, in module *m*).

[1] Stensola, Hanne, Tor Stensola, Trygve Solstad, Kristian Frland, May-Britt Moser, and Edvard I. Moser. "The Entorhinal Grid Map Is Discretized." Nature 492, no. 7427 (2012): 72-78. doi:10.1038/nature11649. [2] Salavati, Amir Hesam, K. Raj Kumar, and Amin Shokrollahi. "Nonbinary Associative Memory With Exponential Pattern Retrieval Capacity and Iterative Learning." IEEE Transactions on Neural Networks and Learning Systems 25, no. 3 (2014): 557-70. doi:10.1109/tnnls.2013.2277608. [3] Oja, Erkki, and Juha Karhunen. "On Stochastic Approximation of the Eigenvectors and Eigenvalues of the Expectation of a Random Matrix." Journal of Mathematical Analysis and Applications 106, no. 1 (1985): 69-84. [4] Karbasi, Amin, Amir Hesam Salavati, and Amin Shokrollahi. "Iterative Learning and Denoising in Convolutional Neural Associative Memories." In ICML (1), pp. 445-453. 2013. [5] Fiete, Ila R., Yoram Burak, and Ted Brookings. "What grid cells convey about rat location." The Journal of Neuroscience 28, no. 27 (2008): 6858-6871. [6] Wenberg, Daniel, and Yasser Roudi. The Distribution of Spatial Phases of Grid Cells. Master's thesis, NTNU, 2015. 1-89. Accessed November 7, 2016. http://hdl.handle.net/11250/2359809.

THE UNIVERSITY OF ARIZONA

could be made sparser.

• Codes with any desired rank can be constructed by proper choice of population parameters.

• Random choices of these parameters render the code too dense for effective de-noising.

• **Biological choices** of orientation and phase produce readily de-noisable codes for position.

References